Skip to content
Register Sign in Wishlist
Complex Projective Geometry

Complex Projective Geometry
Selected Papers

Part of London Mathematical Society Lecture Note Series

J. Alexander, E. Arrondo, I. Sols, A. B. Aure, K. Ranestad, D. Avritzer, I. Vainsencher, M. Beltrametti, M. Schneider, A. J. Sommese, A. Bertram, E. Bifet, F. Ghione, M. Letizia, C. Ciliberto, R. Miranda, W. Decker, N. Manolache, F. O. Schreyer, L. Ein, R. Lazarsfeld, Ph. Ellia, R. Strano, F. Ghion, G. Ottaviani, L. Gruson, S. Kleiman, J. Le Potier, M. Martin-Deschamps, D. Perrin, S. Mukai, S. Muller-Stach, R. Strano, C. Voisin, J. Wahl, C. H. Walter
View all contributors
  • Date Published: September 1992
  • availability: Available
  • format: Paperback
  • isbn: 9780521433525

Paperback

Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

Please email academicmarketing@cambridge.edu.au to enquire about an inspection copy of this book

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Algebraic geometers have renewed their interest in the interplay between algebraic vector bundles and projective embeddings. New methods have been developed for questions such as: what is the geometric content of syzygies and of bundles derived from them? how can they be used for giving good compactifications of natural families? which differential techniques are needed for the study of families of projective varieties? Such problems have often been reformulated over the last decade; often the need for a deeper analysis of the works of classical algebraic geometers was recognised. These questions were addressed at successive conferences held in Trieste and Bergen. New results, work in progress, conjectures and modern accounts of classical ideas were presented. This collection represents a development of the work conducted at the conferences; the Editors have taken the opportunity to mould the papers into a cohesive volume.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: September 1992
    • format: Paperback
    • isbn: 9780521433525
    • length: 352 pages
    • dimensions: 229 x 152 x 21 mm
    • weight: 0.507kg
    • availability: Available
  • Table of Contents

    1. Speciality one rational surfaces in P4 J. Alexander
    2. Bounding sections of bundles on curves E. Arrondo and I. Sols
    3. The smooth surfaces of degree 9 in P4 A. B. Aure and K. Ranestad
    4. Compactifying the space of elliptic quartic curves D. Avritzer and I. Vainsencher
    5. Threefolds of degree 11 in P5 M. Beltrametti, M. Schneider and A. J. Sommese
    6. Complete extensions and their map to moduli space A. Bertram
    7. On the Betti numbers of the moduli space of stable bundles of rank two on a curve E. Bifet, F. Ghione and M. Letizia
    8. Gaussian maps for certain families of canonical curves C. Ciliberto and R. Miranda
    9. Geometry of the Horrocks bundle on P3 W. Decker, N. Manolache and F. O. Schreyer
    10. Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves L. Ein and R. Lazarsfeld
    11. Sections planes et majoration du genre des courbes gauches Ph. Ellia and R. Strano
    12. A tribute to Corrado Segre F. Ghione and G. Ottaviani
    13. Un aperçu des travaux mathématiques de G. H. Halphen (1844–1889) L. Gruson
    14. The source double-point cycle of a finite map of codimension one S. Kleiman
    15. Fibré déterminant et courbes de saut sur les surfaces algébriques J. Le Potier
    16. Courbes minimales dans les classes de biliaison M. Martin-Deschamps and D. Perrin
    17. Fano 3-folds S. Mukai
    18. Polarized K3 surfaces of genus 18 and 20 S. Mukai
    19. Projective compactifications of complex affine varieties S. Muller-Stach
    20. On generalized Laudal’s lemma R. Strano
    21. Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes C. Voisin
    22. Introduction to Gaussian maps on an algebraic curve J. Wahl
    23. Some examples of obstructed curves in P3 C. H. Walter.

  • Editors

    G. Ellingsrud, Universitetet i Bergen, Norway

    C. Peskine, Université de Paris VI (Pierre et Marie Curie)

    G. Sacchiero, Università degli Studi di Trieste

    S. A. Stromme, Universitetet i Bergen, Norway

    Contributors

    J. Alexander, E. Arrondo, I. Sols, A. B. Aure, K. Ranestad, D. Avritzer, I. Vainsencher, M. Beltrametti, M. Schneider, A. J. Sommese, A. Bertram, E. Bifet, F. Ghione, M. Letizia, C. Ciliberto, R. Miranda, W. Decker, N. Manolache, F. O. Schreyer, L. Ein, R. Lazarsfeld, Ph. Ellia, R. Strano, F. Ghion, G. Ottaviani, L. Gruson, S. Kleiman, J. Le Potier, M. Martin-Deschamps, D. Perrin, S. Mukai, S. Muller-Stach, R. Strano, C. Voisin, J. Wahl, C. H. Walter

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×