Skip to content
Register Sign in Wishlist

Continuous and Discrete Modules

Part of London Mathematical Society Lecture Note Series

  • Date Published: April 1990
  • availability: Available
  • format: Paperback
  • isbn: 9780521399753

Paperback

Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

Please email academicmarketing@cambridge.edu.au to enquire about an inspection copy of this book

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Continuous and discrete modules are, essentially, generalizations of infective and projective modules respectively. Continuous modules provide an appropriate setting for decomposition theory of von Neumann algebras and have important applications to C*-algebras. Discrete modules constitute a dual concept and are related to number theory and algebraic geometry: they possess perfect decomposition properties. The advantage of both types of module is that the Krull-Schmidt theorem can be applied, in part, to them. The authors present here a complete account of the subject and at the same time give a unified picture of the theory. The treatment is essentially self-contained, with background facts being summarized in the first chapter. This book will be useful therefore either to individuals beginning research, or the more experienced worker in algebra and representation theory.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: April 1990
    • format: Paperback
    • isbn: 9780521399753
    • length: 140 pages
    • dimensions: 229 x 152 x 8 mm
    • weight: 0.22kg
    • availability: Available
  • Table of Contents

    1. Injectivity and related concepts
    2. Quasi-continuous modules
    3. Continuous modules
    4. Quasi-discrete modules
    5. Discrete modules.

  • Authors

    Saad H. Mohamed

    Bruno J. Müller

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×