Skip to content
Register Sign in Wishlist

Semigroups of Linear Operators
With Applications to Analysis, Probability and Physics

Part of London Mathematical Society Student Texts

  • Date Published: September 2019
  • availability: Available
  • format: Paperback
  • isbn: 9781108716376


Add to wishlist

Other available formats:
Hardback, eBook

Looking for an inspection copy?

This title is not currently available for inspection. However, if you are interested in the title for your course we can consider offering an inspection copy. To register your interest please contact providing details of the course you are teaching.

Product filter button
About the Authors
  • The theory of semigroups of operators is one of the most important themes in modern analysis. Not only does it have great intellectual beauty, but also wide-ranging applications. In this book the author first presents the essential elements of the theory, introducing the notions of semigroup, generator and resolvent, and establishes the key theorems of Hille–Yosida and Lumer–Phillips that give conditions for a linear operator to generate a semigroup. He then presents a mixture of applications and further developments of the theory. This includes a description of how semigroups are used to solve parabolic partial differential equations, applications to Levy and Feller–Markov processes, Koopmanism in relation to dynamical systems, quantum dynamical semigroups, and applications to generalisations of the Riemann–Liouville fractional integral. Along the way the reader encounters several important ideas in modern analysis including Sobolev spaces, pseudo-differential operators and the Nash inequality.

    • Provides an up-to-date and self-contained treatment
    • Includes a wide range of attractive application areas
    • Model solutions to problems are available online
    Read more

    Reviews & endorsements

    '… Applebaum has written a book that provides substantial depth and rigor, with a plethora of references. A notable feature of the text that increases its appeal is the author's inclusion of applications of the theory of semigroups to partial differential equations, dynamical systems, physics, and probability. This book also includes several advanced topics-such as measure spaces, spectral decompositions, and fractional calculus-but Applebaum offers motivating examples for readers to consider, interesting exercises to increase their comprehension, and additional resources to help them find complete details, so that a student could successfully navigate through this material independently if need be.' M. Clay, Choice

    'Overall, this book is an interesting contribution to the semigroup literature which does not follow a standard route.' Eric Stachura, MAA Reviews

    'Experts can quickly browse through any of the chapters, and get nicely acquainted with examples they are not yet fully aware of. Students can read this book fairly casually, and gain great motivation to study functional, stochastic, and/or harmonic analysis further. Last but not least, teachers of graduate courses can design several great courses by elaborating on one of the many threads running through the book under review and using the referred sources to turn them into self-contained stories. All will appreciate the book's excellent mix of erudition and pedagogy.' Pierre Portal, MathSciNet

    'Some readers will enjoy the topic for its inherent attraction as a means of presenting results in a simple and widely applicable way. A masters student who is interested in researching in analysis but not in technical details of PDEs may nd this text particularly useful for finding a research topic in one of the related areas. In these respects the book achieves the aims declared in its introduction, in a way which is not found in earlier texts.' Charles Batty, The Mathematical Gazette

    'This excellent book, supplementing the known texts on operator semigroups, stems from the author's lectures for students with basic knowledge of functional analysis and measure theory … the book totally meets the goals of the LMS Student Texts series and is highly recommended to the University community.' Andrey V. Bulinski, zbMATH

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: September 2019
    • format: Paperback
    • isbn: 9781108716376
    • length: 232 pages
    • dimensions: 228 x 151 x 14 mm
    • weight: 0.35kg
    • contains: 45 exercises
    • availability: Available
  • Table of Contents

    1. Semigroups and generators
    2. The generation of semigroups
    3. Convolution semigroups of measures
    4. Self adjoint semigroups and unitary groups
    5. Compact and trace class semigroups
    6. Perturbation theory
    7. Markov and Feller semigroups
    8. Semigroups and dynamics
    9. Varopoulos semigroups
    Notes and further reading
    Appendices: A. The space C0(Rd)
    B. The Fourier transform
    C. Sobolev spaces
    D. Probability measures and Kolmogorov's theorem on construction of stochastic processes
    E. Absolute continuity, conditional expectation and martingales
    F. Stochastic integration and Itô's formula
    G. Measures on locally compact spaces: some brief remarks

  • Resources for

    Semigroups of Linear Operators

    David Applebaum

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Author

    David Applebaum, University of Sheffield
    David Applebaum is Professor of Mathematics at the University of Sheffield. His specialist research area is stochastic analysis, with particular emphasis on analytic and probabilistic aspects of processes with jumps on Lie groups, symmetric spaces and manifolds.

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.