
Brighter Thinking

COMPUTER SCIENCE
Teacher’s Resource

GCSE
for

AQA

Ann Weidmann

Teacher’s Resource

2 © Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title:

www.cambridge.org/9781316504116 (Elevate edition)

www.cambridge.org/9781316504123 (Free online)

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2016

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-50411-6 Elevate edition

ISBN 978-1-316-50412-3 Free online

Additional resources for this publication at www.cambridge.org/education

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

………………………………………………………………………………...………

NOTICE TO TEACHERS IN THE UK

The photocopy masters in this publication may be photocopied or distributed

[electronically] free of charge for classroom use only. Worksheets and copies of

them remain in the copyright of Cambridge University Press.

………………………………………………………………………………...………

http://www.cambridge.org
http://www.cambridge.org/education

Contents

3

Introduction

Changes to GCSE Computer Science

Chapter 1: Algorithms

Chapter 2: Iteration

Chapter 3: Data types and structures

Chapter 4: Searching and sorting algorithms

Chapter 5: Input and output

Chapter 6: Problem solving

Chapter 7: Representing numbers

Chapter 8: Representing text, graphics and sound

Chapter 9: Computer systems: hardware

Chapter 10: Computer systems: system software

Chapter 11: Boolean logic

Chapter 12: Programming languages

Chapter 13: Computer networks

Chapter 14: Cyber security

Chapter 15: Ethical, legal and environmental
impacts of digital technology on wider society

Non-examination assessment (NEA)

Extra guidance for non-specialist teachers

Worksheets: Answers

 Acknowledgements

© Cambridge University Press

Contents

lwattondavies
Line

© Cambridge University Press4

Introduction

This book has been written to support you in delivering the AQA GCSE Computer Science (8520)
specification. It accompanies Cambridge University Press’s GCSE Computer Science for AQA student textual
and online resources.

The structure of the Teacher’s Resource closely matches the Student Book which is divided into chapters
and sections covering the specification content. The Teacher’s Resource contains a chapter of teaching
guidance for each Student Book chapter.

An introduction details learning outcomes and what your students need to know in terms of prior
learning in order to tackle the contents of the chapter. Key vocabulary is introduced. The introduction
also describes common misconceptions, suggesting how to address them, and offers ‘hooks’ to
introduce the topics in an engaging way.

A skills and coding section lists the maths and coding skills that are covered in the chapter.

The Skills and coding for non-specialist teachers section covers the programming and coding
introduced in each chapter in greater depth in addition to explaining specialist concepts such as
decomposition and abstraction.

The Teacher’s Resource also provides:

• prompting questions, to promote discussion of the topic
• suggested activities for:

–– starters,
–– plenaries,
–– enrichment and
–– assessment for each chapter of the Student Book

• full solutions and answers for all the chapter activities.

A scheme of work is available to download, providing learning outcomes, suggested teaching times and
showing how the chapter topics cover the items in the specification:

www.cambridge.org/gb/education/samples-and-schemes-work/gcse-computer-science-samples

Advice is also provided for the Non-examination assessment (NEA) component.

GCSE Computer Science for AQA Teacher’s Resource

© Cambridge University Press 5

This chapter offers an overview of the main changes to the GCSE computer science qualification for first
teaching from September 2016.

Introduction
The AQA computer science qualification contains the GCSE Subject Level Conditions and
Requirements for Computer Science (Ofqual/15/5681), published by Ofqual in May 2015.

This can be downloaded from

www.gov.uk/government/publications/gcse-9-to-1-subject-level-conditions-and-requirements-
for-computer-science

The document stipulates the assessment objectives, the nature of the non-examination assessment and
the subject aims and content that must be incorporated by all examination boards.

Grades
The new GCSE is significantly different from its predecessor. Students will now be graded on a 1–9 scale. If
you wish to read more about grades, the latest information can usually be found on the websites of Ofqual
and the awarding bodies.

Assessment
The GCSE (9–1) in Computer Science is a linear qualification with a 100% terminal rule.

There are three components: two externally examined components (01 and 02) weighted at 40% each
and a Non-examination assessment (03) weighted at 20%, which is assessed by the centre and externally
moderated by AQA.

Each examined component consists of an exam paper with a duration of 1 hour 30 minutes. The Non-
examination assessment has a duration totalling 20 hours. Students must take all three components.

There will be one examination series available each year in May/June to all students and all examined
components must be taken in the same examination series at the end of the course.

Students will be able to retake the examination as many times as they wish and can choose either to retake
the Non-examination assessment or to carry forward their mark from their previous sitting.

The assessment objectives and their weightings are given in the following table:

Assessment Objective Weighting
AO1 Demonstrate knowledge and understanding of the key concepts and principles

of Computer Science. 30%

AO2 Apply knowledge and understanding of key concepts and principles of Computer
Science.

40%

AO3 Analyse problems in computational terms:

to make reasoned judgements

to design, program, evaluate and refine solutions.

30%

Changes to GCSE Computer Science

Changes to GCSE Computer Science

https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-conditions-and-requirements-for-computer-science
https://www.gov.uk/government/publications/gcse-9-to-1-subject-level-conditions-and-requirements-for-computer-science

6 © Cambridge University Press

Subject content
The following tables show the changes in subject content between the new AQA (8520) Computer Science
specification and the old 4512 Computer Science specification that it replaces.

Learning objectives in 4512 that are not in 8520
Specification reference Statement

3.1.1 Understand what is meant by the terms data and information

3.1.6 Be able to discuss and identify the different types of errors that can occur
within code (ie syntax, run-time and logical)

Understand that some errors can be detected and corrected during the
coding stage

Understand that some errors will occur during the execution of the code

Know how to detect errors at execution time and how to handle those errors
to prevent the program from crashing where desirable

Be able to use trace tables to check their code for errors

Understand that computer programs can be developed with tools to help the
programmer detect and deal with errors (eg Watch, Breakpoint, Step)

3.1.7 Handling external data Know how to read and write data from an external database in a way that is
appropriate for the programming language(s) used and the problem being
solved

3.1.8.1 Systems Be able to define a computer system (ie hardware and software working
together to create a working solution)

3.1.8.2 Hardware Be able to categorise devices as input or output depending on their function

3.1.8.4 Memory Know the differences between non-volatile and volatile memory

Understand the purpose of both types of memory and when each should be
used

3.1.9 Algorithms Be able to detect and correct errors in simple algorithms

3.1.11 Software development life cycle Understand the software development life cycle

Be able to explain what commonly occurs at each stage of the software
development life cycle

Be able to identify at which stage of the software development life cycle a
given step would occur

Understand that there are several lifecycle models that can be used (eg
cyclical, waterfall, spiral)

Be able to discuss the advantages and disadvantages of these lifecycle
models

3.1.11.1 Prototyping Understand what prototyping is

Be able to discuss the advantages and disadvantages of using prototyping
when developing solutions

Have experience of using prototyping to create solutions to simple problems

3.1.12 Application testing Understand the different types of tests that can be used, including unit/
modular testing

3.1.13 Networking Ring network is not now included

3.1.13.1 Client server Understand the client-server model

Be able to explain, in simple terms, the handshake process used in most
modern networking protocols

Be able to explain how coding for a client-server model is different from
coding for a stand-alone application

3.1.13.2 Web application concepts Understand the concept of coding at the server and client end

Know what can be coded at the server end

Know what can be coded at the client end

Have experience of coding solutions to simple web application problems

GCSE Computer Science for AQA Teacher’s Resource

Learning objectives in 4512 that are not in 8520
Specification reference Statement

3.1.14 Use of external code sources Know of the existence of external code sources

Know how to integrate code from these sources into their own code

Be able to explain the advantages and disadvantages of using such sources

3.1.15 Database concepts Understand the basic concepts of a relational database as a data store

Be able to explain the terms record, field, table, query, primary key,
relationship, index and search criteria

3.1.15.1 Query methods (SQL) Be able to create simple SQL statements to extract, add and edit data stored
in databases

Have experience of using these SQL statements from within their own coded
systems

3.1.15.2 Connecting to databases from
applications and web based apps

Be able to use databases from within their own web based applications

3.1.16 The use of computer technology in
society

Be able to evaluate the effectiveness of computer programs/solutions

Learning objectives in 8520 that were not in 4512
Specification reference Statement

3.1.1 Representing algorithms Understand and explain the term decomposition

Understand and explain the term abstraction

Explain simple algorithms in terms of their inputs, processing and outputs

3.1.2 Efficiency of algorithms Understand that more than one algorithm can be used to solve the same
problem

Compare the efficiency of algorithms explaining how some algorithms are
more efficient than others in solving the same problem

3.1.3 Searching algorithms Understand and explain how the linear search algorithm works

Understand and explain how the binary search algorithm works

Compare and contrast linear and binary search algorithms

3.1.4 Sorting algorithms Understand and explain how the merge sort algorithm works

Understand and explain how the bubble sort algorithm works

Compare and contrast merge sort and bubble sort algorithms

3.2.2 Programming concepts Use nested selection and nested iteration structures

Use meaningful identifier names and know why it is important to use them

3.2.4 Relational operations in a programming
language

Be familiar with and be able to use:

• equal to

• not equal to

• less than

• greater than

• less than or equal to

• greater than or equal to

3.2.12 Robust and secure programming Be able to write simple data validation routines

Be able to write simple authentication routines

© Cambridge University Press 7

Changes to GCSE Computer Science

8 © Cambridge University Press

Learning objectives in 8520 that were not in 4512
Specification reference Statement

3.2.13 Classification of programming
languages

Know that there are different levels of programming language:

• low-level language

• high-level language

Explain the main differences between low-level and high-level languages

Know that machine code and assembly language are considered to be low-
level languages and explain the differences between them

Understand that ultimately all programming code written in high-level or
assembly languages must be translated into machine code

Understand that machine code is expressed in binary and is specific to a
processor or family of processors

Understand the advantages and disadvantages of low-level language
programming compared with high-level language programming

Understand that there are three common types of program translator:

• interpreter

• compiler

• assembler

Explain the main differences between these three types of translator

Understand when it would be appropriate to use each type of translator

3.3.4 Binary arithmetic Be able to add together up to three binary numbers

Be able to apply a binary shift to a binary number

Describe situations where binary shifts can be used

3.3.5 Character encoding Understand that character codes are commonly grouped and run in
sequence within encoding tables

Describe the purpose of Unicode and the advantages of Unicode over ASCII

Know that Unicode uses the same codes as ASCII up to 127

3.3.6 Representing images Understand what a pixel is and be able to describe how pixels relate to an
image and the way images are displayed

Describe the following for bitmaps:

• size in pixels

• colour depth

Describe how a bitmap represents an image using pixels and colour depth

Describe using examples how the number of pixels and colour depth can
affect the file size of a bitmap image

Calculate bitmap image file sizes based on the number of pixels and colour
depth

Convert binary data into a black and white image

Convert a black and white image into binary data

3.3.7 Representing sound Understand that sound is analogue and that it must be converted to a
digital form for storage and processing in a computer

Understand that sound waves are sampled to create the digital version of
sound

Describe the digital representation of sound in terms of:

• sampling rate

• sample resolution

Calculate sound file sizes based on the sampling rate and the sample
resolution

GCSE Computer Science for AQA Teacher’s Resource

Learning objectives in 8520 that were not in 4512
Specification reference Statement

3.3.8 Data compression Explain what data compression is. Understand why data may be
compressed and that there are different ways to compress data

Explain how data can be compressed using Huffman coding

Be able to interpret Huffman trees

Be able to calculate the number of bits required to store a piece of data
compressed using Huffman coding

Be able to calculate the number of bits required to store a piece of
uncompressed data in ASCII

Explain how data can be compressed using run length encoding (RLE)

Represent data in RLE frequency/data pairs

3.4.2 Boolean logic Construct truth tables for the following logic gates:

• NOT

• AND

• OR

Construct truth tables for simple logic circuits

Interpret the results of simple truth tables

Create, modify and interpret simple logic circuit diagrams

3.4.3 Software classification Explain what is meant by:

• stem software

• application software

Give examples of both types of software

Understand the need for, and functions of, operating systems (OS) and
utility programs

Understand that the OS handles management of the:

• processor(s)

• memory

• I/O devices

• applications

• security

3.4.4 Systems architecture Explain the Von Neumann architecture

Explain the role and operation of main memory and the following major
components of a central processing unit (CPU):

• arithmetic logic unit

• control unit

• clock

• bus

Understand and explain the Fetch-Execute cycle

Explain the term ‘cloud storage’

Explain the advantages and disadvantages of cloud storage when compared
to local storage

Understand the term ‘embedded system’ and explain how an embedded
system differs from a non-embedded system

3.5 Fundamentals of computer networks Describe the main types of computer network including:

• Personal Area Network (PAN)

• Local Area Network (LAN)

• Wide Area Network (WAN)

© Cambridge University Press 9

Changes to GCSE Computer Science

10 © Cambridge University Press

Learning objectives in 8520 that were not in 4512
Specification reference Statement

Understand that networks can be wired or wireless

Discuss the benefits and risks of wireless networks as opposed to wired
networks

Define the term ‘network protocol’

Explain the purpose and use of common network protocols including:

• Ethernet

• Wi-Fi

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

• IP (Internet Protocol)

• HTTP (Hypertext Transfer Protocol)

• HTTPS (Hypertext Transfer Protocol Secure)

• FTP (File Transfer Protocol)

• email protocols:

SMTP (Simple Mail Transfer Protocol)

IMAP (Internet Message Access Protocol)

Understand the need for, and importance of, network security

Explain the following methods of network security:

• authentication

• encryption

• firewall

• MAC address filtering

Describe the 4 layer TCP/IP model:

• application layer

• transport layer

• network layer

• data link layer

Understand that the HTTP, HTTPS, SMTP, IMAP and FTP protocols operate
at the application layer

Understand that the TCP and UDP protocols operate at the transport layer

Understand that the IP protocol operates at the network layer

3.6 Fundamentals of cyber security Be able to define the term ‘cyber security’ and be able to describe the main
purposes of cyber security

3.6.1 Cyber security threats Understand and be able to explain the following cyber security threats:

• social engineering techniques

• malicious code

• weak and default passwords

• misconfigured access rights

• removable media

• unpatched and/or outdated software

Explain what penetration testing is and what it is used for

GCSE Computer Science for AQA Teacher’s Resource

Learning objectives in 8520 that were not in 4512
Specification reference Statement

3.6.1.1 Social engineering Define the term ‘social engineering’

Describe what social engineering is and how it can be protected against

Explain the following forms of social engineering:

• blagging (pretexting)

• phishing

• pharming

• shouldering (or shoulder surfing)

3.6.1.2 Malicious code Define the term ‘malware’

Describe what malware is and how it can be protected against

Describe the following forms of malware:

• computer virus

• trojan

• spyware

• adware

3.6.2 Methods to detect and prevent cyber
security threats

Understand and be able to explain the following security measures:

• biometric measures (particularly for mobile devices)

• password systems

• CAPTCHA (or similar)

• using email confirmations to confirm a user’s

identity

• automatic software updates

3.7 Ethical, legal and environmental impacts
of digital technology on wider society,
including issues of privacy

Explain the current ethical, legal and environmental impacts and risks of
digital technology on society

Where data privacy issues arise these should be considered

Non-examination assessment
For the first examination in 2018, the following programming languages will be supported:

•	 C#
•	 Java
•	 Pascal/Delphi
•	 Python
•	 VB.Net

© Cambridge University Press 11

Changes to GCSE Computer Science

12 © Cambridge University Press

The assessment criteria are compared in the following table:

Criterion 8520 marks 4512 marks
Designing the solution

Design of solution

9

9
Creating the solution

Solution development

30

9
Programming techniques used 36
Testing the solution

Testing and evaluation

21

9
Potential enhancements and
refinements

10

Overall quality of the report 10

Total 80 marks 63 marks

Further details of 8520 Non-examination assessment (NEA) are given in the Teacher's Resource and the
Student Book.

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what an algorithm is and create algorithms to solve specific problems
•   use sequence, selection and iteration in algorithms
•   use input, processing and output in algorithms
•   express algorithms using flowcharts and pseudo-code
•   analyse, assess and compare different algorithms
•   create, name and use suitable variables
•   use arithmetic, relational and Boolean operators
•   use conditional statements.

What your students need to know
No prior knowledge is expected for this chapter.

Vocabulary
•	 Algorithm
•	 Sequence
•	 Sub-tasks
•	 Iteration
•	 Selection
•	 Flowchart
•	 Decision
•	 Process
•	 Authenticate
•	 Variable
•	 Pseudo-code
•	 Identifier
•	 Assigning
•	 Constant
•	 Comment
•	 Operator
•	 Operand
•	 Parentheses
•	 Arithmetic operators
•	 Relational operator
•	 Logical (Boolean) operator
•	 Input, output and processing
•	 Nested operations

Chapter 1: Algorithms

© Cambridge University Press 13

14 © Cambridge University Press

Common misconceptions and other issues
Students should be encouraged to use the conventional flowchart symbols for input/output, process and
decision boxes, although the AQA specification does not specifically require them to do so.

Students must be familiar with the AQA standard pseudo-code, since any exam question requiring pseudo-
code will use this version. Although they don’t have to use it themselves, it’s probably a good idea for them
to do so. That said, any form of pseudo-code is acceptable providing it is clear and unambiguous.

Students should use meaningful identifiers for variables and constants (for example, ‘Age’ for a variable
about age rather than ‘X’). They should also use indentation and commenting in their pseudo-code. This will
make their code easier to read and facilitate error checking.

Students may be unfamiliar with the arithmetic operators MOD and DIV. Give examples similar to those
shown in the arithmetic operators table in the Student Book.

The Boolean operators ‘AND’ and ‘OR’ can cause confusion. It’s easy to translate a correctly phrased spoken-
language statement incorrectly. For example, it’s correct to say ‘I want a bag of purple and orange fruit’. In all
likelihood you’d get a mixed bag of plums and oranges. In code, however, the expression ‘bag ← purpleFruit
AND orangeFruit’ would result in an empty bag, since there are no fruit (as far as I’m aware) that are two-
tone, purple and orange. The expression ‘bag ← purpleFruit OR orangeFruit’ will result in a bag containing
fruit that meet either of the two criteria.

Brackets can be used for grouping the parts of complex Boolean expressions. For example: fedUp ← (cold
AND hungry) OR (hot AND thirsty).

When using nested selection, care must be taken to complete each block with an ‘ENDIF’ statement.

Skills and coding
• Maths skills:

–– Arithmetic operators
–– Order of operations (BIDMAS)
–– Calculation of average

• Coding skills:
–– Use of pseudo-code
–– Declaring and assigning variables
–– Selecting suitable identifiers
–– Selection using ‘IF…THEN…ELSE’ statements
–– Nested ‘IF’ statements
–– Use of ‘CASE’ statements

Skills and coding for non-specialist teachers

1 Use of pseudo-code
The pseudo-code syntax and meanings are given in the AQA Pseudo-code Guide. In the AQA specification,
under Topic 3.1.1 of the Subject Content, it states that:

‘Any exam question where students are given pseudo-code will use the AQA standard version.
However, when students are writing pseudo-code they may do so using any form as long as the
meaning is clear and unambiguous.’

GCSE Computer Science for AQA Teacher’s Resource

2 Declaring and assigning variables and selecting suitable identifiers
A variable is defined as a ‘named container’ for a value that can change as a program is running.

Values are assigned using the ‘←’ symbol. (The ‘=’ symbol is used to compare two values.)

Variables should be given meaningful names (identifiers) and the naming convention should be consistent.
For example: firstName or first_name or FIRST_NAME.

3 Selection using an ‘IF’ statement
The ‘IF’ statement is explained under the section on 'Relational operators' in the Student Book and its use is
demonstrated in the solutions to Activity 1.9 and Activity 1.10.

An ‘IF’ statement is used to control the flow of a program. The section of code within the ‘IF’ statement is
executed only if the condition is met. The ‘ENDIF’ command should always be used to terminate an ‘IF’
statement. For example:

IF index = 3 THEN

	 OUTPUT(“The variable index is equal to 3.”)

ENDIF

If there are two alternative actions, ‘ELSE’ is used. For example:

IF index = 3 THEN

	 OUTPUT(“The variable index is equal to 3.”)

ELSE

	 OUTPUT(“The variable index is not equal to 3.”)

ENDIF

The ‘ELSE IF’ statement allows for multiple options. For example:

IF index = 3 THEN

	 OUTPUT “The variable index is equal to 3.”

ELSE IF index > 3 THEN

	 OUTPUT “The variable index is greater than 3.”

ELSE

	 OUTPUT “The variable index is less than 3.”

ENDIF

© Cambridge University Press 15

Chapter 1: Algorithms

16 © Cambridge University Press

4 Nested ‘IF’ statements
A nested ‘IF’ statement consists of two ‘IF’ statements, one embedded within the other. This is explained in
the Student Book using a worked example.

Care must be taken with indentation when using nested ‘IF’ statements. It is also important to terminate
each ‘IF’ statement with an ‘ENDIF’ command.

In this example, the outer ‘IF’ statement calculates a discount for purchases over £100, while the inner ‘IF’
statement ensures that the maximum discount given is £20:

IF price ≥ 100 THEN

	 discount ← price/100*10

	 IF discount > 20 THEN

		 discount ← 20

	 ENDIF

	 price ← price – discount

	 OUTPUT price

ENDIF

5 ‘CASE’ statements
A ‘CASE’ statement provides another way of handling multi-branching selection. It is especially useful for
choosing one item from a list of items. The ‘ELSE’ command at the end deals with an inappropriate/invalid
choice. Here is an example:

OUTPUT “Enter a number between 1 and 5.”

number ← USERINPUT

CASE number OF

	 1: OUTPUT “One Monkey”

	 2: OUTPUT “Two Elephants”

	 3: OUTPUT “Three Zebras”

	 4: OUTPUT “Four Hippos”

	 5: OUTPUT “Five Lions”

ELSE

	 OUTPUT “Invalid number”

ENDCASE

This is explained using a worked example that shows both the ‘ELSE IF’ and ‘CASE’ methods in the Student
Book and is illustrated in the solution to Activity 1.12.

GCSE Computer Science for AQA Teacher’s Resource

Prompting questions
•	 What is an algorithm? Have you heard this term before? For which subject, in which context?
•	 Can you think of any algorithms that you follow in your everyday life?
•	 Can you think of any activities where you use selection or iteration?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 The human robot: Ask students to consider a routine that is part of their daily life. Can they write down

a set of instructions that will allow someone else to follow their routine completely? A useful extension
to this activity is to ask students to pair up and role play their partner’s instructions. The students
can then provide each other with feedback and discuss the quality of those instructions and what
can make them better. This is a simple way to enable students to begin writing and testing their own
algorithms.

•	 Divide the class into pairs. One partner sees an image and is going to be the programmer, the other is
going to be the human computer and will carry out the instructions they receive. It is important that
the human computer doesn’t see the image being used by the programmer. The activity is simple: the
programmer describes the image they see in front of them and the human computer tries to recreate
it. This can be done using paper and pen or by getting creative and using playdough instead!

Enrichment activities
There is magic in computer science. The following resource www.cambridge.org/links/katd4002 uses
magic tricks to explain algorithms and many other computer science concepts. Choose a trick that works
for you as a teacher and demonstrate it to the students. Challenge the students to see if they can figure out
how the trick works. Encourage them to write the algorithm for it as best they can, refining it as they go and
making use of the concepts learnt.

Assessment ideas
•	 Set the students a challenge using the following scenario: Write an algorithm for a Joke Generator

program. When the user runs the program, it begins by displaying a joke on screen. The user is then
asked if they would like another joke; if the user answers ‘yes’, another joke appears on the screen.

•	 This version of the program makes use of simple selection and sequence statements. Nested ‘IF’ and
‘CASE’ statements can be added to enable the user to input a number between 1 and 10. Once the
number has been entered, the program will display the joke that corresponds to that number. Ask
students to submit the following:

–– A flowchart illustrating how their program will work
–– An algorithm expressed in pseudo-code, annotated to explain how it works.

© Cambridge University Press 17

Chapter 1: Algorithms

18 © Cambridge University Press

Answers

Activity 1.1
•	 Students will write this as a list of steps. There is no single right answer to this activity and this is

important to emphasise. The key thing is to check the logic at this stage: does it work? Encourage
students to mime their algorithm to try it out. Often students will forget to write in when to stop
pouring the water or milk, for example. The activity emphasises the need for instructions to be specific
and precise, concisely written and in a logical order.

•	 An example of how the algorithm might look is:
–– Fill kettle with cold water to maximum level
–– Check to see if kettle is plugged in
–– If it isn’t plugged in, then plug it in
–– Check to see if kettle is switched on
–– Switch it on if it isn’t
–– Is kettle boiled?
–– If No, then wait until it has boiled
–– Put 1 teabag into cup
–– Pour boiled water into cup until full
–– Leave for 1 minute
–– Stir for 20 seconds
–– Remove tea bag and place in bin
–– Pour in 10ml of milk
–– Is sugar needed?
–– If No, then end
–– If Yes, then add required sugar

Activity 1.2
•	 It doesn’t matter at this stage how the answer to this activity is presented. The key success criteria are:

getting the logic right; writing clear, precise instructions; and correctly identifying them as sequence,
selection or iteration.

–– Put plug in the bath					 # Sequence
–– Turn on hot tap					 # Sequence
–– Is the water at the correct temperature? 			 # Selection
–– Is it too hot?						 # Selection
–– Turn cold tap until water is at the correct temperature	 # Iteration
–– Is the water at the correct temperature? 			 # Selection
–– Is it too cold?						 # Selection
–– Turn off cold tap until water is at the correct temperature. # Iteration
–– Is there enough water in the bath?		 	 # Selection
–– Turn off both taps.					 # Sequence

GCSE Computer Science for AQA Teacher’s Resource

Activity 1.3

INPUT Number of
ice creams sold

INPUT Cost of
ice cream

Multiply cost by number
of ice creams

OUTPUT Total
amount of

money collected

END

START

© Cambridge University Press 19

Chapter 1: Algorithms

20 © Cambridge University Press

Activity 1.4
START

END

INPUT student
test result

OUTPUT “Very
well done”

OUTPUT “This is an
excellent result”

>50%?

>90%?

OUTPUT “you must
try harder next time”

NO

NO

YES

GCSE Computer Science for AQA Teacher’s Resource

Activity 1.5

© Cambridge University Press 21

Chapter 1: Algorithms

22 © Cambridge University Press

Activity 1.6
The most obvious variables used are: USERNAME, YEAR, FIRST, LAST and X. However, the inputs: year of

entry, first name and surname are also variables.

Catherine Jones 2005 becomes ‘05CJones1’

Fred Green 2006 becomes ‘06FGreen1’

Username ‘03SSmith13’ tells us the following:

•	 The user joined in 2003
•	 Their first name begins with S
•	 Their surname is Smith
•	 There are now 13 students in the school with the surname Smith.

Activity 1.7
OUTPUT “Please enter your name.”			

Name ← USERINPUT 			

OUTPUT “Please enter your age.”			 # Asks the user for their age

Age ← USERINPUT

OUTPUT “Hello ” + Name + “. You are ” + Age + “ years of age.” # Outputs a personalised message

Activity 1.8
OUTPUT “Please enter the diameter of the wheel.”

Diameter ← USERINPUT

Radius ← Diameter/2 		 # Calculates radius as half of the diameter

Pi ← 3.142

Area ← Pi * (Radius * Radius) 	 # Calculates area by multiplying Pi by radius squared

OUTPUT “The area of the wheel is: ” + Area

Activity 1.9
OUTPUT “Please enter a number between 1 and 10.”

Number ← USERINPUT

IF Number ≤ 5 THEN

	 OUTPUT Number + “ is a low number.”

ELSE

	 OUTPUT Number + “ is a high number.”

ENDIF

GCSE Computer Science for AQA Teacher’s Resource

Activity 1.10
•	 The comment generated would have been “You have gained half marks.”
•	 The algorithm checks first to see if the score entered is less than 5. If this is not the case, it next checks

to see if the score is greater than 5. If it is, the message is output and the algorithm ends. In its present
form, the algorithm produces the same output for all scores of 5 or above.

A good extension activity would be to ask students to alter the algorithm so that it works as intended. Here is
one way of doing this:

OUTPUT “Please enter your test score.”

score ← USERINPUT

IF score < 5 THEN

	 OUTPUT “You must try harder next time.”

ELSE IF score ≤ 7 THEN

	 OUTPUT “Not bad, but there’s still room for improvement.”

ELSE IF score = 8 THEN

	 OUTPUT “This is a good result.”

ELSE

	 OUTPUT “This is an excellent result.”

ENDIF

Activity 1.11
OUTPUT “Please enter the student’s first name.”

FirstName ← USERINPUT

OUTPUT “Please enter the student’s surname.”

Surname ← USERINPUT

OUTPUT “Please enter the student’s year group.”

Year ← USERINPUT

IF Year ≥ 7 OR Year ≤ 18 THEN

	 OUTPUT “This is a valid year group.”

ELSE

	 OUTPUT “This year group does not exist.”

ENDIF

OUTPUT “Please enter the student’s tutor group.”

TutorGrp ← USERINPUT

IF TutorGrp = “red” OR TutorGrp = “blue” OR TutorGrp = “green” OR TutorGrp = “yellow” THEN

	 OUTPUT “This is a valid tutor group.”

ELSE

	 OUTPUT “This tutor group does not exist.”

ENDIF

© Cambridge University Press 23

Chapter 1: Algorithms

24 © Cambridge University Press

Activity 1.12
OUTPUT “Please enter a month number between 1 and 12.”

MonthNo ← USERINPUT

CASE MonthNo OF

	 1: OUTPUT “January”

	 2: OUTPUT “February”

	 3: OUTPUT “March”

	 4: OUTPUT “April”

	 5: OUTPUT “May”

	 6: OUTPUT “June”

	 7: OUTPUT “July”

	 8: OUTPUT “August”

	 9: OUTPUT “September”

	 10: OUTPUT “October”

	 11: OUTPUT “November”

	 12: OUTPUT “December”

ELSE

	 OUTPUT “Number entered is out of range.”

ENDCASE

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what is meant by iteration
•   explain the difference between definite and indefinite iteration
•   use ‘FOR’ loops
•   use ‘WHILE’ loops
•   use ‘REPEAT…UNTIL’ loops
•   use nested loops
•   analyse algorithms using trace tables
•   use iteration when designing algorithms.

What your students need to know
Students should:

•	 be able to create flowcharts using the standard symbols
•	 be able to use pseudo-code to express algorithms
•	 be familiar with the AQA Pseudo-code Guide.

Vocabulary
•	 Iteration
•	 Loop
•	 Execution
•	 Syntax error
•	 Dry run
•	 Trace table
•	 Efficiency
•	 Syntax
•	 HTML
•	 Definite iteration
•	 Indefinite iteration
•	 ‘FOR’ loop
•	 ‘WHILE’ loop
•	 ‘REPEAT…UNTIL’ loop
•	 Nested loop
•	 Infinite loop
•	 Logical error
•	 Algorithm efficiency

Chapter 2: Iteration

© Cambridge University Press 25

26 © Cambridge University Press

Common misconceptions and other issues
Students should be encouraged to use both comments and indentation in their pseudo-code. This will make
their algorithms easier to read and errors easier to spot.

When designing a ‘WHILE’ loop, a common error is to forget to assign an initial value to the loop control
variable before the start of the loop. In this example the variable password should have been assigned the
value “” before the start of the loop:

storedPassword ← “DaWa11!m”

WHILE password = “”

	 OUTPUT “Please enter your password.”

		 password ← USERINPUT

	 IF password ≠ storedPassword THEN	

		 password ← “”

	 ENDIF

ENDWHILE

If this algorithm were to be converted into executable code an error would be generated. The correct
algorithm is:

storedPassword ← “DaWa11!m”

password ← “”

WHILE password = “”

	 OUTPUT “Please enter your password.”

	 password ← USERINPUT

	 IF password ≠ storedPassword THEN

		 password ← “”

	 ENDIF

ENDWHILE

Unlike a ‘WHILE’ loop, a ‘REPEAT…UNTIL’ loop always executes at least once, since the condition is checked
at the end of the loop. For example:

storedPassword ← “DaWa11!m”

REPEAT

	 OUTPUT “Please enter your password.”

	 password ← USERINPUT

UNTIL password = storedPassword

Students need to ensure that the loop terminating condition will eventually be met. It is surprisingly easy to
create a loop that never ends.

When creating a nested loop structure in pseudo-code, care must be taken to indicate the end of each loop
by using the appropriate loop terminator command, that is: ‘ENDWHILE’, ‘ENDFOR’ or ‘UNTIL’.

Students should be encouraged to investigate and be able to use random number generation in the high-
level programming language they are studying.

GCSE Computer Science for AQA Teacher’s Resource

Skills and coding
•	 Maths skills:

–– Times tables (required especially for Activity 2.4)
•	 Coding skills:

–– Use of pseudo-code
–– Declaring and assigning variables
–– Selecting suitable identifiers
–– ‘FOR’ loops
–– ‘WHILE’ loops
–– ‘REPEAT…UNTIL’ loops
–– User input

The activities will also reinforce the skills acquired in Chapter 1.

Skills and coding for non-specialist teachers

1 Definite iteration
Definite iteration is used where the number of iterations is known before the loop starts. A ‘FOR’ loop is ideal
in this situation. Here is an example of a ‘FOR’ loop that iterates ten times:

FOR counter ← 0 TO 9

	 OUTPUT counter

ENDFOR

(The loop counter could start at 1, but using 0 reinforces the idea that computers start counting at 0 rather
than 1.)

A suitable variable name should be used (so, ‘FOR counter’, as used here, is better than ‘FOR x’).

‘WHILE’ loops can also be used for definite iteration. When using a ‘WHILE’ loop for this purpose, the count
variable must be assigned a value before the start of the loop. Here is an example:

counter ← 0

WHILE counter ≤ 9

	 OUTPUT counter

	 counter ← counter + 1

ENDWHILE

This will produce the same output as the ‘FOR’ loop above.

Definite iteration is explained in the Student Book and is illustrated in the solution to Activity 2.1.

© Cambridge University Press 27

Chapter 2: Iteration

28 © Cambridge University Press

2 Indefinite iteration
In indefinite iteration, the number of iterations is not known before the loop is started. The loop stops when
a specified condition is met.

The ‘WHILE’ and ‘REPEAT…UNTIL’ loops are used for indefinite iteration.

A ‘WHILE’ loop continues while a certain condition remains true.

The condition is checked before the loop starts and so the variable used in the condition must be assigned
an initial value before the start of the loop. Here is an example:

answer ← ‘no’

WHILE answer = ‘no’

	 OUTPUT “Please enter ‘yes’ or ‘no’.”

	 answer ← USERINPUT

ENDWHILE

This loop will continue until the variable answer has a value other than ‘no’. It doesn’t have to be ‘yes’;
anything but ‘no’ will stop the loop.

A ‘REPEAT…UNTIL’ loop also has a terminating condition. However, the comparison is not done until the end
of the loop, which means that the loop will always execute at least once. Here is an example:

REPEAT

	 OUTPUT “Please enter ‘yes’ or ‘no’.”

	 answer ← USERINPUT

UNTIL answer ≠ ‘no’

If the user enters anything other than ‘no’ the loop will terminate.

Indefinite iteration is explained in the Student Book and illustrated in the solutions to Activity 2.2 and
Activity 2.3.

3 Nested loops
A nested loop is a loop that runs inside another loop. Here is an example:

FOR index ← 1 TO 3

	 FOR count ← 1 TO 10

		 OUTPUT count

	 ENDFOR

ENDFOR

This nested loop outputs the numbers 1 to 10 three times. For each turn of the outer loop, the inner loop
runs ten times.

Care must be taken that each loop is terminated correctly.

Nested loops are explained in the Student Book and illustrated in the solution to Activity 2.4.

GCSE Computer Science for AQA Teacher’s Resource

4 Trace tables
When creating trace tables, there should be a column allocated to each variable and to each input and
output. Entries should be made in the rows to correspond to the values of the variables, inputs and outputs.
Four columns would be needed for this algorithm:

index ← 1

x ← 0

y ← 0

REPEAT

	 x ← index * index

	 IF x > 9 THEN

		 y ← x * 3

		 OUTPUT y

	 ENDIF

	 index ← index + 1

UNTIL index = 5

Here is the trace table for the algorithm. (Obviously, in an actual trace table, the comments column would
not be included.)

index x y output Comments
1 0 0 Before the start of the loop, all three variables are

assigned an initial value.

2 1 0 At the first iteration of the ‘REPEAT’ loop, the value of
x becomes 1. Because the value of x is still not greater
than 9, the IF statement is not executed, so the value of
y remains 0.

At the end of the loop, index is incremented by 1.
Since the value of index is less than 5, the loop doesn’t
terminate.

3 4 0 After the second iteration, the value of x is still not
greater than 9 and the value of y remains 0. The
value of index is still less than 5, so the loop doesn’t
terminate.

4 9 0 The terminating condition has still not been achieved
after the third iteration.

5 16 48 48 The fourth time through the loop, the value of x
becomes greater than 9 and so the value of y becomes
3 times the value of x and is output. The index
becomes 5 so the loop terminates

Trace tables are explained in the Student Book and illustrated in the solution to Activity 2.5 and in the
practice questions.

Prompting questions
•	 Can you think of any everyday examples where iteration comes into play?
•	 Can you think of any computer games that you have played that make use of iteration?
•	 Why is iteration important/useful? How does it help programmers?

© Cambridge University Press 29

Chapter 2: Iteration

30 © Cambridge University Press

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to consider one of the algorithms they wrote for Chapter 1. Can they modify their

flowchart and/or pseudo-code to include iteration? As an early activity in this chapter, iteration can be
illustrated simply by using the word ‘repeat’ in pseudo-code or a looping arrow on the flowchart. If the
activity is used as a plenary, then you can use this task to assess students’ understanding of using the
appropriate type of iteration.

•	 Examine a computer game (note: either let students select their own or pick one for them. The game
selected should include some form of iteration and this might be visible in the form of scoring or gaining/
losing lives). Ask students to see if they can find an example of iteration in the game and ask them to
explain the reasons behind their decision. This activity can be extended by asking students to:

–– write the algorithm for the example they have found (either as pseudo-code or as a flowchart or
both)

–– explain what type of iteration they think is being used.
•	 Play a game of Word Sneak using words from the ‘programming deck’. The full set of resources and

activity guides can be downloaded from: www.cambridge.org/links/katd4003. Word sneak is a
fun activity to help you assess students’ knowledge and understanding in a unique way. The aim of the
game is to have a normal conversation and sneak your hidden words into what you say without your
partner noticing. The first person to use all their hidden words is the winner.

–– A variation of this is Three Word Stories (www.cambridge.org/links/katd4004), which requires
the player to engineer the story being told (three words at a time) so that their partner uses their
hidden word.

Enrichment activities
•	 Provide students with an algorithm written using only sequential instructions. Ask them to modify the

code to include the appropriate iteration in the right places. Does the code work?

Assessment ideas
•	 Ask students to devise a quick game consisting of a single level. Students will need to explain what

the game does as well as write the pseudo-code for the main game functions. Tell students that their
pseudo-code should include examples of sequence, selection and iteration.

Answers

Activity 2.1
index ← 1

OUTPUT “Please enter a number.”

number ← USERINPUT

WHILE index ≤ 12

	 OUTPUT index + “ x ” + number + “ = ” + number * index

	 index ← index + 1

ENDWHILE

GCSE Computer Science for AQA Teacher’s Resource

Activity 2.2
There are lots of ways of solving this problem. Here are two of them:

sum ← 0 				 # Initialises counter

OUTPUT “How many numbers do you want to add together?”

total ← USERINPUT		 # User needs to know in advance how many numbers they want to enter

FOR index ← 1 TO total		 # ‘FOR’ loop used to enter and total the numbers

	 OUTPUT “Enter the next number.”

	 number ← USERINPUT	

	 sum ← sum + number

ENDFOR

OUTPUT sum 			

sum ← 0

anotherNumber ← “y”		 # User needs to signal after each entry if they want to enter another number

WHILE anotherNumber = “y”

	 OUTPUT “Enter a number.”

	 number ← USERINPUT

	 sum ← sum + number

	 OUTPUT “Do you want to enter another number (y/n)?”

	 anotherNumber ← USERINPUT

ENDWHILE

OUTPUT “The total is: ” + sum

© Cambridge University Press 31

Chapter 2: Iteration

32 © Cambridge University Press

Activity 2.3
playAgain ← “yes”					 # Initialises the loop control variable for outer loop

WHILE playAgain = “yes”				 # Start of outer loop

	 mysteryNumber ← RANDOM_INT(1, 100)

	 guess ← 0 				 # Initialises the loop control variable for inner loop

	 WHILE guess = 0 				 # Start of inner loop

		 OUTPUT “Enter a number between 1 and 100.”

		 guess ← USERINPUT

		 IF guess > mysteryNumber THEN

			 guess ← 0

			 OUTPUT “Your guess is too high.”

		 ELSEIF guess < mysteryNumber THEN

			 guess ← 0

			 OUTPUT “Your guess is too low.”

		 ENDIF

	 ENDWHILE 				 # End of inner loop

	 OUTPUT “Well done. You guessed correctly!”

	 OUTPUT “Do you want to play again (yes/no)?”				

	 playAgain ← USERINPUT

ENDWHILE					 # End of outer loop

Activity 2.4
The algorithm asks the user to enter the upper and lower limits of the range. These are then stored in two
variables. The variables are then used within the loop to define the iterations.

OUTPUT “Enter the number for the start of the range of times tables.”

lowerRange ← USERINPUT

OUTPUT “Enter the number for the end of the range of times tables.”

upperRange ← USERINPUT

FOR index ← lowerRange TO upperRange	

OUTPUT “This is the ” + index + “ times table.”)		

FOR times ← 1 TO 12	

OUTPUT “times ” + “x” + index + “ = ” + index*times)	

ENDFOR

ENDFOR	

GCSE Computer Science for AQA Teacher’s Resource

Activity 2.5
TURNS OUTPUT X OUTPUT

0 3

3 9

6 27

9 81

12 243

15 729

18 2187

21 6561

24 24 19683 19683

Activity 2.6
The following trace table can be used:

 Number even odd sumEven sumOdd output
0 0 0 0

13 0 1 0 13

42 1 1 42 13

3 1 2 42 16

6 2 2 48 16

9 2 3 48 25

0 2 3 48 25 2 48 3 25

•	 Numbers are input until the number is 0.
•	 The algorithm decides whether a number is even or odd by finding the remainder of a division by 2

(Modulus). If there is no remainder then it is even.
•	 The sum of all of the even and odd numbers is calculated.

© Cambridge University Press 33

Chapter 2: Iteration

© Cambridge University Press34

What your students need to know
Students should:

•	 be able to use pseudo-code to create variables and display algorithms
•	 use suitable and consistent identifiers for variables
•	 understand the use of ‘IF’ statements
•	 be able to use definite and indefinite iteration.

Vocabulary
•	 Integer
•	 Real
•	 Character
•	 Property
•	 Index
•	 String traversal
•	 Traverse
•	 Substring
•	 Concatenation
•	 Casting
•	 Static array
•	 Dynamic array
•	 Entity
•	 Field
•	 Table
•	 Data type
•	 Data structure
•	 Floating point
•	 String
•	 Boolean
•	 Property/attribute
•	 Array index
•	 Two-dimensional array
•	 Database
•	 Record

Chapter 3: Data types and structures

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what is meant by ‘data type’ and list some common types
•   use the correct data types in algorithms
•   carry out various manipulations such as finding the length of and slicing and concatenating

‘string’ data types
•   create and work with simple array data structures
•   create and work with two-dimensional arrays
•   describe other data structures.

GCSE Computer Science for AQA Teacher’s Resource

Common misconceptions and other issues
In some programming languages, the data type of a variable does not have to be explicitly declared. They
assume what the data type of a variable should be from the data that is assigned to it.

In this example, the variable ‘index’ is being assigned the value 3 and so is implicitly declared as type integer:

index ← 3

Here,‘index’ is being assigned a decimal number, so is implicitly declared as type real:

index ← 3.33

Here, ‘firstName’ is being assigned a string value, so is implicitly declared as type string:

firstName ← “Catherine”

Even if the high-level programming language your students are studying does not require them to declare a
data type when declaring variables, it is important that they understand the concept of data type, are able
to select appropriate data types for variables and are familiar with the operations that can be performed on
different types of data.

In AQA pseudo-code, there is a LEN command that returns the length of a string. For example,
LEN(“rhinoceros”) would return the value 10.

When using a loop to iterate through a string, it’s important to remember that the first character in a string
has the index value 0 and the last character has the index value LEN(string) – 1. (A string with a length of 10
will have characters indexed 0 to 9.)

In this example, an error message would be generated when the loop tries to access the character at index
position 17 because it doesn’t exist:

string ← “This is a string.”

FOR index ← 0 TO LEN(string)	

	 OUTPUT string[index]

ENDFOR

When concatenating strings to form compound words, students should remember to add spaces where
appropriate to aid readability. In this example, a space is missing between firstName and lastName:

firstName ← “Jack”

lastName ← “Smith”

fullName ← firstName + lastName

fullName ← firstName + “ ” + lastName would produce the result ‘Jack Smith’.

The standard definition of an array is ‘a data structure that contains a collection of elements of the same
data type’. However, some languages, such as Python, are more forgiving and will allow elements with
different data types to be stored in an ‘array-like’ structure.

© Cambridge University Press 35

Chapter 3: Data types and structures

36 © Cambridge University Press

Skills and coding
•	 Maths skills:

Maximum, minimum and mean (required for Activity 3.8 and Activity 3.12)

•	 Coding skills:
–– Use of pseudo-code
–– Finding the length of a string
–– Creating a loop to traverse a string
–– Searching a string for a particular character
–– Counting the number of times that a character occurs in a string
–– Splitting strings
–– Finding substrings within a string
–– Concatenating strings
–– Casting
–– Creating, populating, editing and searching arrays
–– Creating, populating, editing and searching multi-dimensional arrays

Skills and coding for non-specialist teachers

1 Strings
The length of a string is found using the LEN command. For example:

myString ← “David”

lenString ← LEN(myString)

would assign the value 5 to the variable lenString.

A loop to traverse the string would start at 0 (the first index position) and end at lenString – 1, i.e. index
position 4.

FOR index ← 0 TO lenString – 1

	 OUTPUT myString[index]

ENDFOR

This would output each character in turn on a new line, i.e.

D

a

v

i

d

Traversing a string is explained in a worked example in the Student Book and demonstrated in the solution
to Activity 3.2.

2 Finding substrings
When traversing a string to find a substring, the length of the substring must be taken into account.

For example, if myString has the value “David” and lenString the value 5, a loop traversal through myString
would start at 0 and end at 4 (lenString – 1).

But if the substring being searched for is “av”, which has a length of 2, the search should end at index position
3 (lenString – 2).

This is explained in a worked example in the Student Book and demonstrated in the solution to Activity 3.3.

GCSE Computer Science for AQA Teacher’s Resource

3 Arrays
The elements of an array have an index position in the same way that characters in a string do. Indexing
usually begins at 0, although in some instances might begin at 1. Questions on exam papers will always
state whether indexing begins at 0 or 1. This is explained at the start of the section on arrays in the Student
Book and demonstrated in the solutions to Activity 3.6 and Activity 3.7. It might be useful for students
to practise writing code that uses indexing beginning at 1 and at 0 so that they are familiar with each (an
example of each case is in the next section).

4 Creating sub-arrays
A sub-array can be created by copying data items from the main array using the indexes of the data items.

Activity 3.9 asks students to create a sub-array using items that are not contiguous. The students are asked
to traverse the main array to find items that are equal to or greater than 5 and then create a new array, called
‘Pass’, to store them.

The algorithm should:

•	 create a new array called ‘Pass’ to store these items
•	 traverse the main array to find marks equal to or greater than 5
•	 copy them to the new array.

Here is a possible solution that assumes indexing begins at 0:

arrayMarks ← [6, 9, 2, 5, 8, 3, 9, 9, 10, 9, 5, 7, 10]

arrayPass ← []

count ← 0

FOR index ← 0 TO LEN(arrayMarks) – 1

IF arrayMarks[index] ≥ 5 THEN

		 arrayPass[count] ← arrayMarks[index]

		 count ← count + 1

	 ENDIF

ENDFOR

Here is the same solution but assuming that indexing begins at 1:

arrayMarks ← [6, 9, 2, 5, 8, 3, 9, 9, 10, 9, 5, 7, 10]

arrayPass ← []

count ← 1

FOR index ← 1 TO LEN(arrayMarks)

	 IF arrayMarks[index] ≥ 5 THEN

			 arrayPass[count] ← arrayMarks[index]

			 count ← count + 1

	 ENDIF

ENDFOR

© Cambridge University Press 37

Chapter 3: Data types and structures

38 © Cambridge University Press

5 Two-dimensional arrays
A two-dimensional array is similar to a database table; each row represents a record and each column a field.

This two-dimensional array is declared as:

myArray [6][2]

This stipulates that there will be six index positions and two items of data will be stored at each one.

More than two items of data can be stored at each index position:

myArray [6][3]

This would create a static two-dimensional array with three items of data at each index position.

If there are two items of data, they can be referenced as:

myArray[1][1] and myArray[1][2]

myArray[2][1] and myArray[2][2]

myArray[3][1] and myArray[3][2]

etc.

This assumes that indexing starts at 1.

Prompting questions
•	 What is data?
•	 What is the difference between data and information?
•	 Look at the information around you (e.g. on classroom walls, in textbooks, etc.). What are the different

types of data that you can see? How would you categorise them?
•	 What are arrays?
•	 What are the different types of array, and when would you use each of them?
•	 What is a database?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to examine a resource, this can be anything from a poster to a document they have

produced, a website, or simply going through their textbook. What are the different types of
information that they can see? Ask students to arrive at their own categories and ways of classifying
the information. End the activity with groups sharing their work and explaining the reasons behind
their categorisation. This will lead on nicely to students then being able to compare their work with the
actual data types discussed later in the lesson.

•	 Get students to play the battleships game to help them understand how two-dimensional arrays are
referenced using [row] [column].

•	 Give students a list of different items of data, and for each one ask them to correctly match the
associated data type.

GCSE Computer Science for AQA Teacher’s Resource

Enrichment activities
•	 Ask students to review the algorithms for their game design and to see if any would be more efficient if

arrays were used. Ask students to make adjustments to the code and then give their reasons for doing
so.

•	 Investigate Databases and SQL. There are many ways you can program in SQL and you don’t always
need PHP to do it. If your school has a database such as Microsoft Access, you can create a new
query and edit it in SQL view. This allows you to enter and execute SQL commands. Ask students to
investigate this to create a single table of data storing a range of fields for a number of records. They
should run SQL commands to allow them to add/delete/amend and search data within the records.

Assessment ideas
•	 Give pairs of students a range of topics, including: data types, static array, dynamic array, index,

databases, SQL, fields and records. Each pair is given a specific amount of time to research their
assigned concept and think of a unique way to ‘teach it’ to the rest of the class. At an identified time,
invite each pair to ‘teach’ what they have learnt to the class. In turn, the class can then review/evaluate
their thoughts on what they have been taught.

Answers

Activity 3.1
Variable Data type

FirstName String

LastName String

Initial Character

Age Integer

Activity 3.2
times ← 0

OUTPUT “Please enter a piece of text.”

myString ← USERINPUT

OUTPUT “Please enter the character you wish to search for.”

myChar ← USERINPUT

FOR index ← 0 TO LEN(myString) – 1

	 IF myString[index] = myChar THEN

		 times ← times + 1		

	 ENDIF

ENDFOR

IF times = 0 THEN

	 OUTPUT “This character is not in the text you entered.”

ELSE	

	 OUTPUT “The character you entered appears ” + times + “ times.”

ENDIF

© Cambridge University Press 39

Chapter 3: Data types and structures

40 © Cambridge University Press

Activity 3.3
OUTPUT “Please enter the text you wish to search through.”	 # Revision notes

myText ← USERINPUT

searchWord ← “variable”

length ← LEN(searchWord)

times ← 0

found ← “no”

FOR index ← 0 TO LEN(myText) – (length+1)		

	 testString ← “”

	 testString ← testString + myText(index)

	 FOR test ← 1 TO length

		 testString ← testString + myText(index + test)

	 ENDFOR

	 IF testString = searchWord THEN

		 found ← “Yes”

		 times ← times + 1

	 ENDIF

ENDFOR

IF found = “Yes” THEN

	 OUTPUT searchWord + “ was found ” + times + “ times.”

ELSE

	 OUTPUT searchWord + “ does not appear in this text.”

ENDIF

You could extend this activity by challenging students to amend the algorithm so that it handles upper
case letters as well as lower case, i.e. ‘Variable’ as well as ‘variable’ or ‘VARIABLE’ or indeed ‘vAriABLe’. Most
programming languages have a string method that returns a copy of a string converted to lower case.

Activity 3.4
OUTPUT “Please enter your first name.”

firstName ← USERINPUT

OUTPUT “Please enter your surname.”

surname ← USERINPUT

fullName ← firstName + “ ” + surname

OUTPUT “Hello ” + fullName + “, how are you?”)

GCSE Computer Science for AQA Teacher’s Resource

Activity 3.5
In this solution we’ve assumed that indexing begins at 1.

cars ← [5]

FOR index ← 1 TO 5

	 OUTPUT “Please enter the name of a car.”

	 response ← USERINPUT

	 cars[index] ← response

ENDFOR

OUTPUT “All cars have now been entered.”

Activity 3.6
In this solution we’ve assumed that indexing begins at 1.

FOR index ← 0 TO LEN(cars)-1

	 OUTPUT cars[index]

ENDFOR

Activity 3.7
This algorithm assumes that the array ‘arrayAlphabet’[26] has already been declared and populated and that
array indexing begins at 1.

searchString ← “computer”

FOR stringIndex ← 0 TO LEN(searchString) – 1

	 nextChar ← searchString[stringIndex]

	 found ← False

	 arrayIndex ← 1

	 WHILE found = False AND arrayIndex ≤ LEN(arrayAlphabet)

		 IF arrayAlphabet[arrayIndex] = nextChar THEN

			 found ← True

			 OUTPUT nextChar + “has the index value ” + arrayIndex

		 ELSE

			 arrayIndex ← arrayIndex + 1

	 ENDWHILE

ENDFOR

© Cambridge University Press 41

Chapter 3: Data types and structures

42 © Cambridge University Press

Activity 3.8
This algorithm assumes that the array ‘Marks’ has already been populated and that array indexing begins at
0.

index ← 0

min ← marks[index]

sum ← marks[index]

numbMarks ← LEN(marks) – 1

WHILE index ≤ numbMarks

	 IF marks[index] < min THEN	

		 min ← marks[index]

	 ENDIF

	 sum ← sum + marks[index]

	 index ← index + 1

ENDWHILE

OUTPUT “Your lowest mark is: ” + min

OUTPUT “Your mean mark is: ” + sum/numbMarks

Activity 3.9
In this solution we’ve assumed that indexing begins at 0.

marks ← [6, 9, 2, 5, 8, 3, 9, 9, 10, 9, 5, 7,10]

pass ← []

index ← 0

FOR numb ← 0 TO LEN(marks) – 1

	 IF marks[numb] ≥ 5 THEN

 		 pass[index] ← marks[numb]

		 index ← index + 1

	 ENDIF

ENDFOR

Activity 3.10
In this solution we’ve assumed that indexing begins at 0.

FOR index ← 0 TO LEN(exam1) – 1

	 IF exam1[index] < 50 THEN

		 exam1[index] ← exam1[index] + 5

	 ELSE IF exam1[index] > 50 THEN

		 exam1[index] ← exam1[index] + 10

	 ENDIF

ENDFOR

GCSE Computer Science for AQA Teacher’s Resource

Activity 3.11
a. 69

b. 76

Activity 3.12
Students’ own answers

© Cambridge University Press 43

Chapter 3: Data types and structures

© Cambridge University Press44

What your students need to know
Students should:

•	 be able to use pseudo-code to express algorithms
•	 be able to create and use arrays.

Vocabulary
•	 Searching
•	 Sorting
•	 Compare
•	 Adjacent items
•	 Sequential
•	 Ordered list
•	 Ascending order
•	 Descending order
•	 Bubble sort
•	 Pass
•	 Merge sort
•	 Recursion
•	 Divide and conquer
•	 Brute force
•	 Linear search
•	 Binary search

Common misconceptions and other issues
Students should be encouraged to work through the stages of each sorting and searching algorithm,
showing the results of each stage.

It is worth stressing that when sorting into ascending order using a bubble sort, the highest unsorted value
will be in its correct position at the end of each pass.

The efficiency of the different algorithms should be stressed, particularly when comparing linear and binary
searches.

Chapter 4: Searching and sorting algorithms

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain why sorted lists are of more value than unsorted lists
•   describe the bubble sort and merge sort algorithms and compare and contrast them
•   use these algorithms to sort lists into ascending and descending order
•   understand the linear and binary search algorithms and compare and contrast them
•   use these algorithms to search sorted and unsorted lists
•   write code for the implementation of these algorithms.

GCSE Computer Science for AQA Teacher’s Resource

Skills and coding
•	 Maths skills:

Median (Activity 4.7 and Activity 4.8)

•	 Coding skills:
–– Use of pseudo-code
–– Nested loops
–– Declaring and populating arrays
–– Finding the length of an array
–– Using loops to traverse an array
–– Using comparison operators

Skills and coding for non-specialist teachers

1 Bubble sort
In a bubble sort, the first two items (i.e. items 1 and 2) are compared and are swapped round if they are not
in the required order. Then the next pair (items 2 and 3) are compared. This continues until the end of the list.

If they are being sorted into ascending order, the item with the highest value will be in its correct position at
the end of the first pass. Passes are repeated until there are no swaps.

The bubble sort is explained with an example in the Student Book. Activity 4.3 gives students an
opportunity to improve the efficiency of the basic algorithm by utilising the fact that after each loop
traversal, another number at the end of the list is in the correct position.

2 Merge sort
A merge sort uses recursion. It is said to be divide-and-conquer, as it breaks the problem into sub-
problems that are similar to the original problem, recursively solves the sub-problems, and finally combines
the solutions to the sub-problems to solve the original problem. A ‘divide-and-conquer’ algorithm has three
stages:

Divide the problem into a number of sub-problems that are smaller instances of the same problem.

Conquer the sub-problems by solving them recursively.

Combine the solutions to the sub-problems into the solution for the original problem.

The merge sort is explained in the worked example in the Student Book and is demonstrated in the solution
to Activity 4.4.

3 Searching algorithms
Linear and binary search algorithms are very straightforward and students should have encountered them in
their daily lives.

Comparisons of the best and worst case scenarios provide a good starting point for discussing the efficiency
of algorithms.

Searching algorithms are explained in the Student Book and the solutions to Activity 4.5 to Activity 4.8.

The students are not expected to code a binary search algorithm but this could be done as an extension
activity. A binary search algorithm is shown below. It assumes that array indexing begins at 1.

© Cambridge University Press 45

Chapter 4: Searching and sorting algorithms

46 © Cambridge University Press

Pseudo-code Explanation
OUTPUT “Please enter a target.”

target ← USERINPUT

A variable to store the item to be searched for is
declared as a ‘target’. In this instance, a number is the
expected input.

start ← 1 The variable ‘start’ is set to the index number of the first
item.

end ← LEN(list) The variable ‘end’ is set to the index of the last item of
the list.

found ← False The Boolean variable ‘found’ is set to False. This is used
to indicate that the search item has not been found.

WHILE start ≤ end AND found = False A ‘WHILE’ loop is set up.

	 middle ← ((start + end)/2) The median item is found.

	 IF list[middle] = target THEN

 	 OUTPUT target + " is in the list"

 	 found ← True

If the median number is the target, then ‘found’ is set to
True and the user is informed.

	 ELSE IF target < list[middle]

 THEN

		 end ← middle – 1

If the search item is less than the median, then the
variable ‘end’ is set to the item to the left of the median
– the next item less than the median.

	 ELSE

 		 start ← middle + 1

If the search item is greater than the median, then
the variable ‘start’ is set to the item to the right of the
median – the next item greater than the median.

	 ENDIF

ENDWHILE

IF found = False THEN

	 OUTPUT target + “ is not in the list.”

ENDIF

The user is informed if the search item has not been
found.

Prompting questions
•	 Why is it important to sort things into an order?
•	 How many examples can you think of where data has been sorted?
•	 The bubble sort and merge sort algorithms use different ways to sort data. Explain how they work.

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Provide students with numbered cards in a random order. Tell them to place the cards next to each

other and then sort them into order without telling them how. Then ask students how they sorted the
data and to write their strategy down. How efficient was their strategy? Could they have done it better?
Ask pairs of students to compare their techniques with each other. Which one was faster and why? This
can then be used to compare against the sorting techniques discussed in the chapter. It works well
either as a starter or a plenary.

•	 Students play a game. With a deck of sorted cards, a player chooses a number secretly. The
‘magician’ has to work it out using only questions such as, ‘Is it higher or lower?’ Another option is to
play 20 questions with the class. The ideal questions are those that automatically eliminate at least
half the options, such as, ‘Is it male or female?’ The popular CS4FN/Teaching London Computing
initiative, funded by the Mayor of London, has a detailed outline of activities to teach searching
algorithms: www.cambridge.org/links/katd4005

GCSE Computer Science for AQA Teacher’s Resource

Enrichment activities
•	 Ask students to investigate the different search and sort algorithms. Can they find the most effective

YouTube video that explains the different algorithms and their differences and characteristics?
•	 Ask students to search through the CS4FN site and read through the resources. Using inspiration from

that style, write an article to explain the different sort algorithms.

Assessment ideas
Students carry out an investigation to code the different sort algorithms and run them with the same
set of data. Can students discover which is the most efficient? Ask them to consider their own criteria for
comparison and present their findings and justifications at the end.

Answers

Activity 4.1
Students’ own answers

Activity 4.2
20 15 3 13 9 2 6

15 3 13 9 2 6 20

3 13 9 2 6 15 20

3 9 2 6 13 15 20

3 2 6 9 13 15 20

2 3 6 9 13 15 20

2 3 6 9 13 15 20

© Cambridge University Press 47

Chapter 4: Searching and sorting algorithms

48 © Cambridge University Press

Activity 4.3
The following code assumes that the list of items is an array, with array indexing starting at 1.

S ← list of items

N ← (length of S-2)

N ← length of list

IF N ≤ 1 THEN			 # Deals with lists consisting of 0 or 1 items

	 swapped ← False

ELSE

	 swapped ← True

ENDIF

WHILE swapped = True

	 swapped ← False

	 FOR X ← 2 TO N

		 IF S[X – 1] > S[X] THEN	

			 temp ← S[X – 1]

			 S[X – 1] ← S[X]

			 S[X] ← temp

			 swapped ← True

		 ENDIF

	 ENDFOR

	 N ← N – 1

ENDWHILE

Activity 4.4
20 15 3 13 9 2 6

20 15 3 13 9 2 6

20 15 3 13 9 2 6

20 15 3 13 9 2 6

15 20 3 13 2 9 6

3 13 15 20 2 6 9

2 3 6 9 13 15 20

GCSE Computer Science for AQA Teacher’s Resource

Activity 4.5
This algorithm assumes that the array ‘popularNames’ has already been initialised and populated with the hundred most
popular names. Array indexing begins at 1.

found ← False

index ← 1

OUTPUT “Please enter the name you want to search for.”

name ← USERINPUT

WHILE found = False AND index ≤ 100

IF name = popularNames[index] THEN

		 found ← True

ENDIF

index ← index + 1

ENDWHILE

IF found = True THEN

OUTPUT name + “is in the list.”

ELSE

OUTPUT name + “is not in the list.”

ENDIF

Activity 4.6
a d g h k m p r s u w x z

a d g h k m

a d g

g

Activity 4.7
3 5 6 8 9 12 15 21 23 45 56 63 69

21 23 45 56 63 69

21 23 45

45

•	 Pick median 15
•	 Too low, so select right-hand side, six numbers left, so choose median 56
•	 Too low, so select right-hand side, 3 numbers left, so choose median 23
•	 Too low, so answer is 45.

© Cambridge University Press 49

Chapter 4: Searching and sorting algorithms

50 © Cambridge University Press

Activity 4.8
•	 Enter a number
•	 Find the length of the array
•	 Start of (search items) equals 0
•	 End of search items equals length of array
•	 Middle equals (start + end)/2
•	 While start is less than or equal to end
•	 If middle is equal to number entered, then tell the user and stop the loop
•	 If middle is less than number entered, then start equals middle + 1
•	 If middle is greater than number entered, then end equals middle – 1
•	 End of while loop
•	 Inform the user that the number is not present

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain why user input is needed
•   describe ways in which data input can be validated
•   format output
•   work with text files.

What your students need to know
Students should:

•	 be able to use pseudo-code to create variables and display algorithms
•	 be able to use selection and definite and indefinite iteration
•	 be able to create and use one- and two-dimensional arrays.

Vocabulary
•	 Logical error
•	 Validation
•	 File handle
•	 Write mode
•	 Overwritten
•	 Closed
•	 Read mode
•	 Syntax error
•	 Presence check
•	 Range check
•	 Length check
•	 Authentication
•	 Close file

Common misconceptions and other issues
It should be stressed that valid data is not necessarily correct. For example, when the students’ details are
being entered on to the school admin system, a year group of 10 would be a valid entry, but the student in
question might not be in year 10. The entry would be valid, but incorrect.

When checking that data has been entered by a user, a variable initialised as a blank string can be used.

Students should be encouraged to investigate the on-screen formatting commands in the high-level
programming language they are studying.

In the Student Book, the AQA pseudo-code commands are used when working with text files.

The examples given in the Student Book only use static arrays, where the numbers of items being read from
and written to a file are known in advance. However, in most instances this is not the case. The use of a
dynamic array together with an append method enables files of unknown length to be read.

Students should be encouraged to investigate the file handling commands available in the high-level
programming language they are studying.

Chapter 5: Input and output

© Cambridge University Press 51

52 © Cambridge University Press

Skills and coding
•	 Coding skills:

–– Use of pseudo-code
–– Nested loops
–– Creating and populating arrays
–– Finding the length of an array
–– Using loops to traverse an array
–– Opening and closing text files
–– Writing to and reading from text files

Skills and coding for non-specialist teachers

Text files
File handles to open and close a file are not required in the AQA pseudo-code. Nevertheless, it is important
that students understand the difference between write and append modes. When an existing file is opened
in write mode, any existing data it contains is overwritten. In contrast, the append mode allows data to be
added to an existing file without overwriting data that is already there.

The use of text files is explained in the Student Book and demonstrated in the solution to Activity 5.4.

Prompting questions
•	 Can you think of one example where GIGO (garbage in garbage out) is especially important?
•	 What is the difference between validation and verification?
•	 Can you think of any examples of validation routines that you have encountered? What data were you

entering, and what do you think the validation rule was?
•	 What is authentication?

–– Why is this important?
–– What are the different ways we can authenticate a user identity?

•	 What is identity theft?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to list all of the devices they can think of, then categorise them. Are they primarily input,

output or something else?
•	 Give students a program with errors in it. You might even ask them to examine a program they have

written that possibly still doesn’t work. In pairs, ask them to circle/highlight and label all the syntax and
logical errors, clearly stating which error is which and why.

Enrichment activities
•	 Ask students to examine the last program/algorithm they wrote. Have they included any validation

routines? Where and how could validation routines be included? They should modify their program/
algorithm to include validation.

•	 Ask students to investigate the different authentication techniques carried out by social networking
sites, banks, online ordering sites, etc. What are the different methods used and why do they work?

•	 Can students find a recent example of identity theft, or a security breach that might result in identity
theft? How did this breach/theft occur and how could it have been prevented?

GCSE Computer Science for AQA Teacher’s Resource

Assessment ideas
•	 Ask students to write a program that will enable a record of information to be constructed. This record

could be about anything, including: friends’ personal and birthday information, music collection,
game sales, test and assessment results, etc. The important thing is that a variety of data is possible
for input. The program should attempt to validate each field or item of information entered. Check that
students have constructed appropriate validation routines.

Answers

Activity 5.1
OUTPUT “Please enter your age.”

Age ← USERINPUT

IF Age ≥ 17 THEN

	 OUTPUT “You can apply for a driving licence.”

ELSE

	 OUTPUT “You are too young to apply for a driving licence.”

ENDIF

Activity 5.2
OUTPUT “Please enter your password.”

password ← USERINPUT

IF LEN(password) < 9 THEN

	 OUTPUT “Your password must have at least nine characters. Yours has only ” + LEN(password)

ELSE IF LEN(password) ≥ 12 THEN:

	 OUTPUT “Your password must have no more than twelve characters. Yours has” + LEN(password)

ELSE

	 OUTPUT “The length of your password is OK.”

ENDIF

© Cambridge University Press 53

Chapter 5: Input and output

54 © Cambridge University Press

Activity 5.3
This algorithm gives the user three attempts to get their password right before locking their account. It
assumes the existence of a two-dimensional array called ‘users’ that hold users’ names and passwords. In
this instance, it is assumed that indexing begins at 1.

userEntry ← “”

foundName ← 0

count ← 1						 # Allows 3 goes at entering password

WHILE userEntry = “” AND count < 4

	 OUTPUT “Please enter your username.”

	 userEntry ←USERINPUT

	 usersLen ← LEN(users) 			 # Establishes number in list of users/passwords

	 FOR index ← 1 TO usersLen 			 # Checks if username is in list

		 IF userEntry = users[index][1] THEN

			 foundName ← 1

			 pwFound ← False

			 WHILE count ≤ 3 AND pwFound = False	

				 OUTPUT “Please enter your password.”

				 passwordEntry ← USERINPUT	

				 IF passwordEntry = users[index][2] THEN

	 				 OUTPUT “Username and password are
correct.”

					 pwFound ← True

				 ELSE

					 OUTPUT “Sorry, the password is incorrect.”

					 count ← count + 1

				 ENDIF

			 ENDWHILE

		 ENDIF

 	 ENDFOR	

	 IF foundName = 0 THEN

		 OUTPUT “Username not recognised.”

		 userEntry ← “”

	 ENDIF

ENDWHILE

IF count > 3 THEN

	 OUTPUT “Your account has been locked.”

ENDIF

GCSE Computer Science for AQA Teacher’s Resource

Activity 5.4
Writing the items from an array ‘scores’ into a file gameScores.txt.

FOR index ← 1 TO 5

	 WRITELINE(gameScores.txt, index, scores[index])

ENDFOR

Reading the scores from the file gameScores.txt into an array ‘leaderBoard’.

FOR index ← 1 TO 5

	 leaderBoard[index] ← READLINE(gameScores.txt, index)

ENDFOR

© Cambridge University Press 55

Chapter 5: Input and output

© Cambridge University Press56

What your students need to know
Students should:

•	 be able to use pseudo-code to express algorithms
•	 be able to use selection and definite and indefinite iteration
•	 be able to ask for and incorporate user input
•	 be able to use trace tables.

Vocabulary
•	 Decomposition
•	 Abstraction
•	 Subroutine
•	 Argument
•	 Parameter
•	 Local variable
•	 Global variable
•	 Menu
•	 Systems development cycle
•	 Alpha testing
•	 Test data
•	 Testing plan
•	 Valid test
•	 Boundary test
•	 Erroneous test
•	 Beta testing
•	 Computational thinking
•	 Pattern recognition
•	 Top-down problem solving
•	 Bottom-up problem solving
•	 Structured programming
•	 Modules
•	 Call a subroutine
•	 Function
•	 Procedure

Chapter 6: Problem solving

LEARNING OUTCOMES

•   By the end of this chapter students should be able to:
•   explain what is meant by computational thinking
•   explain what is meant by decomposition and abstraction and use these to solve problems
•   create algorithms to solve problems that you have analysed
•   explain what is meant by top-down and bottom-up problem solving
•   create structured programs using procedures
•   follow the systems development cycle to analyse problems, design and implement solutions

and test the outcomes.

GCSE Computer Science for AQA Teacher’s Resource

•	 Identification and analysis
•	 Design
•	 Logical errors
•	 Implementation
•	 Syntax errors
•	 Integrated development environment (IDE)
•	 Source code editor
•	 Comment
•	 Evaluation

Common misconceptions and other issues
Abstraction can be thought of as removing unnecessary details to get to the heart or essence of something.

It can be introduced by considering abstraction in everyday situations such as:

•	 creating mental models of objects, such as cars, houses, animals, etc., so that we can communicate
with each other

•	 our use of machinery without knowing exactly how it works: for example, starting and driving a car
without knowing how the combustion engine works

•	 when we use the print() function, we do not need to know all of the coding involved in making this
happen

•	 when we use a high-level programming language, we do not need to know the actual machine code ‒
a compiler or interpreter translates it for us. We are working at a higher level of abstraction. Assembly
language is a low level of abstraction as it is more similar to machine code.

A subroutine is a set of instructions designed to perform a frequently used operation in a program.

It is ‘called’ by the main program.

•	 A function returns a value back to the main program.
•	 A procedure does not return any data to the main program.

When a subroutine is called, the data it needs (the parameters) are passed to it as arguments from the main
program.

•	 The data is passed as an ‘argument’ and accepted as a ‘parameter’.
It is also worth pointing out that a function can be called from within another function.

The first function can pass arguments to the second one that can return values to the first one.

Skills and coding
•	 Coding skills:

–– Creating functions with parameters
–– Calling functions with arguments

Skills and coding for non-specialist teachers

Functions
When a function is called, the data it needs to process is passed to it as arguments.

In the Student Book, Activity 6.1 is an exercise on decomposition and abstraction involving the calculation
of the approximate cost of a car journey.

This could be coded using a function:

© Cambridge University Press 57

Chapter 6: Problem solving

58 © Cambridge University Press

Pseudo-code Explanation
SUBROUTINE cost (distance, mpg, petrolPriceLitre) The subroutine is defined with the identifier

‘cost’ and the parameters ‘distance’, ‘mpg’ and
‘petrolPriceLitre’. These are local variables used only
within the subroutine.

 petrolPriceGallon ← petrolPriceLitre * 4.546 Converts petrol price per litre into petrol price per
gallon.

	 cost ← (distance/mpg) * petrolPriceGallon This statement calculates the cost of the journey.

	 RETURN cost This statement returns the value of ‘cost’ to the main
program.

ENDSUBROUTINE This denotes the end of the function definition.

OUTPUT “Enter the journey distance in miles: ”

journeyDistance ← USERINPUT

These statements ask for user input. The values are
stored in the global variables, journeyDistance, mpg
and petrolPriceLitre.

OUTPUT “Enter the average miles per gallon for the car: ”

mpg ← USERINPUT

OUTPUT “Enter the price of a litre of petrol: ”

petrolPriceLitre ← USERINPUT

journeyCost ← cost(journeyDistance, mpg, petrolPriceLitre) This statement calls the function ‘cost’. The values of
the three variables are passed to it as arguments.

They are passed in the same order as the three
parameters listed in the function.

The function will return its result to the variable
journeyCost.

OUTPUT “The approximate cost of the journey will be ” +
journeyCost

The journey cost is displayed.

The values given as arguments from the main program must be in the same order as expected by the
parameters in the function.

Prompting questions
•	 Can you think of any examples in your everyday life that illustrate our use of computational thinking?
•	 Decomposition helps us to solve problems and make them more manageable by breaking them down

into smaller parts. Look around you at the things you do every day. What examples can you see that
use decomposition?

•	 “A game such as SimCity is an example of abstraction.” Do you agree or disagree with this statement?
Why?

•	 What is structured programming?
•	 The opposite of the ‘top-down’ approach is known as the ‘bottom-up’ approach. What do you think

this means? How would this approach work?
•	 What is beta testing?
•	 When developers release software (usually for free) in Beta version, what does this usually mean? Why

are they doing it?

GCSE Computer Science for AQA Teacher’s Resource

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to carefully consider the activities that they do regularly (these could be anything from

jigsaw puzzles to D&T projects). They should pick one that they think uses computational thinking. Ask
them to break this down and describe the activity, which strands of computational thinking it covers,
how and why.

•	 Give students an example of some code and ask them to highlight examples of the following (possibly
in different colours, or labelled and annotated):

–– local variables
–– global variables
–– subroutines
–– arguments and parameters
–– iteration
–– selection statements
–– array.

•	 Give students a small program to test. Ask them to design and carry out a test plan to see if it works.
•	 Choose one of the Computational Word Games from the Playful Computing page on the Digital

Schoolhouse website (www.cambridge.org/links/katd4006). Select the stack of words under the
programming and random categories to test students’ knowledge and understanding of some of the
key words. You can easily add your own words to this stack. As an interesting variation, ask students:
how could the rules of the game be adapted and extended?

Enrichment activities
•	 Investigate the top-down and bottom-up approaches to computing. Can students find examples of

how the approaches have been used in computer science research and development? For example,
a top-down approach in robotics generally implies that the researchers have focused on the higher
order things first, such as talking and activities closer to human level. The bottom-up approach instead
focuses on a single ‘sense’. Which robots have been developed as a result of the two approaches?

•	 The Playful Computing section of the Digital Schoolhouse website (www.cambridge.org/links/
katd4006) uses unplugged activities to teach computational thinking. Ask students to select one of
the activities and investigate it as a group. When reporting back to the class, they should attempt to
deliver the activity and explain how and why it maps to computational thinking.

•	 Ask students to investigate and search for some software that is being released in Beta version. They
should find out what the developers are offering and what they expect in return. Ask them to write a
brief summary and exchange notes with peers in the class.

Assessment ideas
•	 Ask students to complete the final challenge for the chapter. Encourage them to follow good practice

and guidance when documenting their solution. Students should submit a full testing plan with
evidence of testing carried out on their work when they submit their work.

© Cambridge University Press 59

Chapter 6: Problem solving

60 © Cambridge University Press

Answers

Activity 6.1
Possible sub-tasks might include among many others:

•	 Calculate the length of the journey in miles (or km)
•	 Establish the cost of petrol
•	 Find out how many miles (or km) can be driven per litre of petrol
•	 Convert petrol price per litre into price per gallon
•	 Calculate the cost of the journey

Activity 6.2

END

START

Input length of
journey in miles

Input miles per
litre for the car

Price per gallon =
 price per litre * 4.546

Input price of a
litre of petrol

Output cost of journey
Cost = length of journey

/miles per gallon * price of a
gallon of petrol

GCSE Computer Science for AQA Teacher’s Resource

Activity 6.3
SUBROUTINE diceThrow(): 				 # Simulates a dice throw		

throw ← RANDOM_INT(1, 6)

	 RETURN(throw)

ENDSUBROUTINE

Start of main program

highestScore ← 0 	

OUTPUT “Play the game (y/n)?”			 # Keeps track of highest score

anotherGo ← USERINPUT

WHILE anotherGo = ‘y’ OR anotherGo = ‘Y’ 		 # Allows for upper and lower case entry

	 total ← 0

	 total ← total + diceThrow() + diceThrow() + diceThrow()

	 OUTPUT “Your total this time is:” + total

	 IF total > highestScore THEN

		 highestScore ← total

	 ENDIF

	 OUTPUT “Play the game again (y/n)?”

	 anotherGo ← USERINPUT

ENDWHILE

OUTPUT “The highest score you achieved was:” + highestScore

Activity 6.4
SUBROUTINE message(one, two)

	 OUTPUT “Hello” + two + “ ” + one)

ENDSUBROUTINE

OUTPUT “Please enter your first name.”

firstName ← USERINPUT

OUTPUT “Please enter your surname.”

surname ← USERINPUT

message(firstName, secondName)

© Cambridge University Press 61

Chapter 6: Problem solving

62 © Cambridge University Press

Activity 6.5
Input1 Input2 Solution

3 6 2

4 7 28/11

5 8 40/13

Activity 6.6
SUBROUTINE dogAge()			 # Calculates human equivalent age of a dog

	 OUTPUT “Enter the age of your dog.”

	 dogYears ← USERINPUT		 #Typecasts dogYears as integer	

	 IF dogYears = 1 THEN	

		 humanEquivalent ← 12

	 ELSE IF dogYears = 2 THEN

		 humanEquivalent ← 24

	 ELSE		

		 humanEquivalent ← 24 + (dogYears ‒ 2) * 4

	 ENDIF

 	 RETURN humanEquivalent

ENDSUBROUTINE

SUBROUTINE catAge()			 # Calculates human equivalent age of a cat

	 OUTPUT “Enter the age of your cat.”

	 catYears ← USERINPUT			 # Typecasts catYears as integer

	 IF catYears = 1 THEN

		 humanEquivalent ← 15

	 ELSE IF catYears = 2 THEN

		 humanEquivalent ← 24

	 ELSE

		 humanEquivalent ← 24 + (catYears - 2) * 4

	 ENDIF

	 RETURN humanEquivalent

ENDSUBROUTINE

GCSE Computer Science for AQA Teacher’s Resource

Start of main program

anotherGo ← “y”

WHILE anotherGo = “y” OR anotherGo = “Y” # Allows for upper and lower case entry

	 pet ← USERINPUT (‘1. Cat, 2. Dog’)

	 IF pet = ‘1’ THEN

		 OUTPUT “The human equivalent age of your pet is” + catAge()

	 ELSE IF pet = ‘2’ THEN

		 OUTPUT “The human equivalent age of your pet is” + dogAge()

	 ELSE

		 OUTPUT “Invalid choice”

	 ENDIF

	 OUTPUT “Do you want to use the calculator again (y/n)?”

	 anotherGo ← USERINPUT

ENDWHILE

© Cambridge University Press 63

Chapter 6: Problem solving

© Cambridge University Press64

What your students need to know
Students should:

•	 have basic maths skills
•	 be able to use pseudo-code or a programming language to create a program to convert between

decimal, binary and hexadecimal for the final challenge in the chapter.

Vocabulary
•	 Binary
•	 Number bases
•	 Binary shifts
•	 Hexadecimal
•	 Binary digits
•	 Base 10
•	 Place value
•	 Base 2
•	 Byte
•	 Overflow error
•	 Nibble

Common misconceptions and other issues
The value of any digit in any number system is dependent on its place value.

In binary, place values increase in powers of 2; in decimal, values increase in powers of 10; and in
hexadecimal, in powers of 16.

Students often have trouble grasping that 0 is a digit or number and in decimal there are 10 digits, 0 to 9, and
in hexadecimal there are 16 digits, 0 to 15.

When converting between Kilobyte, Megabyte, Gigabyte, etc., the specification states that the decimal prefix
should be used.

The binary prefix multiplies a value by powers of 2 whereas the decimal prefix multiplies by powers of 10.

Chapter 7: Representing numbers

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain how data is represented by computer systems
•   explain why the binary system is essential for computer processing
•   convert binary numbers into decimal and vice versa
•   carry out binary addition, subtraction, multiplication and division
•   use left and right shifts for multiplication and division by powers of 2
•   explain why hexadecimal numbers are used
•   convert between binary, decimal and hexadecimal.

GCSE Computer Science for AQA Teacher’s Resource

Unit Decimal prefix
Kilobyte 103 bytes 1000 bytes

Megabyte 106 bytes 1000 kilobytes

Gigabyte 109 bytes 1000 megabytes

Terabyte 1012 bytes 1000 gigabytes

Skills and coding
•	 Maths skills:

–– Place values in binary, decimal and hexadecimal
–– Converting 8-bit binary numbers to decimal
–– Converting decimal numbers up to 255 to binary
–– Binary addition
–– Binary shifts for multiplication and division
–– Converting between hexadecimal, binary and decimal

•	 Coding skills:
–– Use of pseudo-code or a high-level programming language to create a program to convert be-

tween decimal, binary and hexadecimal for the final challenge in the chapter

Skills and coding for non-specialist teachers
The final challenge allows students to create a structured program using procedures.

•	 A menu can be used for users to select the type of entry required, i.e. binary, decimal or hexadecimal.
•	 Validation can be used, for example, to ensure that 8 digits are entered for a binary number and they

are either 0 or 1. A decimal number should be equal to or less than 255 and a hexadecimal one should
be less than or equal to FF.

•	 Procedures can be called to carry out the conversions into the other number systems.

Prompting questions
•	 Why do you think binary consists of only two states (1 and 0)?
•	 When you purchase a device such as a smartphone, tablet or games console, etc., it is usually only

available in very specific memory capacities, such as: 16 GB/32 GB/64 GB/128 GB, etc. Why is it always
these numbers that are used? What is special about them and how does this relate to binary numbers?

•	 If computers can only work in binary data, why do we need to devote so much time to converting it to
decimal and hex? Why not just work in binary?

•	 Why and when would developers prefer to use the hex number system rather than binary?
•	 Where are hex values most commonly seen? Why are they better at representing this data than binary?

(Answer: most commonly used to represent true colour and used as colour references, i.e. 000000 is white
and FFFFFF is black.)

© Cambridge University Press 65

Chapter 7: Representing numbers

66 © Cambridge University Press

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 An excellent starter to allow students to understand counting in binary is to give them a set of cards

and allow them to count the dots. Resources and a lesson plan for the activity can be found at CS
Unplugged (www.cambridge.org/links/katd4007).

•	 Also by CS Unplugged is a Card Flip magic trick that actually demonstrates how computers detect
errors using parity bits. It’s excellent at showing how error detection works, but also allows students
to see how a combination of bits that can only ever be in two states can actually store a lot of data.
Resources for the activity can be downloaded here: www.cambridge.org/links/katd4007

•	 Students can carry out a web search for animations explaining binary and hexadecimal number
systems. Which one do they think is the best one and why?

Enrichment activities
•	 All numbers systems usually follow specific rules. For example, they all have a base value (in binary

it’s 2, in hexadecimal it’s 16 and in decimal it’s 10); they all use positional notation and the number
of characters available within that number system is directly linked to its base number. With those
factors in mind, it is possible to create our own representation system using any number as a base,
for example, ‘Septimal’ that could be a base 7 number system. Alternatively, we don’t have to use
numerical characters at all; we could devise our own characters completely. Ask students to devise
their own data representation/number system and then present it to the class.

•	 As an extension of the above activity, can students work out how they could convert data from an
existing number system, such as decimal or binary, into their own system? Perhaps they could set their
peers some exercises to complete.

Assessment ideas
•	 Ask students to spend some time looking at the structure of exam questions and mark schemes. Then

ask them to devise their own set of exam questions based on what they have learnt in this chapter. For
each question, they should also devise a mark scheme. They should then swap papers and answer
questions written by one of their peers. The marking and mark schemes should subsequently be
distributed among the class for the peer marking exercise. Groups of students should then come
together to discuss the quality of the questions, the accuracy of the mark schemes and judgements
based on correct/incorrect answers.

–– As an extension to this, students can rate the quality of their peers’ questions and mark schemes
and these can be used as part of the assessment data gathered from students.

–– Note: this exercise can be repeated for most, if not all, topics on the course.

GCSE Computer Science for AQA Teacher’s Resource

http://www.cambridge.org/links/katd4007

Answers

Activity 7.1
•	 0000
•	 0001
•	 0010
•	 0011
•	 0100
•	 0101
•	 0110
•	 0111
•	 1000
•	 1001
•	 1010
•	 1011
•	 1100
•	 1101
•	 1110
•	 1111

Activity 7.2
a. 205

b. 68

c. 170

d. 240

e. 188

Activity 7.3
a. 00001101

b. 01000101

c. 10000011

d. 11000111

e. 11110101

Activity 7.4
Observe students’ attempts at binary counting with fingers.

© Cambridge University Press 67

Chapter 7: Representing numbers

68 © Cambridge University Press

Activity 7.5
a. There are 1000 bytes in a Kilobyte and 1000 Kilobytes in a Megabyte and so on. Therefore, a
Gigabyte is 1000 x 1000 x 1000 x 8, i.e. 8,000,000,000 bits.

b. 2GB

c. 1000 x 1000 x 1000, i.e. 1,000,000,000 Kilobytes

Activity 7.6
a. 100100010 – the first one is a carry over

b. 100111010 – the first one is a carry over

c. 111010110 – the first one is a carry over

Activity 7.7
a. 101101000 (In decimal: 45 x 4 = 360)

b. 100011010000 (In decimal: 141 x 16 = 2256)

c. 1011011100 (In decimal: 183 x 4 = 732)

Activity 7.8
a. 00000101 (In decimal: 45 / 8 = 5.6)

b. 00001000 (In decimal: 141 / 16 = 8.8)

c. 00101101 (In decimal: 183 / 4 = 45.8)

Activity 7.9
Students’ own answers

Activity 7.10
a. Decimal: 196; Binary: 11000100

b. Decimal: 70; Binary: 01000110

c. Decimal: 250; Binary: 11111010

d. 60

e. C9

f. 8D

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain how characters are represented in binary
•   calculate the ASCII code for any character
•   calculate the size of a text file
•   explain how images are represented in binary
•   calculate the size of an image file
•   explain how sound is represented in binary
•   calculate the size of an audio file
•   explain the disadvantages of large image and audio files
•   explain how file compression reduces the size of files
•   explain the differences between lossless and lossy file compression.

What your students need to know
Students should:

•	 know why the binary number system is used for the operation of computers
•	 be confident in using binary numbers and converting them to hexadecimal and decimal
•	 be confident in using the terms bit, byte, kilobyte and megabyte and be able to convert between them
•	 be able to understand and create algorithms using the AQA pseudo-code
•	 be able to construct algorithms using sequence, selection and iteration
•	 be able to apply string manipulation techniques.

Vocabulary
•	 Character set
•	 Pixel
•	 Resolution
•	 Colour depth
•	 Sampling
•	 Compression
•	 Lossless compression
•	 Lossy compression
•	 Redundancy
•	 Binary tree
•	 Run
•	 Analogue and digital
•	 Sample rate
•	 Bit depth
•	 Huffman coding
•	 Run length encoding

Chapter 8: Representing text, graphics and sound

© Cambridge University Press 69

70 © Cambridge University Press

Common misconceptions and other issues
When discussing digital images, there is often confusion around the terms ‘image size’ and ‘resolution’.

The size of an image is determined by the number of pixels and the dimensions are given as width and then
length, for example, 640 × 480 would mean 640 pixels in width and 480 pixels in length, so giving a total of
307 200 pixels.

Resolution is expressed in pixels per inch, or ppi, and is therefore influenced by the size of the displayed
image. Two images having the same image size would have different resolutions if they were displayed at
different numbers of pixels per inch.

Students should understand why it is necessary to compress data and should be familiar with two
approaches to lossless data compression – Huffman coding and run length encoding (RLE).

They should be able to draw a Huffman tree and interpret a given Huffman tree to determine the code used
for a particular node within the tree. They should also be able to calculate the number of bits saved by
compressing a piece of data using Huffman coding. Similarly, they should be familiar with the process of run
length encoding to reduce the amount of data stored.

Skills and coding
•	 Maths skills:

–– Converting between binary, hexadecimal and decimal
–– Converting between bit, byte and megabyte
–– Calculating file sizes of digital images (W × H × D) and digital sound files (sample rate × bit depth

× number of channels × length (in seconds)

•	 Coding skills:
–– Traversing a string
–– Returning an ASCII code for a character in a string
–– Inserting a character using its ASCII code
–– Using subroutines, selection and iteration when creating an algorithm and then coding the pro-

gram to compress an image file.

Skills and coding for non-specialist teachers

1 ASCII code commands
The AQA pseudo-code includes commands to return the ASCII code for a character or return the character
for a code. The command CHAR_TO_CODE(CharExp) converts a character to its ASCII code and the
command CODE_TO_CHAR(IntExp) converts an ASCII code to a character.

CHAR_TO_CODE(‘a’) returns 97.

CODE_TO_CHAR(97) returns ‘a’.

GCSE Computer Science for AQA Teacher’s Resource

2 Run length encoding
The final challenge asks students to code an algorithm to carry out run length encoding. This task will
consolidate the learning from previous chapters including iteration, selection and working with strings.

A possible solution, in pseudo-code and the Python programming language, is given below:

Pseudo-code Explanation
OUTPUT “Please enter the text: ”

text ← USERINPUT

The user is asked to enter the string to be encoded. It is
stored in the variable ‘text’.

runText ← “” This variable is declared to hold the ‘runs’ when the string is
evaluated.

run ← 0 This variable will store the length of each run.

code ← “” The variable code is initially given the value of an empty
string.

length ←LEN(text) I The length of the string is stored in the variable length.

IF length = 0 THEN runText ← “” This checks that some text has been entered. If not, the ‘run’
is a blank string.

ELSE IF length = 1 THEN This checks if there is only one character in the string.

	 runText ← text If so, the ‘run’ is just that character and the length of the run
is 1.	 run ←1

ELSE If the length of the string is greater than 1, then the following
code is executed.

	 index ← 0 The variable index is set to 0 for the first character in the
string.

	 runText ← text[index] The variable runText is given the value of this character.

	 run ← 1 As there is at least one instance of this character, the variable
run is set to 1.

	 WHILE index < length - 1 A loop is set up to check the rest of the characters, from the
character at index 1 to the last index of the string the length
of the string minus 1.

		 IF text[index + 1] = runText
THEN

If the character at the next index position is the same as the
present one, then the variable run is incremented by 1.

			 run ← run
+ 1

		 ELSE If the next character is different, then the value of the present
character and its run length are added to the variable code.

The data type of the value stored in the variable run is
changed from an integer to a string for this concatenation
using the command INT_TO_STRING(IntExp).

			 code ←
code + INT_TO_STRING (run)

			 code ←
code + runText

			 runText ←
text[index + 1]

			 run ← 1

		 ENDIF

		 index ← index + 1 The value of the variable index is incremented by 1.

	 ENDWHILE The loop is terminated.

ENDIF

code ← code + INT_TO_STRING(run) The value of the run is appended to the value of code if it is
only 1 character.code ← code + runText

OUTPUT code The result of the run length encoding is printed.

© Cambridge University Press 71

Chapter 8: Representing text, graphics and sound

72 © Cambridge University Press

Pseudo-code Python
OUTPUT “Please enter the text: ”

text ← USERINPUT

text = input(“Please enter the text: “)

run ← 0 runText = “”

run ← 0 run = 0

run ← 0 code = “”

length ←LEN(text) length = len(text)

IF length = 0 THEN

	 runText ← “”

if length == 0:

 	 runText = ""

ELSE IF length = 1 THEN elif length == 1:

	 runText ← text 	 runText = text

	 run ← 1 	 run = 1

ELSE else:

	 index ← 0 	 index = 0

	 runText ← text[index] 	 runText = text[index]

	 run ← 1 	 run = 1

	 WHILE index < length – 1 	 while index < length – 1:

		 IF text[index + 1] = runText
THEN

		 if text[index + 1] == runText:

			 run ← run
+ 1

			 run = run
+ 1

		 ELSE 		 else:

			 code ←
code + str(run)

			 code =
code + str(run)

			 code ←
code + runText

 			 code =
code + runText

			 runText ←
text(index + 1)

			 runText =
text[index + 1]	

			 run ← 1 			 run = 1

		 ENDIF 			

		 index ← index + 1 		 index = index +1

	 ENDWHILE

ENDIF

code ← code + str(run) code = code + str(run)

code ← code + runText code = code + runText

OUTPUT code print(code)

Prompting questions
•	 What is ASCII?
•	 How does binary affect file size and quality?
•	 If a single bit is used per pixel to create monochrome graphics, then how are coloured graphics stored?
•	 What is compression?
•	 Binary doesn’t change: it always consists of 1s and 0s, yet it can represent everything we see on the

computer. How does the computer know whether one set of binary is an image or a sound or an
application?

GCSE Computer Science for AQA Teacher’s Resource

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to discuss in groups how they think computers are able to understand and manipulate

text, sound and images considering that they only work in binary. Each group can be assigned to
consider either text or sound or images. You might wish to encourage this to be a simple discussion
without access to the Internet so that students can devise their own rules and estimate how systems
work. Their discussions might not be wholly accurate but it is a good starter activity to prep them for
the information that they are about to learn.

•	 What is their favourite colour? Ask students to find its hexadecimal code and write the binary
equivalent.

•	 Hex Editor Neo is free software that allows users to view and edit the binary and hex representations of
most files. Download it from: www.cambridge.org/links/katd4008.

•	 Ask students to import a file of their choice (graphic or sound) to see the binary/hex representation.
Can they spot any patterns?

•	 Ask students to investigate the different types of compression.
•	 Ask students to find the binary representation for their name.

Enrichment activities
•	 Ask students to write messages to each other in binary representation only. It is the job of the recipient

to convert the message back to ASCII format and send a reply.
•	 One useful activity to support data representation is an activity known as ‘Paint by Pixels’. Resources

for it can be downloaded from: www.cambridge.org/links/katd4009
•	 Ask students to investigate ASCII Art. What is it? How is it related to ASCII and binary representation?

Can they collect examples of ASCII Art? Ask students to see if they can develop their own ASCII art
work.

•	 Use Hex Editor Neo to manipulate files in their binary and hex formats. Graphics will work best, by
changing the binary or hex colour codes and saving the file. Students will be able to view their altered
images.

•	 JPEG and MP3 files are compressed files. What is the original file format and how are these
compressed?

Assessment ideas
•	 Ask students to write a program that will ask the user to input text and convert it to its binary

representation. They should convert the returned binary string into decimal values.
•	 Using a program such as Audacity, allow students to manipulate sound files, apply compression

techniques and explore the impact on file size and quality.

Answers

Activity 8.1
T h e A S C I I c o d e r e p r e s e n t s c h a r a c t e r s .

© Cambridge University Press 73

Chapter 8: Representing text, graphics and sound

http://www.cambridge.org/links/katd4009

74 © Cambridge University Press

Activity 8.2
OUTPUT “Enter the sentence to encode: ”

sentence ← USERINPUT

numbChars ← LEN(sentence)

FOR index ← 0 TO numbChars – 1

asciiCode ← CHAR_TO_CODE(sentence[index])

OUTPUT asciiCode

ENDFOR

Activity 8.3
OUTPUT “Enter a sentence or phrase: ”

sentence ← USERINPUT

OUTPUT “The size of this sentence/phrase in bytes is: ” + LEN(sentence) + “.”)

Activity 8.4
01111110

01111110

01111110

01100110

01100010

01001000

00011000

00111100

Activity 8.5
4220 × 2641 × 24 = 267 480 480 bits = 33 MB

640 × 480 × 8 = 2 457 600 bits = 307 KB

Activity 8.6
44 100 × 24 × 5 × 60 = 317 520 000 bits = 40 MB

317 520 000

GCSE Computer Science for AQA Teacher’s Resource

Activity 8.7

Character Frequency Bits used
in
ASCII

Huffman code Bits used in
Huffman code

B 2 16 0000 8

C 7 56 0001 28

A 12 96 001 36

D 13 104 010 39

E 14 112 011 42

F 85 680 1 85

1064 238

Activity 8.8

© Cambridge University Press 75

Chapter 8: Representing text, graphics and sound

76 © Cambridge University Press

a.

Character Huffman coding
H 010

E 1101

M 11001

b.

Character Huffman coding
H 010

C 11000

S 0110

Activity 8.9
2w3b3w

3w1b4w

3w1b4w

3w1b4w

3w1b4w

3w1b4w

3w1b4w

2w3b3w

= 6 × 8 bytes, that is, 48 bytes

(Without RLE the character would be 8 x 8 bytes in size, that is, 64 bytes.)

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what is meant by a computer system
•   explain what is meant by an embedded system
•   describe the structure of the central processing unit and the functions of its components
•   describe the fetch-execute cycle
•   explain the need for and role of multiple cores and cache and virtual memory
•   describe secondary storage media and the advantages and disadvantages of each.

What your students need to know
Students should:

•	 be competent in the use of pseudo-code and a programming language.

Vocabulary
•	 Processor
•	 Software
•	 Von Neumann architecture
•	 Fetch-decode-execute cycle
•	 Random access memory
•	 Read-only memory
•	 Multi-core processor
•	 Cloud storage Bus
•	 Hardware
•	 System Software
•	 Application software
•	 Printed circuit board
•	 Central processing unit
•	 Storage location
•	 Address
•	 Volatile
•	 Register
•	 Control signals
•	 Heat sink
•	 Parallel processing
•	 Multitasking
•	 Cache
•	 Secondary storage devices
•	 Magnetic storage
•	 Optical storage
•	 Electrical storage
•	 Flash memory

Chapter 9: Computer systems: hardware

© Cambridge University Press 77

78 © Cambridge University Press

Common misconceptions and other issues
Multi-core processors do not produce a proportionate increase in the rate at which programs will run on a
computer. For example, programs will not run at twice the speed on a dual-core processor as tasks might be
sequential and not run in parallel. One task might not be able to start until another has finished.

Students often confuse ROM with secondary storage. An example to explain the difference is to think of ROM
as an old vinyl record, that you could play but not change, whereas a cassette tape could be recorded onto
and changed many times.

Because they are usually integral to a computer system, students sometimes think that a hard disk drive is
‘primary’ storage but it is just another example of a secondary storage device.

Skills and coding
No coding skills are needed for this chapter unless students undertake the final challenge.

Skills and coding for non-specialist teachers
The teaching of this chapter requires no special skills or coding.

Prompting questions
•	 Computer storage drives currently begin with C:\, which refers to the hard drive, and go upwards with

other letters such as D:\, E:\, F:\ onwards referring to CD/DVD drives, removable storage devices and
network drives. What happened to A:\ and B:\ drives? What were they used with and why are they no
longer referred to?

•	 What is Moore’s Law?
•	 What is the difference between RAM and ROM?
•	 When purchasing a new computer or games console, the technical specifications of the device will

often tell you about how much RAM is built in, and that it is better to buy a device with more RAM.
–– Why is RAM so important?
–– What is RAM responsible for?
–– How does it affect computer performance?

•	 What is the job of a computer processor?
•	 Ask students to name/list common computer processor names/brands.
•	 What has changed in technology to allow computers to shrink in size over the years?
•	 What was the world’s first computer?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Setting up a role play to demonstrate the fetch-decode-execute cycle is a good way to help students

visualise what is happening inside the computer. For example, divide students into groups of four.
Student A is responsible for generating the ‘input’ (i.e. a message or instruction for a task to be done),
student B ‘fetches’ the instruction from student A and hands it to student C, whose job it is to ‘decode’
the information and instruct student D to carry it out. Student A represents ‘input’, student B the ‘fetch’
part of the cycle, student C the ‘decode’ and student D ‘execute’. You can increase the complexity of
this task by having more than one person responsible for executing different types of instructions. For
example, one student for something written, another for something spoken, and a third for a physical
action (each representing a different output device). It would then be the job of student C to decide
which of these gets the correct message. The same could be done for input.

GCSE Computer Science for AQA Teacher’s Resource

•	 Ask students to list as many storage devices as they can think of and then next to them detail what
they are typically used for, their capacity and characteristics.

•	 What are the similarities between the human brain and a computer processor in the way they carry out
instructions/tasks? Discuss with the class.

Enrichment activities
•	 Give students access to a physical computing device such as a Raspberry Pi, Arduino Board, Galileo

Board, etc. Students should investigate and identify the key components on the board and what
each element does. Can they identify where the CPU is? How does the device deal with memory or
communicate with the other hardware devices attached to it? Ask students to set up a simple circuit
with a single input and output. For example, when a motion sensor is activated, it results in a LED
lighting up.

•	 Investigate new and upcoming technologies related to computer processing and data storage. What
are the latest developments in computer memory going to be over the next five years?

•	 Ask students to investigate: What is Moore’s law? Can the law continue as predicted? What
developments will need to happen in technology in order for memory capacity to continue to increase
as predicted?

•	 Students investigate the timeline of how computer systems have developed over the years from the
world’s first computers to today’s technology and looking forward to future developments. What are
the key things that have changed and why?

Assessment ideas
•	 Divide the class into groups. Assign each group a different concept from the list below:

–– Secondary storage
–– Fetch-decode-execute cycle
–– RAM and ROM
–– Central processing unit and its components
–– Computer systems and embedded systems

•	 Each group needs to carry out in-depth research into their chosen area to create a short interactive
presentation to deliver to the rest of the class. The group’s presentation should interact with the
class audience and they might choose to ‘teach’ their peers or set a quiz. They should also create a
digital message to highlight their chosen concept. This may be an animation, a program or other such
media file. Each group has the opportunity to present their work to the class, and each group should
participate in a Q&A session.

Answers

Activity 9.1
1. Embedded devices have been built for a specific and limited purpose. All the components of the system
are on a single circuit board. The memory contains the program and the board is contained within a larger
device.

2. Washing machine, dishwasher, lift, fridge, coffee maker, navigation systems, etc.

Activity 9.2
Students’ own answers. They should have identified the main reason, which is that DRAM has to be refreshed
periodically, otherwise it forgets what it is holding. This isn’t the case with SRAM.

© Cambridge University Press 79

Chapter 9: Computer systems: hardware

80 © Cambridge University Press

Activity 9.3
1. ROM: is programmed to perform a specific function when it is manufactured; the BIOS is stored in ROM
and that controls what happens when the computer starts up. RAM: temporarily stores program instructions
and data that are currently in use so that they can be retrieved by the CPU quickly.

2. Two differences between RAM and ROM are that RAM is volatile and all content stored within it is lost when
the computer is turned off, whereas ROM is non-volatile and retains its content, even when the power is
switched off. The computer cannot write to a ROM chip, whereas it can write to the RAM chip.

Activity 9.4
1. ALU – arithmetic and logic unit

2. Registers

3. Control Unit

Activity 9.5
The diagram(s) should illustrate the events that take place during the fetch-decode-execute cycle and the
role played by the components of the CPU. Some students may prefer to produce a list of steps rather than a
set of diagrams (see below).

The fetch and decode part of the cycle

At the start of the fetch-decode-execute cycle the Program Counter (PC) holds the address in memory of the
first instruction to be fetched from random access memory (RAM).

The address stored in the PC is copied into the Memory Address Register (MAR).

The address stored in the MAR is placed on to the address bus. The Control Unit (CU) issues a read signal and
the instruction stored at that memory address is put onto the data bus.

The instruction on the data bus is loaded into the Memory Data Register (MDR), which acts as a temporary
store (buffer) for anything that is copied from memory ready for the CPU to use.

The instruction in the MDR is copied to the Instruction Register (IR).

GCSE Computer Science for AQA Teacher’s Resource

The PC is incremented by 1.

The CU decodes the instruction stored in the IR.

Execute

The CU carries out the instruction using the Arithmetic Logic Unit (ALU) for instructions involving arithmetic
and logic operations.

Once the instruction has been executed, the cycle is repeated.

Activity 9.6
1. Overclocking

2. The noise is likely to come from the computer’s fan, which will be working harder because of the increase
in heat resulting from overclocking.

Activity 9.7
1. Quad-core refers to four cores within one CPU. Having a multi-core processor improves performance
because the cores all work in parallel either to execute one program or to work on different programs at the
same time.

2. It is far quicker to retrieve memory from cache than RAM, so a larger cache means more data can be
stored here and therefore be retrieved faster, improving performance.

Activity 9.8
1. The student could use solid state flash memory to back up the photos from their camera. It’s portable and
fast and they can buy memory cards that fit inside a camera to store the images directly. Alternatively, they
could use cloud storage, which would enable them to share their photos with friends and family at home.

2. The owner of the mail order company could use a large-capacity hard disk drive for backing up the order
data. It uses magnetic storage and is capable of storing vast amounts of data. Alternatively, a cloud server
could be used for storing backups.

3. The school student should use a USB flash memory device, as it is portable and durable and easy to
transport between school and home.

4. Magnetic storage such as a tape or hard disk drive would make a good option for a weekly backup due to
its capacity and use.

© Cambridge University Press 81

Chapter 9: Computer systems: hardware

© Cambridge University Press82

What your students need to know
Students should:

•	 have knowledge of computer hardware.

Vocabulary
•	 Operating system
•	 Memory management
•	 Swap file
•	 Process
•	 Process management
•	 Multitasking
•	 Peripheral management
•	 Security management
•	 File management
•	 Permission
•	 User interface
•	 Graphical user interface
•	 Command line interface
•	 Utility programs
•	 BIOS
•	 Motherboard
•	 RAM
•	 Driver

Common misconceptions and other issues
Students sometimes do not appreciate that Windows is an operating system and its main function is to
manage the operation of the computer and how it communicates with hardware. This is probably because
Windows usually comes ‘bundled’ with applications, such as a calculator, and games, such as solitaire.

Chapter 10: Computer systems: system software

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what is meant by system software
•   explain what is meant by an operating system
•   describe the functions of the operating system
•   explain what is meant by utility programs
•   list some examples of utility software and their functions.

GCSE Computer Science for AQA Teacher’s Resource

Skills and coding
Coding skills:

•	 Use of arrays
•	 Use of a high-level programming language to create and test a program to simulate disk

defragmentation

Skills and coding for non-specialist teachers
The final challenge requires the students to create and code an algorithm to simulate defragmentation.

The solution, in Python, is given below.

Python Explanation
disk = [[‘C’, ‘1’], [‘,’], [‘A’, ‘2’], [‘B’, ‘3’], [‘C’, ‘4’], [‘C’, ‘2’], [‘,’], [‘A’,
‘3’], [‘,’], [‘B’, ‘1’], [‘,’], [‘B’, ‘2’], [‘C’, ‘3’], [‘C’, ‘5’], [‘A’, ‘1’], [‘,’]]

A two-dimensional array (list) containing the sectors as
shown in the figure for ‘Your final challenge’ in the Student
Book.

letters = ‘A’, ‘B’, ‘C’] An array (list) to hold the three file names.

change = 0 A variable to hold the sector that has to be swapped.

for letter in range (0, len(letters)): The loop will go through the letters A, B and then C.

 	 number = 1 The variable ‘number’ is set to 1. The first search item will
therefore be A1.

 	 swapped = 1 The variable ‘swapped’ signals if a swap has been made.

 	 while swapped == 1: The ‘while’ loop will run while a swap has occurred – i.e. while
swap is equal to 1.

 swapped = 0 The ‘swap’ variable is now set to 0. It will be changed back to
1 if a swap occurs.

 		 for index in range(0, len(disk)): The ‘disk’ array is now searched.

if disk[index][0] == letters[letter] and disk[index][1] ==
str(number):

If the array contains an entry with the first data item equal
to the letter and the second equal to ‘number’, then it is
swapped with the location at index ‘choice’.

In the first loop, A1 will be swapped with the items at index 0.

temp = disk[index] This code carries out the swap.

disk[index] = disk[change]

disk[change] = temp

number = number + 1 ‘number’ is now incremented, for example, from 1 to 2.
Therefore in the second turn of the loop, A2 will be searched
for.

change = change + 1 ‘change’ is incremented so that the swap will occur with the
next index of the array.

swapped = 1 If a swap has occurred, the variable ‘swap’ is changed to 1 so
that the ‘while’ loop will turn again.

If ‘swap’ remains at 0, then the while loop will not turn and
the next letter will be searched for.

print(disk) The array is now printed with the items in their sorted
positions.

© Cambridge University Press 83

Chapter 10: Computer systems: system software

84 © Cambridge University Press

Prompting questions
•	 What is software?
•	 Windows 95, Linux, iOS, Android and Windows 10 are all examples of software.

–– What do they have in common?
–– What type of software are they?
–– Can you think of any others that fit into this category?

•	 Why are backups important?
•	 Do you use any systems utilities on your home computers?

–– Which ones do you use most?
–– When do you use them?
–– Why do you use them?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to list the different types of software that they can think of. Encourage them to try and

think of a diverse range of applications. Then ask students to move into pairs or groups of three and
pool their lists. Through discussion, can they group the software into different categories? What would
those categories be and why? Why are particular grouping methods chosen by the students? This
activity is best carried out as a starter before students have learnt about different software application
categories. Follow the activity with a whole-class discussion. Did more than one group devise similar
categories?

•	 Ask students to describe the factors that an IT systems manager would need to consider in order to
select the most appropriate type of backup system for their company.

•	 In pairs, students discuss: what is the role of a ‘driver’ and how does it work? Why is it important to
have the correct drivers installed on your machine? What might happen if the correct drivers are not
installed?

Enrichment activities
•	 Investigate the ‘onion diagram’ for operating systems (this is the diagram at the beginning of the

‘Operating system’ section in the Student Book). This diagram shows the relationship between
the computer hardware, the different aspects of the operating system, software applications and
the user. Students should research the variations on this diagram and the relationship between
the components described and then create their own improved onion diagram to illustrate this
relationship.

•	 Investigate the terms multi-user and multitasking. What do these terms mean in relation to operating
systems? Can students find examples of computer systems that are:

–– multi-user only
–– multitasking only
–– multi-user and multitasking
–– neither multi-user nor multitasking?

•	 Investigate different types of user interface. Find an example of each, and for each example state the
software which uses that interface and discuss why this is/isn’t appropriate for that application.

GCSE Computer Science for AQA Teacher’s Resource

Assessment ideas
•	 Use the animation tools in a software package such as PowerPoint to create a simple animation to

illustrate the concept of:
–– why a fragmented hard drive can slow a computer’s performance
–– the role of the BIOS
–– the role of drivers
–– the importance of backups.

Students choose or are assigned one or more of the above.

© Cambridge University Press 85

Chapter 10: Computer systems: system software

© Cambridge University Press86

What your students need to know
Students should:

•	 have knowledge of Boolean/logical operators
•	 be able to use and understand algorithms expressed in pseudo-code that use Boolean/logical

operators.

Vocabulary
•	 Logical operator
•	 Boolean logic
•	 Transistor
•	 AND gate
•	 OR gate
•	 NOT gate
•	 Compound statement
•	 True or false
•	 Truth table
•	 Logic gate
•	 Logic circuit

Common misconceptions and other issues
Care should be taken when formulating and evaluating NOT statements.

For example, Q = NOT(A AND B) is not the same as Q = NOT(A) AND NOT(B).

Chapter 11: Boolean logic

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   create and interpret truth tables for Boolean operators
•   draw ‘AND’, ‘OR’ and ‘NOT’ logic gates
•   create and interpret logic circuits
•   create truth tables for logic circuits.

GCSE Computer Science for AQA Teacher’s Resource

A truth table for Q = NOT(A AND B) would be:

A B Q
T T F

T F T

F T T

F F T

The outcome is the reverse of a truth table for an AND statement. Any situation where both A AND B are not
true would cause Q to be true.

A truth table for Q = NOT(A) AND NOT(B) would be:

A B Q
T T F

F T F

T F F

F F T

This statement requires both A and B to be false for Q to be true.

Skills and coding
•	 Coding skills:

–– Use of pseudo-code
–– Using and interpreting logical operators in pseudo-code

Skills and coding for non-specialist teachers

1 Truth tables
Truth tables can be used to check the logic of all statements using logical operators, from simple statements
such as:

IF password = “Password!” THEN

where the outcome can be assessed depending on whether the statement is true or false, to compound
statements such as:

IF (colour = “red” OR colour = “blue”) AND size = “M” AND distance <= 10 THEN

where a table such as the one below could be used.

red blue M <=10 Result
T T T T T

T F T T T

T F F T F

T F T F F

F T T T T

F T F T F

F T T F F

© Cambridge University Press 87

Chapter 11: Boolean logic

88 © Cambridge University Press

2 NOT statement
The NOT statement reverses the logic of AND and OR operators.

This is demonstrated before Activity 11.1 in the Student Book and reinforced in Activity 11.1.

In this activity, the statement to be evaluated is:

IF NOT (X = 3 OR Y = 6) THEN

	 OUTPUT “Conditions are met.”

 ENDIF

If either of the conditions is true, that is, if X is equal to 3, OR Y is equal to 6, then the compound statement is
false.

Logic without NOT
X Y X OR Y

T T T

F T T

T F T

F F F

Logic with NOT
X Y X OR Y

T T F

F T F

T F F

F F T

3 Logic gates
Logic gates are built of transistors to electronically represent Boolean logic.

When using truth tables for logic gates and logic circuits, in which they are combined, true and false should
be represented by 1 and 0 to signify whether there is or is not an input or output.

Prompting questions
•	 What’s the difference between AND/OR/NOT?
•	 Can students come up with any examples of AND/OR/NOT?
•	 One example of AND/OR/NOT in everyday life might be “We are going to the circus if the day is Saturday

OR Sunday AND the circus is in town”. Can students come up with any other examples of their own?
•	 What is a compound statement?
•	 Why are truth tables important? What do they help us do?

GCSE Computer Science for AQA Teacher’s Resource

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to write down three examples of situations where they see Boolean logic in action. These

can then be shared with a partner before feeding back to the group.
•	 We can often see Boolean logic in games. For example, we only want the score to double if: the

character has collected the object AND the object is a diamond. Ask students to consider another
example of Boolean logic within a game and to write a truth table for it.

Enrichment activities
•	 Ask students to go through the algorithms for the game they designed in Chapter 2. Identify where

Boolean logic applies and draw out a truth table for each one.
•	 Choose one of the algorithms from the previous enrichment activity and use it to draw out the logic

gate for the truth table.

Assessment ideas
•	 Provide students with a scenario for which they should attempt to draw out a truth table and an

associated logic gate. Some examples of possible scenarios are:
–– A leisure club will charge the concession rate if visitors are under 16 or over 65.
–– A school’s electronic security gates will open only if: it is a weekday and the ID card is a valid

student card OR it is an administrator ID card.

Answers

Activity 11.1
X Y NOT(X OR Y)

T T F

F T F

T F F

F F T

Activity 11.2
Q = NOT (A OR B)

A B Q
T T F

T F F

F T F

F F T

Q
A

B

© Cambridge University Press 89

Chapter 11: Boolean logic

90 © Cambridge University Press

Activity 11.3
Inputs Output
A B C Q

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

Because of the NOT gate, the circuit will output 1 only if both inputs A and B are 0 and input C is 1.

If there is an input of 1 at either or both of the inputs A and B, then the OR gate will output 1, which will be
reversed by the NOT gate.

This can be written as:

Q = NOT(A OR B) AND C

Activity 11.4
Inputs Output
A B C Q

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

The logic circuit will output 1 whenever input A is 0 as there will be an output of 1 at the NOT gate and this
output becomes an input of 1 at the OR gate.

When input A is 1, there will be no output from the NOT gate and therefore there will be an output from the
circuit only if inputs B and C are both 1.

This can be written as:

Q = NOT(A) OR (A AND B)

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain the difference between low- and high-level languages
•   explain the advantages of using high-level languages
•   explain how program instructions are encoded in low-level languages
•   explain why high-level languages need to be translated
•   explain the characteristics and use of:

•	 an assembler
•	 a compiler
•	 an interpreter.

What your students need to know
Students should:

•	 be competent in the use of pseudo-code and a programming language.

Vocabulary
•	 Applet
•	 Execute
•	 Machine code
•	 Instruction set
•	 Instruction
•	 Opcode
•	 Operand
•	 Mnemonic
•	 Assembler
•	 Compiler
•	 Interpreter
•	 Machine language
•	 Assembly language
•	 High-level language
•	 Low-level language

Common misconceptions and other issues
The instructions for a microprocessor must be presented in machine code that consists of strings of 1s and
0s. Each type or family of processor has its own set of instructions, known as its instruction set.

To assist programmers, programming languages have been developed that use commands more related to
human languages. They are at a higher level of abstraction.

Assembly language is at a low level of abstraction and the instructions used have a one-to-one relationship
with those of machine code.

High-level languages, for example, Python, Java and C, are at a higher level of abstraction.

The code from these languages must be translated for the processor. An assembler is used for assembly
language and compilers and interpreters for high-level languages.

Chapter 12: Programming languages

© Cambridge University Press 91

92 © Cambridge University Press

Skills and coding
•	 Coding skills:

–– The final challenge introduces students to a CPU simulator with a limited instruction set. The
students are encouraged to investigate the simulator and code simple programs to sort and
multiply numbers.

Skills and coding for non-specialist teachers
The Little Man Computer simulator is at: www.cambridge.org/links/katd4010

Simulators provide a good introduction to assembly language programming and Little Man Computer
simulator also illustrates the fetch-execute cycle, which is explored in more detail in Chapter 9.

The simulator has nine instructions that can be entered using mnemonics.

The following is a simple program to input and store two numbers and then add them together.

INP Mnemonic for user input for the first number.

STA ONE Store the first number in memory location labelled ONE.

INP User input for the second number.

STA TWO Store the second number in memory location labelled TWO.

LDA ONE Load the contents of memory location ONE into the accumulator.

ADD TWO Add the contents of memory location TWO to the accumulator.

OUT Output the contents of the accumulator.

HLT Stop execution of the program.

ONE DAT These commands reserve data locations for the two numbers to be entered.

TWO DAT

The following diagram shows the program in the message box.

Before the program can be run, it must be compiled into machine code.

This is done by clicking on ‘Compile Program’.

GCSE Computer Science for AQA Teacher’s Resource

Address Opcode Explanation
0 901 This is the opcode for the mnemonic INP-user input.

1 308 3 is the opcode for STA. 08 is the memory location where it will be stored.

2 901 This is the opcode for the mnemonic INP-user input.

3 309 3 is the opcode for STA. 09 is the memory location where it will be stored.

4 508 5 is the opcode for LDA and 08 is the location of the data to be loaded into the
accumulator.

5 109 1 is the opcode for ADD and 09 is the location of the data to be added to the
accumulator.

6 902 902 is the opcode for OUT-the contents of the accumulator will be output for the
user.

7 0 0 is the opcode for HLT-execution of the program will stop.

The program can be run one statement at a time by clicking the ‘Step’ button.

0

© Cambridge University Press 93

Chapter 12: Programming languages

94 © Cambridge University Press

1

2

3

4

5

6

GCSE Computer Science for AQA Teacher’s Resource

7

Prompting questions
•	 How many programming languages can you name?
•	 What is the difference between a high-level and a low-level language?
•	 What is an interpreter?
•	 What is a compiler?
•	 What is machine code?
•	 Does the programming language being learnt by the class use an interpreter or a compiler? Why do you

think this is the case?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to list as many programming languages as they know. Are different languages

recommended for different purposes?
•	 Can they find examples of machine code?
•	 Students investigate which programming languages use compilers and which use interpreters.

Enrichment activities
•	 The term ‘programming generations’ refers to a classification applied to programming languages.

Investigate what the different generations are and what they refer to. Can students categorise the
different languages into the different categories?

•	 HTML is a mark-up language. PHP and JavaScript are scripting languages. Do they use interpreters or
compilers? Why do students think this is the case? Ask them to justify their answer.

•	 SQL is often considered to be a fourth generation language. Ask students to investigate this to find out
what the general consensus is on the issue. What are the most common SQL commands and what is
the language commonly used for?

•	 Prolog is considered to be a fourth generation language. Ask students to investigate why this is the
case and what the most common commands are. What is the language most commonly used for?

Assessment ideas
•	 Write a program that allows the user to enter a series of numbers and return the total value.

–– Write a program in your chosen language to run the above program.
–– Write a program using ‘Little Man Computer’ to execute the program.
–– Write a machine code to execute the above program.

© Cambridge University Press 95

Chapter 12: Programming languages

96 © Cambridge University Press

Answers

Activity 12.1
Load the number found at memory location 6: 	 0010 00000110

Add the number 113:				 0100 01110001

Load the number 10:				 0001 00001010
Add the number 21:				 0100 00010101
Store the result at memory location 30:		 0000 00011110
The number 31 would be found at memory location 30.

Activity 12.2
Students’ own answers

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain what is meant by a computer network and list the different types of network
•   discuss the benefits and risks of computer networks
•   explain the functions of the hardware needed to connect computers
•   explain how computers communicate using cable and wireless
•   describe network topologies
•   explain how users connect to and use the Internet
•   explain how data is transmitted across networks
•   explain the use of protocols.

What your students need to know
This chapter does not involve any coding and no specific skills or knowledge are required.

Vocabulary
•	 Personal area network (PAN)
•	 Local area network (LAN)
•	 Wide area network (WAN)
•	 Cables
•	 Microwaves
•	 Protocols
•	 Ethernet
•	 Frequency
•	 Wi-Fi
•	 Bandwidth
•	 Topology
•	 Node
•	 Modem
•	 IP address
•	 Domain name
•	 Packet
•	 Packet switching
•	 Computer network
•	 Network interface card (NIC)
•	 Transmission media
•	 Wireless access point
•	 Bus topology
•	 Star topology
•	 Switch
•	 Internet
•	 Word wide web (WWW)
•	 Router
•	 Networking layers

Chapter 13: Computer networks

© Cambridge University Press 97

98 © Cambridge University Press

Common misconceptions and other issues
Hubs and switches: hubs relay messages received from each computer to all of the others on a single
network, whereas switches inspect the messages and relay them only to the intended recipients.

They can do this as they build tables recording the MAC addresses of each computer.

Wireless access points are similar to hubs in that they do not relay messages to specific computers.

Routers connect different networks and, like switches, they can direct messages as they inspect each
message.

Ethernet and Wi-Fi are both suites (or families) of protocols for communication within a network. Wi-Fi can
be thought of as the wireless equivalent of Ethernet.

Wi-Fi is only one standard for wireless communication. Others include Bluetooth, 3G and 4G.

Students are often confused over the difference between the Internet and the World wide web.

It should be stressed that the Internet is a huge wide area network that allows communication between
computers. The WWW is one of the services that run on the Internet and others include email, file transfer,
instant messaging and chat rooms.

The WWW is a system of interconnected documents formatted in HTML.

Skills and coding

Coding skills:
No specific coding skills are required.

Skills and coding for non-specialist teachers
The chapter does not require any skills or coding.

Prompting questions
•	 What is a network?
•	 Why is a network useful?
•	 When have you used a network?
•	 Who has a network at home? Why did you choose to set up a network? What benefits have you

received?
•	 What is the difference between a Personal Area Network and a Local Area Network?
•	 What is the difference between a MAC address and an IP address?
•	 In a school network, which device would be preferable, a hub or a switch? Why?
•	 How is information sent across the Internet?
•	 What is the relationship between cloud computing and networks?
•	 How does cloud computing work?

GCSE Computer Science for AQA Teacher’s Resource

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Draw a diagram that illustrates what a network is. This is a quick activity and students should not need

more than a minute or so to do a rough sketch. After they have their drawing, ask them to compare
results. Are there any similarities or differences? Ask students to justify or explain why their diagram
looks the way it does. If used as a starter activity, this will help highlight any prior understanding or
misconceptions about networking that students may have.

•	 Find and describe an example of:
–– Personal Area Network
–– Local Area Network
–– Wide Area Network.

•	 Networks Unplugged is a series of activities that teaches the concepts of networks without using
computers. It includes activities asking students to role play packet switching and a library mystery
hunt among others. Resources can be downloaded from: www.cambridge.org/links/katd4011

•	 Investigate common protocols and what they do.

Enrichment activities
•	 Using animation software (or the animation tools in a presentation software package), ask students to

create an animation that demonstrates how a network is structured and in particular how data is sent
across a network.

•	 Ask students to write an essay on the following scenario: ‘Imagine waking up tomorrow and you find
that networks no longer exist. Although computers exist, each machine is a stand-alone machine and
incapable of directly communicating with another device. Networks do not exist in any form. Describe
your day: how different would your life be?’

•	 Ask students to investigate the school network. What type of network is it? What topology does it use?
Can they identify which hardware components are used in the computer suite?

•	 Taking the students on a ‘school trip’ to the server room to meet the IT manager works well with
this topic. Invite the IT manager to explain the structure of the network, how it is set up and his daily
responsibilities. Students can prepare questions beforehand to ask on the day.

Assessment ideas
•	 Ask students to draw and annotate a diagram of their home (or school) network. The diagram should

be labelled to show the main hardware components used and should illustrate network structure.
Each student should be given the opportunity to present their network diagram and explain it.

Answers

Activity 13.1
1. a. PAN stands for personal area network. A PAN is a user-oriented wireless network covering a

relatively small geographical area – typically no more than 10 square meters. Bluetooth is the most
well-known communication medium for a PAN. A PAN enables a user to connect various personal
digital devices such as a wireless mouse and a laptop, a wireless headset or a sports band with a
smart phone, or a camera with a tablet. It may also allow devices to connect to the Internet.

© Cambridge University Press 99

Chapter 13: Computer networks

100 © Cambridge University Press

b. LAN stands for local area network. Although a LAN spans a wider geographic area than a PAN, it is
still confined to a single site such as a school, an office or a home. A LAN can be wired or wireless
or in some instances a combination of the two. Computers and other digital devices, such as TVs,
printers and speakers, connected on a LAN can communicate and share data with each other. A
LAN is usually owned and managed by a single organisation.

c. WAN stands for wide area network. A WAN connects separate networks over a large geographical
area, enabling computers in one location to communicate with computers in other locations. The
biggest WAN of all is the Internet. WANs typically use a number of different communications media,
including fibre optic cables, microwave and satellite. Ownership of a WAN is likely to be shared by
several organisations.

2. Three benefits for a school using networked rather than stand-alone computers are:

•	 Data stored on the school network can be accessed by authorised users from anywhere in the school.
It’s also considerably easier and much less time-consuming to back up data stored centrally compared
with having to go round each stand-alone computer in turn separately backing up the content of its
hard drive.

•	 The school doesn’t need to purchase as much equipment since printers and other devices can be
connected to the network and shared.

•	 Software installation is also much more straightforward and less time-consuming. Software is installed
centrally and then copied to all computers over the network. It’s also easier to keep software up to
date and to prevent students or members of staff from installing illegal software.

Three risks for a school of using networked rather than stand-alone computers are:

•	 Having all the computers connected on a network allows viruses to spread more rapidly.
•	 If someone successfully hacks into the school network, they have unimpeded access to all its data,

including personal information about students and members of staff.
•	 There are cost implications ‒ additional hardware and infrastructure are needed to set up a network

and the school will need to employ a network manager with the necessary technical expertise.

Activity 13.2
Benefits and drawbacks of setting up a wired home network:

•	 Cables allow for higher bandwidth, which is great for media streaming.
•	 Setup is much more difficult: hiding cabling so it doesn’t become a safety hazard will need planning.

It’s easier to do this when a house is being built rather than retrospectively.
•	 Better security: you need to be physically plugged in.
•	 Not as portable since you need to be directly plugged in; for example you can’t work from your garden

unless you have a cable.
Benefits and drawbacks of setting up a wireless home network:

•	 Usually lower bandwidth than cable.
•	 Easy and cheap to set up; you just need WAPS.
•	 Signal can be affected by interference and distance so you might lose your Wi-Fi signal or data transfer

slows down.
•	 Very portable; you can work from anywhere.
•	 Security is poor. Anyone within range can see the network and connect to it and use it. The access

point must be secured with a security password. Some form of encryption must be set up.
An alternative would be to have a mixture of the two, with devices such as the TV and the printer that have
a fixed location wired in to the router, and other devices such as smart phones and tablets connected
wirelessly.

GCSE Computer Science for AQA Teacher’s Resource

Activity 13.3
Benefits of using a star topology:

•	 If one computer fails, the other devices on the network will be unaffected and will carry on working.
•	 Adding or removing devices is easy and can be done without affecting the entire network.
•	 Data packets can be directed to the intended node directly without having to pass along the complete

network. Consequently, there is less network traffic and fewer collisions.

© Cambridge University Press 101

Chapter 13: Computer networks

© Cambridge University Press102

What your students need to know
Students should:

•	 be able to use a high-level programming language to create a menu-based information system about
the security risks faced by computer users and how they can be avoided.

Vocabulary
•	 Cyber security
•	 Social engineering
•	 Antivirus software
•	 Malware
•	 Trojan horse
•	 Input sanitisation
•	 Authentication
•	 Penetration test
•	 Bot
•	 Biometric authentication
•	 Patch
•	 Blagging
•	 Phishing
•	 Pharming
•	 Antivirus software
•	 Shouldering
•	 Virus
•	 Worm
•	 Spyware
•	 Adware
•	 Brute force attack
•	 Denial of service
•	 Data interception
•	 SQL injection
•	 Zero day attack
•	 Physical security
•	 Encryption
•	 Firewall
•	 MAC address filtering

Chapter 14: Cyber security

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   explain the need for and importance of cyber security
•   describe the different strategies that criminals use to attack computer networks
•   explain how people are the greatest security risks to networks
•   describe the threats posed to networks
•   explain how these threats can be identified, prevented and combatted.

GCSE Computer Science for AQA Teacher’s Resource

•	 Network policies
•	 CAPTCHA

Common misconceptions and other issues
The material in this chapter is very straightforward and should not give rise to any misconceptions.

Skills and coding
•	 Coding skills:

–– The use of a high-level programming language to create a menu-driven information system.

Skills and coding for non-specialist teachers

Final challenge
This will give students experience of applying some of the programming skills learnt in earlier chapters to
create a structured program, using subroutines called from within the main program.

Prompting questions
•	 Describe a recent computer crime that you might have heard of in the news or via your social network.

–– Why was it a criminal act?
–– Could it have been prevented?
–– How?

•	 What is meant by the term ‘network forensics’? What would this team of experts do? When would they
be used?

•	 What is shouldering? Has anyone ever been a victim or perpetrator of this?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 Ask students to research a recent news report describing a computer crime. They need to find out

what happened and then in pairs/small groups discuss if it could possibly have been prevented. Can
they discover which legal Act is enforced here and why?

•	 Compare the school’s acceptable use policy with one from another organisation (for example, this
one from the University of Bath: www.cambridge.org/links/katd4012). Ask students to identify
common features and differences.

•	 Think-Pair-Share. Think: of one thing that you have understood well during the lesson and one
question that you would like answered. Pair: tell your partner about your area of confidence and your
question: can you answer each other’s question? Share: your common areas of confidence and any
unanswered questions. Can someone else in the class answer them?

•	 Evaluate the security of your own devices and home network. What strategies do you employ? Could
you improve the security? Should you improve security?

•	 What possible threats might you face with your personal devices and home network? Think-Pair-Share
your thoughts and in groups discuss ways that these can be prevented.

© Cambridge University Press 103

Chapter 14: Cyber security

104 © Cambridge University Press

Enrichment activities
•	 Ask students to research a criminal attack on a network and to prepare a two-minute presentation to

the class describing the attack and important details surrounding it. What computer security features
were breached?

•	 An excellent activity to explain public key encryption is available on CS Unplugged (www.cambridge.
org/links/katd4013). The activity is a good one to carry out with students, or the video listed below it
also helps students to understand the nature of the process.

•	 Ask students to create a digital message that describes computer crime/misuse and various ways to
prevent these from happening.

•	 Ask students to write a program that will test the strength of a user’s password upon entry. The
program should output to the user whether their password is ‘weak’, ‘medium strength’ or ‘strong’.
It should also give appropriate suggestions about what can be done to improve the password strength.

Assessment ideas
•	 You have been given a training position with a network department of a new school that is just

starting. Your task is to write a report outlining the range of risks that the school network will face and
the security measures that should be put in place to prevent them.

Answers

Activity 14.1
a. Phishing email

b. Clue 1 – The email is not addressed to Catherine in person.

Clue 2 – The writing style is careless; for example, ‘is terminated’ rather than ‘will be terminated.’

Clue 3 – Urgency: they want Catherine to respond within 24 hours or else.

Another clue is the inclusion of a link that Catherine is asked to click on. This will almost certainly lead to a
website controlled by the criminals.

Activity 14.2
1. A virus is a program that finds its way into a user’s computer via another program or file. Once there, it

can attach itself to other programs and files. In contrast, a user has to actively install a Trojan. They do
this unwittingly either by opening an email attachment or by being fooled into thinking the software is
legitimate. Both viruses and Trojans are harmful. They can corrupt data, delete files and (in the case of
Trojans) enable criminals to access personal information including IDs and passwords.

2. Precautions users should take include:

•	 Installing firewalls to ensure software isn’t downloaded without their knowledge.
•	 Keeping their computer’s operating system up to date and installing the latest security patches.
•	 Installing anti-virus, adware removal and anti-spyware protection software.
•	 Avoiding opening emails and attachments from unknown sources.
•	 Only downloading programs from trusted websites and taking proper note of all security warnings,

licence agreements and privacy statements.

GCSE Computer Science for AQA Teacher’s Resource

LEARNING OUTCOMES

By the end of this chapter students should be able to:
•   investigate and discuss the following issues in relation to the development and impact of digital

technologies:
•	 environmental
•	 ethical
•	 legal
•	 cultural

•   discuss issues of data collection and privacy
•   describe the legislation relevant to digital technology.

What your students need to know
This chapter does not involve any coding and no specific skills or knowledge are required.

Vocabulary
•	 Ethics
•	 Legal
•	 Hacking
•	 Cracking
•	 Autonomous
•	 Regulation of Investigatory Powers Act 2000
•	 Wearable technology
•	 Copyright
•	 Patent
•	 Environmental impact
•	 Data centre
•	 E-waste
•	 The digital divide
•	 Legislation
•	 Data Protection Act
•	 The Computer Misuse Act
•	 Copyright Designs and Patents Act
•	 Creative commons licensing

Common misconceptions and other issues
Students often have difficulty in understanding the difference between ‘ethical’ and ‘legal’.

They should be encouraged to discuss examples of situations which are legal but might not be considered
ethical, for example: capital punishment, refusing to help an injured person.

Chapter 15: Ethical, legal and environmental impacts of
digital technology on wider society

© Cambridge University Press 105

106 © Cambridge University Press

Skills and coding
•	 Coding skills:

–– No specific coding skills are required.

Skills and coding for non-specialist teachers
No specific skills or coding are required for this chapter.

Prompting questions
•	 Would you prefer to take your exam on the computer or using paper? Why?
•	 What benefits do you think computing has made to your life?
•	 Computer legislation is often difficult to enforce. Why do you think this is the case?
•	 ‘Technology has made the world a smaller place.’ What do you think this statement means?
•	 Why do you think people prefer to use pirated copies of entertainment media rather than purchase the

actual product?
•	 Is current computer legislation successfully tackling computer crime in the UK? If not, what do you

think needs to change?
•	 What impact do you think wearable technology is having or will have on our lives?

Starters, plenaries, enrichment and assessment ideas

Starters and plenaries
•	 In groups, ask students to discuss how their lives today are different from the lives and childhood of

their parents.
•	 Give students a short paper-based quiz, then ask them to complete an online version (one can be

chosen, or specifically designed using the many tools available). In groups, students should compare
their experiences and explore the benefits and drawbacks of both approaches. This task should end
with a class discussion summarising the differences.

•	 What are the 10 commandments of computer ethics? Can they be legally enforced? The website www.
cambridge.org/links/katd4014 can be given to students if needed.

•	 What is Digital Rights Management?
•	 Write three key points about each legal act dealing with computer misuse.
•	 Write a poem/song/short story that discusses one of the computer laws or an ethical issue discussed

in the chapter.
•	 Find examples of wearable technology. Choose two from your list and consider the potential benefits

and drawbacks of using such technology.
•	 If you could write a quote about computers and the ethical, legal or environmental concerns

surrounding them, what would you say? Write your own quote. Note to teacher: these student quotes,
when printed, would make a good display feature for the classroom if presented in the right way.

Enrichment activities
•	 Ask students to find out by speaking to older friends and family members, such as aunts, uncles,

parents, grandparents, etc., what childhood was like for them.
–– What did lessons look like in school?
–– What did they do for fun?
–– How did they keep in touch with their friends?

•	 Students should compare these findings with their own lifestyle and answer the questions for

GCSE Computer Science for AQA Teacher’s Resource

themselves. This task can be extended by asking students to create a digital message highlighting the
similarities and differences between the two age groups.

•	 Students should select and investigate one of the topics below. They should consider both sides of
the argument and end with their own opinion and justification of it. Their research findings should be
summarised to be delivered as an interactive presentation to the class.

–– E-waste
–– Climate change
–– Energy production
–– Social communication
–– Drones
–– Security and surveillance

•	 Computer piracy is a growing issue. A news story (www.cambridge.org/links/katd4015) has
highlighted the success of Netflix in Brazil, a country known for its widespread piracy issue. Ask
students to read the news story. Why has Netflix been so successful? In groups, ask them to discuss
what measures they think the entertainment industry needs to take to tackle and reduce computer
piracy in the UK.

•	 The digital divide still exists in the UK. Ask students to investigate what the government intends to do
to tackle it.

•	 Artificial intelligence has increased and improved significantly over recent years. Ask students to
investigate examples of current technology that uses artificial intelligence. How many examples can
they find? What impact do they think these examples have had on our lives?

•	 Wearable technologies are increasing and perhaps the most famous examples are Google Glass
and the Apple iWatch. Yet the Apple iWatch has been more socially acceptable than Google Glass.
There was lots of excitement around the project before release, but this quickly dwindled when the
product came to market. Google even released guidance for its users. Ask students to investigate the
reviews and news reports around Google Glass. What were the issues and debates surrounding the
technology? Why did Google have to undertake a review of the entire project?

Assessment ideas
•	 Ask students to write an essay on: ‘Everyone needs to learn to code.’ Discuss.
•	 Choosing one of the quotes from the list below, ask students to investigate the quote. What did they

think the speaker was referring to? Do they agree with what was said? Using the quote as a guiding
point, ask the students to write an essay to discuss the issues highlighted in the quote.

–– Computers themselves, and software yet to be developed, will revolutionize the way we learn.
Steve Jobs

–– Personally, I rather look forward to a computer program winning the world chess champion-
ship. Humanity needs a lesson in humility. Richard Dawkins

–– Home computers are being called upon to perform many new functions, including the con-
sumption of homework formerly eaten by the dog. Doug Larson

–– I do not fear computers. I fear the lack of them. Isaac Asimov
–– Computer science is no more about computers than astronomy is about telescopes. Edsger

Dijkstra
–– Security is, I would say, our top priority because for all the exciting things you will be able to do

with computers ‒ organizing your lives, staying in touch with people, being creative ‒ if we don’t
solve these security problems, then people will hold back. Bill Gates

–– Every piece of software written today is likely going to infringe on someone else’s patent. Miguel
de Icaza

–– The Internet is not just one thing, it’s a collection of things ‒ of numerous communications net-
works that all speak the same digital language. Jim Clark

–– Supercomputers will achieve one human brain capacity by 2010, and personal computers will
do so by about 2020. Ray Kurzweil

© Cambridge University Press 107

Chapter 15: Ethical, legal and environmental impacts of digital technology on wider society

108 © Cambridge University Press

Answers

Activity 15.1
This activity focuses on the role of computer scientists in combating global climate change. Students should
avoid broadening out the discussion to include other ways in which computer science can help protect the
environment, such as animal conservation or natural resource management.

They should begin by defining the term ‘global climate change’, that is, a long-term shift in weather patterns
including temperature, rainfall and winds, and identifying factors that contribute to climate change (in
particular the build-up of greenhouse gases caused by human activity), notably the burning of fossil fuels.

They should then describe a number of different ways in which computer scientists can play a role in
combating climate change, such as:

• developing computer systems that combine satellite observations, ground-based data and forecast
models to monitor and predict changes in the weather and climate

• producing computer models to explore the impact of climate change on water resources, crop yields,
fish stocks, etc. and using computer models to aid planning

• contributing to the development of renewable energy sources to reduce our dependence on fossil
fuels

• developing smart systems for homes, offices, cars, etc. that use energy more efficiently
• developing battery technology so that energy generated (when the sun is shining or on a windy day)

can be stored and used when required.
They should find appropriate examples to support their discussion.

This activity could provide useful exam practice, demonstrating how to tackle a question that requires an
extended, essay-style answer.

Activity 15.2
Students’ own answers. They should pick up on the fact that there was inadequate testing and
documentation, an over reliance on just one person and failure to react quickly enough when problems were
reported.

Activity 15.3
This activity is designed to generate some lively classroom debate. There is no need for students to delve too
deeply into the Luddite movement. Instead, the discussion should focus on the impact of new technology.
For example, students could review the effects of automation on labour-intensive repetitive jobs in sectors
such as car manufacturing, food processing and retail sales. They might also want to consider how advances
in artificial intelligence and robotics could impact on ‘professional’ jobs in fields such as Medicine, Transport
and Finance. This theme is picked up again in Activity 15.8, which focuses on digital inclusion.

Activity 15.4
There is a whole host of ethical dilemmas associated with the growing use of robots that students might
want to consider. These include issues associated with privacy, security and human dignity as well as the
moral obligations of society towards its robots. A starting point for this discussion could be to investigate
Isaac Asimov’s ‘three laws of robotics’, drawn up in the 1940s.

Students might find it helpful to focus on a few specific examples, such as driverless cars, home robots,
combat robots or robotic surgery.

Hopefully students will conclude that robotics is a good thing, with the potential to transform the way we
live and work, but that it is important to put in place appropriate limitations and controls on their use.

GCSE Computer Science for AQA Teacher’s Resource

Activity 15.5
This follows on from Activity 15.4 and is designed to elicit further lively classroom debate. Students could
investigate the codes of conduct issued by the three main professional bodies, The British Computer Society
(BCS), Association for Computing Machinery (ACM) and Institute of Electrical and Electronic Engineers (IEEE),
to see if they shed any light on this ethical dilemma. All three require their members to treat people fairly,
honour contract agreements and adhere to company policy, which provides something of a steer in this
case.

Students could try to find examples of serious software bugs and then rank them in order of severity. This
should provoke some interesting debate. What algorithm did they apply to decide on the order? Should
bugs that threaten human life always be dealt with first? What happens if there’s a very slim chance of this
happening?

Activity 15.6
This is another interesting topic for a class discussion. Students should begin by summarising what the
Regulation of Investigatory Powers Act (RIPA) was designed to do; that is, to govern the interception and use
of electronic communications. This is to ensure that the way investigatory powers are used by organisations
such as councils and government departments complies with human rights law, in particular the European
Convention on Human Rights.

In response to the increased threat from terrorist organisations, the police and security services are
calling for even greater powers to monitor Internet traffic, mobile devices and other forms of electronic
communication, as well as to extend the use of CCTV surveillance in public places. Students might want to
consider whether this increased intrusion on privacy is justified. Do law-abiding citizens have anything to
worry about? Should we be concerned that surveillance could be used for reasons other than those stated?

The RIPA was passed back in 2000. Since then, surveillance technology has moved on apace. Students
might also want to investigate the implications of the draft Investigatory Powers Bill currently going through
parliament – regarded by some as a snoopers’ charter.

Activity 15.7
a. Examples of how new technology impacts on the way in which people interact with one another could
include:

–– Individuals are more likely to use social networking sites, such as Facebook and Twitter, to
socialise and keep in touch with friends and family members, than to interact with them face to
face.

–– Social networking sites and other online forums enable individuals to communicate with more
people across greater distances faster than ever before. However, information that might once
have been shared privately is now often published online for anyone to read and see.

–– Social interaction within the family can suffer when individual family members are preoccupied
with their smart phones, tablets, games consoles, etc. Instead of spending time interacting with
each other, they are engrossed in their own digital world.

b. Examples of how new technology impacts on work and employment could include:

–– Although demand for highly skilled workers is increasing, some jobs are disappearing as auto-
mated systems eliminate the need for human workers.

–– Technology supports more flexible working practices, enabling people to work anywhere at any
time, but potentially making it more difficult for them to maintain a healthy work–life balance.

–– Technology makes it possible to outsource some jobs away from areas where wages are high
and workers have well-established employment rights to developing parts of the world where
employment costs and overheads are lower.

© Cambridge University Press 109

Chapter 15: Ethical, legal and environmental impacts of digital technology on wider society

110 © Cambridge University Press

c. Examples of how new technology impacts on education could include:

–– Textbooks (like this one) are no longer limited to merely text and pictures. They have links to
additional web-based materials, including animations, videos, practice assessments, etc. to
support the learning of new content and make learning more interactive.

–– Online education and training are available to anyone anywhere, providing they have access to
the Internet.

–– It is much quicker and easier to find information online than it is to visit a library. But informa-
tion overload can be a problem. Good information handling skills are required to sift through the
huge amounts of information available online.

d. Examples of how new technology impacts on leisure could include:

–– Digital entertainment, including music, films and books, is available on demand 24/7 via the
Internet.

–– Multi-user online games enable users to play with other people from all over the world.
–– Fitness gadgets such as the Apple Watch enable users to monitor their activities and motivate

them to do more.

Activity 15.8
Chapter 15 stresses the benefits of new technology. The premise of this activity is that these benefits
should be available to all, irrespective of wealth, gender, ethnicity, etc., and that society should attempt to
ensure that this is the case.

Students may want to summarise factors contributing to the digital divide and evaluate efforts being made
by governments to promote digital inclusion.

Activity 15.9
a. Five reasons why data stored online is less secure than paper-based storage are listed below.

•	 It could be hacked.
•	 It could be maliciously damaged or destroyed by malware.
•	 It could be stored on servers belonging to a third party over whom the data owner has no control/

jurisdiction.
•	 It could be damaged or destroyed as a result of hardware or power failure or human error (though a

sensible back-up and recovery regime should prevent this).
•	 Large-scale theft of digital records is much easier than stealing large quantities of paper records ‒

thieves would need an articulated lorry to steal 10 000 paper records.
b. Five advantages of online storage over paper-based storage are listed below.

•	 Data stored online can be accessed from anywhere, providing there is an Internet connection.
•	 Multiple users can have access to the same files simultaneously.
•	 In the event of a fire, flood or other disaster that affects your place of work, data stored online will

remain unaffected.
•	 There’s no need to set aside physical space to store paper files or to predict how much storage space

is likely to be required in the future. Cloud storage is much more flexible: you only use and pay for the
amount you need and can have more or less, as and when required.

•	 Encryption can be used to add an additional layer of security to digital data stored online.

GCSE Computer Science for AQA Teacher’s Resource

Activity 15.10
a. Intentional and unauthorised destruction of software or data

b. Unauthorised access with intent to commit further offences.

c. Unauthorised access to computer material

Activity 15.11
Students’ own answers

© Cambridge University Press 111

Chapter 15: Ethical, legal and environmental impacts of digital technology on wider society

© Cambridge University Press112

Non-examination assessment (NEA)

The non-examined assessment component targets primarily Assessment Objective AO3 but also AO1 and
AO2. It is marked out of 80 and has a weighting of 20 per cent.

AQA will issue the assessment task at the start of the final academic year of assessment.

It requires students to design, implement, test, refine and evaluate a computer program to solve it. It will
then be assessed in the following areas: Designing the solution (9 marks), Creating the solution (30 marks),
Testing the solution (21 marks), Potential enhancements and refinements (10 marks), Overall quality of
the report (10 marks). Students may complete the assignment over multiple sessions, up to a combined
duration of 20 hours.

The program must be written in one of the high-level languages stipulated by AQA:

• C#
• Java
• Pascal/Delphi
• Python
• VB.Net

All work submitted by a student must have been done under observation by their teacher and the final
report must be only their own work. External sources can be used but must be referenced and no marks
can be awarded for materials submitted which are not the learner’s own.

The students are not allowed to take the NEA tasks nor any work associated with them home.

Teachers cannot give detailed advice and suggestions as to how the work may be improved in order to
meet the assessment criteria. This includes indicating errors or omissions and personally intervening to
improve the presentation or content of the work.

The report can be submitted in either hard copy or electronic format.

The project should be marked according to the marking criteria using a ‘best fit’ approach. For each of the
marking criteria sections, teachers must select one of the three band descriptors provided in the marking
grid that most closely describes the quality of the work being marked.

GCSE Computer Science for AQA Teacher’s Resource

© Cambridge University Press 113

When completing the final challenge in each chapter, and for any other programming project, you may
want to check your students’ understanding of the following points.

Starting a programming project
•	 Identify the main requirements of the solution – what it has to do. Students should be prepared to

justify these in their project report.
•	 Decompose the problem listing all of the sub-tasks.
•	 Make a requirements specification, listing what each of the solutions for the sub-tasks should

achieve. Students will need these when they are writing the enhancements and refinements section
of the report.

•	 List the performance or success criteria that will be used to judge whether or not the solution
successfully solves the problem.

•	 List all of the inputs and outputs required for the solution and the validation techniques that will be
required.

•	 List the data structures that will be required (e.g. variables and arrays).

Completing a programming project
You may want to encourage your students to create a checklist to ensure they have covered all aspects
needed in a programming project. Below is an example of a checklist; this can be scaled up and down
according to the type of project being worked on.

Item Completed
Pre-project preparation
outline of the problem, stating what the solution is expected to achieve

list of all the sub-tasks

requirements specification, listing what the sub-task solutions should achieve

performance or success criteria that will be used to judge the success of the solution

identification of inputs, outputs and validation

Designing the solution
designs for all of the components

identification of all variables and assignment of meaningful names to each of them

identification of all data structures

design for a user interface

use of a modular design, using functions and/or procedures

algorithms for all of the components

display of algorithms as flow diagrams

display of algorithms as pseudo-code

commented pseudo-code to explain what it is intended to do

Creating the solution
explanation of how the program developed at each stage

screen prints showing development

list of all the problems encountered and changes made as a result

tests carried out on each component with results and any changes made

list of all resources used

The code
modular – use of functions and/or procedures

comments explaining each module

Extra guidance for non-specialist teachers

Extra guidance for non-specialist teachers

114 © Cambridge University Press

Item Completed
all variables have meaningful names consistently displayed

validation and error-handling routines

The following techniques have been used (if required):
• variables with descriptive names in a consistent style (e.g. camel case)

• different data types, including Boolean, string, integer and real

• arrays

• operators

• the three basic programming constructs used to control the flow of a program: sequence,
conditionals and iteration

• suitable loops, including count and condition-controlled loops

• string and array manipulation

• file-handling operations: open, read, write and close

all techniques used appropriately

Testing the solution
test plan covers all of the performance criteria

all tests include test data, expected results and actual results

normal, extreme and erroneous data used

explanation of how errors were rectified

use of screen prints to illustrate test results

Potential enhancements and refinements
evaluation compares all the success criteria against the finished solution and the test results

discussion of efficiency and robustness

discussion of potential improvements

The overall quality of the report
report is complete

all sections are in ordered sequence

all spellings have been checked

range of technical terms used correctly

consistent style and layout

table of contents

numbered captions, diagrams and screen prints

references for any sources used

GCSE Computer Science for AQA Teacher’s Resource

ANSWERS

Worksheet 1.1
1 	 (a) An algorithm is a step-by-step procedure for solving problems. It is a set of instructions that can
be followed by humans and computers.

(b) There will be many possible solutions, but the sequence should be correct.
This is an example answer.

Leave the house
Walk to the bus stop.
Wait for a bus to arrive.
If it is the correct bus, then get on.
Sit on the bus until it reaches the school.
Get off the bus.
Walk into school.

(c) Sequence

Worksheet 1.2
1 	 (a) A selection in an algorithm is where a question is asked, and depending on the answer, the
program takes one of two courses of action.

(b) An iteration in an algorithm is where a task is repeated for a set number of times or until there is
a required outcome.

2	

END

START

NO

YES

random = random number
between 1 and 10

number =
input

Does number = random

Output “You
have guessed
the number.”

Worksheets: Answers

© Cambridge University Press 1

2 © Cambridge University Press

Worksheet 1.3
1	

END

END

START

NO

NO

YES

YES

number = input

Is number = random

Output “You
have guessed
the number.”

random = random number
between 1 and 10

attempt = 0

Is Attempt < = 2
Output “You have run
guesses. The number

was” random

attempt =
attempt + 1

Worksheet 1.4
1	 (a)		 Result = 7	

(b)		 Result = 1

(c)		 Result = 27

2	 (a) (i) True
(ii)	 False
(iii)	 True

(b)	 (i)	 false
(ii)	 true
(iii)	 false

GCSE Computer Science for AQA Teacher’s Resource

Worksheet 1.5
1	

OUTPUT (“Please enter the first number.”)

number1 USERINPUT

OUTPUT (“Please enter the second number.”)

Number2 USERINPUT

OUTPUT (“Please enter the third number.”)

Number3 USERINPUT

IF number1 > number2 THEN # number1 is compared with number2

IF number1 > number3 THEN # if it is greater, then it is compared

with number3

highMark number1 # if it is greater, then it must be

the largest

ELSE

highMark number3 # if not, then number3 must be the largest

ENDIF

ELSEIF number2 > number3 THEN # if number2 is greater than number1 it is

compared with number3

highMark number2 # if it is greater then it must be

the largest

ELSE

highMark number3 # if not then number3 must be the largest

ENDIF

OUTPUT “The largest number is “ + highMark

Worksheet 2.1
1 	 (a) An iteration in an algorithm where a task is repeated for a set number of times or until there is a
required outcome.

(b) A definite iteration is when the number of iterations is known before the execution of the loop
is started, for example, it may be set to three or five times and it will execute that number of times, whatever
the conditions, unless there is a command to break out of the loop.

2

OUTPUT “Please enter a number.”

number1 USERINPUT

OUTPUT “Please enter a higher number.”

number2 USERINPUT

FOR index = number1 TO number2

print index

ENDFOR

© Cambridge University Press 3

Worksheets: Answers

4 © Cambridge University Press

Worksheet 2.2
1 	 (a) In indefinite iteration (also known as conditional iteration), the number of iterations is not
known before the loop is started. The iterations stop when a certain condition becomes true or false.

(b)

numberEntered 0

total 0

reply “y”

WHILE reply = “y”

OUTPUT “Please enter a number.”

number USERINPUT

numberEntered numberEntered + 1

total total + number

OUTPUT “Enter ‘y’ to enter another number or ‘n’ to stop.”

reply USERINPUT

ENDWHILE

OUTPUT “You entered” + numberEntered + “numbers and the total is “ + total

Worksheet 2.3
1 	

Nested loops are used to check all of the possible combinations

Nested loops are used to check all of the possible combinations

FOR numberCoffees = 1 to 100

FOR numberTeas = 1 to 100

total (numberCoffees * 1.9) + (numberTeas * 1.2)

IF total = 285 THEN	# if the total equals 285 the number

of teas and coffees are stored

teas numberTeas

coffees numberCoffees

totalTaken total

ENDIF

ENDFOR

ENDFOR

OUTPUT totalTaken

OUTPUT teas

OUTPUT coffees	

GCSE Computer Science for AQA Teacher’s Resource

Worksheet 2.4
1	

Array Index Total Output
3 9 6 13 0 3

3 9 6 13 1 12

3 9 6 13 2 18

3 9 6 13 3 31 31

2

a b c output
10 0 0

9 1 8

8 2 14

7 3 18

6 4 20

5 5 20

4 6 18

3 7 14

2 8 8

1 9 0 1, 9, 0

0 10 -10 0, 10, -10

Worksheet 3.1
1	 (a) An integer is a whole number without decimals (can be positive or negative).

(b) A real number is any number that exists including their decimals and fractions.

(c) A string is a list of characters of any length. It can include alphanumeric data and symbols.

2	 (a) Boolean

(b) String

(c) Integer

(d) Integer

Worksheet 3.2
1	 In the algorithm there are two logical errors. For each, state the line number and how the error
could be corrected.

Line number: 	 1

Correction:	

length LEN(string) – 1

Line number:	 3

Correction:	

found false

Before the WHILE statement the variable 'found' must be declared as found
false

© Cambridge University Press 5

Worksheets: Answers

6 © Cambridge University Press

Worksheet 4.1
1 	 (a)	

(b) Another pass is needed as the algorithm must continue until there are no swaps in a pass and in
the next pass, there will be no swaps.

Worksheet 4.2

1 	 A merge sort algorithm is used to sort an unordered list by repeatedly (recursively) dividing a list
into two smaller lists until the size of each list becomes one. The individual lists are then merged with the
items in the correct order.

2	

GCSE Computer Science for AQA Teacher’s Resource

Worksheet 4.3
1	 A linear search algorithm is a simple, sequential search. It starts at the beginning of the list and
moves through the items, one-by-one, until it finds a matching value or reaches the end without finding one.

A binary search algorithm can only search an ordered list to find an item by looking at the middle
(median) item and comparing it with the search value. If the search item is smaller than the median then the
median of the sublist to the left is searched and vice versa, if it is larger. This continues until the search item is
found or there are no items left to search.

2	 (a) For a linear search, the best case would be 1 selection if the search item was at the start of the
list and 1000 if it was the last item.

(b) For a binary search, the best case would be 1 if the search item was the median and 10 for the
worst case as the following medians could be chosen – 500, 250, 125, 63, 32, 16, 8, 4, 2, 1.

Worksheet 4.4
1	 The item to be searched for is stored in the variable ‘item’.

low 0					 # ‘Low’ is the first item in the

array named ‘list’.

high LEN(list) – 1				 # ‘High’ is the last item in the list.

found False

WHILE low <= high AND found = False	 # The search will continue

while there are items in the list and

the search item has not been found.

midpoint (low + high)/2		 # Finds the mid point.

IF list[midpoint] = item THEN

found True

ELSEIF item < list [midpoint] THEN

high midpoint – 1 # If the item is lower than the

 median, then the sublist to the

 left is searched.

ELSE

low midpoint + 1 # If the item is higher than the

 median, then the sublist to the

 right is searched.

ENDIF

ENDWHILE

IF found = True THEN

OUTPUT “The item is in the list.”

ELSE

OUTPUT “The item is not in the list.”

ENDIF

Worksheet 5.1
1	 Validation is the process through which the program checks that data is sensible, reasonable and
appropriate to be processed by the program.

(a) A range check makes sure that the data is in a certain range or falls between two points (e.g. is
less than 20 or is between A and F).

© Cambridge University Press 7

Worksheets: Answers

8 © Cambridge University Press

(b) A length check ensures that the data has a certain number of characters (e.g. that a password
has a minimum of eight alphanumeric characters).

(c) A presence check is usually used when users have to enter data, ensuring that they have
actually entered something and that the data is present.

Worksheet 5.2
1	 The array is friends.

myFile openWrite(“Friends.txt”)

FOR index = 0 TO LEN(friends) – 1 	# The loop could also be 0 to 6 as there

are seven items.

myFile.writeLine(friends[index])

ENDFOR

myFile.close()

Worksheet 6.1
1	 Decomposition means breaking a problem down into smaller, more manageable parts which are
then easier to solve. It is an example of the ‘divide and conquer’ approach to problem solving.

2	 Decomposition of the problem should identify some of the following sub-problems:

• Design of interface showing the 3×3 grid.

• How to keep track of which squares have been selected by ‘X’ and ‘0’ and which are free.

• How the ‘computer’ will decide which square to select when it is its turn.

• How the ‘computer’ will decide when the game is over.

• How the ‘computer’ will decide who has won a game and keep count of the score.

• How the user can ask for another game or quit the program.

Worksheet 6.2
1	 Abstraction is the process of removing unnecessary details so that only the main, important points
remain. When creating an algorithm to model a real-life action or activity, abstraction identifies essential
elements that must be included in the computer models and discards inessential ones.

2	 (a)

SUBROUTINE dice() # This is the function definition.

No parameters are passed to it.

dice1 RANDOM_INT(1, 6)	 # This generates a random number between

1 and 6.

dice2 RANDOM_INT(1, 6)

totalDice = dice1 + dice2

RETURN totalDice

ENDSUBROUTINE

score dice()		 # This is the statement in the main

program which calls the function.

No arguments are passed to it.

GCSE Computer Science for AQA Teacher’s Resource

(b)	 The important feature or property of a dice is that it generated a random number between
1 and 6. This is the only property that needs to be represented in the model. Other features such as colour or
the material it is made from are unimportant.

Worksheet 6.3
1	 A subroutine is a self-contained module of code that can be ‘called’ by the main program when it is
needed.

2	 Functions are called from an expression in the main program and return a value to it. Procedures
are called from a statement in the main program but do not return any value to it. They just do something
and then the main program continues.

3	

		 # This defines the function with

the parameter ‘price’.

IF price > 200 THEN

payment price – (price/100*10)

ELSEIF price >= 100 AND price <= 200 THEN

payment price – (price/100*5)

 ELSE

payment price

ENDIF

	 # Payment is passed back to the main

program where it is stored in the

variable ‘customerPayment’.

ENDSUBROUTINE

cost total of all the goods bought by the customer.

customerPayment finalPrice(cost)	# ‘cost’ is passed to the function as

an argument. In the function, it is the

parameter ‘price’.

Worksheet 6.4
1	 The answer should contain the following points:

• Subroutines are a natural way of implementing computational thinking because some of the
tasks identified can be allocated to a subroutine. They therefore assist with decomposition
and abstraction.

• Repeated sections of code need only be written once and called when necessary. This
shortens the development time of a program and means that the finished program will
occupy less memory space when it is run.

• Subroutines improve the structure of the code, making it easier to read through and follow
what is happening.

• It’s easier to check the program because each subroutine can be coded and tested
independently.

• The program is easier to debug as each subroutine can be inspected independently.

© Cambridge University Press 9

Worksheets: Answers

10 © Cambridge University Press

• If changes have to be made at a later date, it is easier to change a small module than having
to work through the whole program.

• In large development teams, different members can be working independently on different
subroutines.

• Standard libraries of subroutines can be built up and they can be reused in other programs.

Worksheet 7.1
1	 The microprocessor contains the central processing unit, which carries out all of the program
instructions by carrying out millions of calculations each second.

These calculations are performed by billions of transistors acting as switches. They are either ‘on’ or
‘off’. They have only two states: they either transmit an electric current or they do not.

Any system involving two states is called a binary system.

As there are only two states (‘off’ or ‘on’), they can be represented by the two digits of the binary
system: 0 and 1.

All computer programs are lists of instructions switching transistors ‘off’ or ‘on’ and therefore they
can be represented by the digits 0 and 1.

2	
Decimal prefix is used.

Unit Number of bits
Megabyte 8 000 000

Nibble 4

Byte 8

Terabyte 8 000 000 000 000

Kilobyte 8 000

Gigabyte 8 000 000 000

3  213 624 133 bits 	= 26 703 016.6 bytes

= 26 703 kilobytes

= 26.7 megabytes

Worksheet 7.2
1	

(a) (i) 213

(ii)		 110

(iii)		 170

(b) (i) 11101001

(ii)		 10011001

Worksheet 7.3
1	 An overflow error occurs when a calculation produces a result that is greater than the computer can
deal with or store in a single byte.

2 (a)

0 0 1 1 1 1 0

1 0 1 0 0 1 0

0 1 1 0 0 0 0

GCSE Computer Science for AQA Teacher’s Resource

(b)

0 1 1 1 1 1 0 1

1 1 0 0 1 1 1 1

1 0 1 0 0 1 1 0 0

(c)

0 0 1 0 1 1 0 0

1 0 1 1 0 0 0 0

Worksheet 7.4
1	 Computers do not understand or use hexadecimal; they only understand and use binary.

Hexadecimal is used by computer scientists because people get confused with large binary numbers, so we
simplify binary numbers by representing them in hexadecimal notation, meaning that fewer numbers are
used.

2	 (a) DD

(b) 92

3	 11001101

Worksheet 8.1
1	 The character set is the complete list of binary codes that can be recognised by computers as being
usable characters.

2	 (a) C

(b) a

3	

FOR index = 0 TO LEN(myString) – 1

OUTPUT myString(index) + “ “ + CHAR_TO_CODE(myString(index))

ENDFOR

Worksheet 8.2
1	 (a) The image size is the number of pixels in the width and then the number of pixels in the height,
for example 640 × 480 or 2048 × 1536.

(b) The image bit depth or colour depth is the number of bits used to encode the colour of each
pixel in an image. The greater the number used, the greater is the image quality.

2	 Image size = 4096 × 2480 × 24 = 243 793 920 bits = 30.4 megabytes.

3	 The sample rate is the number of samples of the sound taken each second. The higher the sample
rate, the more accurately the sound will be represented. A sample is a physical measurement of the sound
recorded as a binary value.

4	 File size = 180 × 2 × 44 100 × 16 = 254 016 000 bits = 31.7 megabytes

Worksheet 8.3
1	 (a) During lossless compression, no data is lost and the file can be decompressed with all its
information intact.

(b) During lossy compression, data is lost in the compression process and when the file is
decompressed, it will not contain all the original information

© Cambridge University Press 11

Worksheets: Answers

12 © Cambridge University Press

2	 A lossless compression algorithm would more successfully compress a black-and-white image file
than a true colour one because there are long runs of only two colours, either black or white, but a colour
photograph has short runs of many different colour variations (16 777 216).

3	 wwwwwwbbbwwwwwwbbbbbbwwbbbwbbbwbbwbbb = 6w3b6w6b2w3b1w3b1w2b1w3b

Worksheet 9.1
1	 The hardware consists of the physical devices of a computer system, such as the keyboard,
processor and storage devices.

The software consists of all the programs that the hardware uses to operate.

2	 (a) An embedded system is a computer system built into another device in order to control it. The
components are on a single printed circuit board.

(b) It monitors the water temperature so that it can turn the heating element on and off to maintain
the correct temperature.

(c) Any of these three are suitable: television, microwave, cooker.

Worksheet 9.2
1	 (a) The control unit co-ordinates the actions of the computer by sending out control signals to the
other parts of the CPU, such as the ALU and registers, and to the other components of the computer system,
such as the input and output devices.

(b) The arithmetic and logic unit (ALU) performs arithmetic and logical operations. It carries out
activities such as, addition and subtraction, multiplication and division, logical tests using logic gates and
comparisons such as whether one number is greater than another.

(c) Registers are storage locations within the CPU itself. They can be accessed even more quickly
than the main memory. Some of these registers serve specific functions, but some of them are general
purpose registers used for the quick storage of data items.

(d) The clock regulates the timing and speed of all computer functions. Within the clock is a quartz
crystal which vibrates at a particular frequency when electricity is applied to it. Pulses are sent out to the
other components to co-ordinate their activities and ensure instructions are carried out and completed. One
instruction can be carried out with each pulse of the clock, and therefore the higher the clock rate, the faster
the CPU will be able to carry out the program instructions.

Worksheet 9.3
1	 (a) A quad core processor has four core processing units within the CPU.

The advantages of multiple core processors over single core processors are:

• the cores can work together on the same program; this is called parallel processing.

• the cores can work on different programs at the same time; this is called multitasking.

However, not all programs will run at four times the speed with a quad-core processor. The tasks required
might not be able to be carried out in parallel. They might be sequential so that one task requires output
from a previous task, so the second task cannot start until the first has finished.

(b) L1, L2 and L3 cache are memory modules consisting of fast dynamic RAM within or very close to
the CPU. The fastest is the Level 1 cache and is smaller than the Level 2 and Level 3 caches.
The caches speed up the processing speed of the CPU by storing recently used data and data likely to be
frequently used so that so that data does not have to be collected from the slower RAM when it is needed.
The L1 cache is checked first followed by the L2 and then L3 caches. In a multi-core processor, the cores
have their own L1 and L2 caches.

GCSE Computer Science for AQA Teacher’s Resource

Worksheet 9.4
1	 Secondary storage devices are necessary because RAM is volatile. Data is stored on devices called
secondary storage devices so that it is not lost when the computer is switched off. The secondary storage
devices also allow data to be transferred between devices.

2	

Use Magnetic, optical
or solid state

Reason why this is
the most appropriate

Storing images in a digital camera Solid state It is light and as there are no moving
parts; it is not damaged when devices
are knocked or dropped.

Storage devices on a school’s main
fileserver

Magnetic Store large amount of data and are
relatively cheap

Fast data access speed

Videos of a school production to be
given to parents

Optical Cheap and easy to transport data
between locations

Handheld devices used by students for
fieldwork

Solid state It is light and as there are no moving
parts; it is not damaged when devices
are knocked or dropped.

Worksheet 10.1
1	 (a) The memory manager is in charge of the RAM. Programs often need to use the RAM throughout
their operation. Some programs will use the RAM extensively whereas other smaller programs will use it less
frequently. The memory manager checks that all requests from programs for memory space are valid and
allocates them accordingly.

(b) The peripheral manager controls all the computer input and output by managing requests
from programs to use devices such as printers, speakers, keyboards and hard disk drives.

The peripheral manager communicates with the devices through software called ‘drivers’, which
translate the instructions sent by the device manager into a more understandable format.

(c) The file manager controls all the different files on the system. It controls file permissions, such
as a user’s ability to see or open a file, write to a file or delete it. It is therefore important for the security
of the system. File management also helps organise and control files so that they are as user-friendly as
possible’. It helps to protect the user from accidental mistakes too.

Worksheet 10.2
1	 (a) Utility systems software perform specific tasks related to computer functions, resources,
files and security. They help to configure the system, analyse how it is working and optimise it, improving its
efficiency.

(b) (i) Disk defragmentation tools are used to rearrange the parts of files on the disk drive. When a
file is saved to a disk, parts of the file might be saved in different areas of the disk. These tools try to move all
the parts to the same area so that they can be accessed more quickly.

(ii) File compression software is used to make the files smaller so they take up less storage space
and can be transmitted to other users more easily.

© Cambridge University Press 13

Worksheets: Answers

14 © Cambridge University Press

(c) (i) Encryption software uses an algorithm to encrypt (scramble) a file according to the key
which is used; the key is needed to decrypt the file back to its original form. The file can therefore only be
opened by authorised access.

(ii) Firewalls are either software or hardware devices that protect against unauthorised access to a
network, and are primarily used to prevent unauthorised access from the Internet. They can be configured to
prevent communications from entering the network and also to prevent programs and users from accessing
the Internet from the network.

Worksheet 11.1
1	 (a) AND gate

(b) NOT gate

(c) OR gate

A B Q
0 0 0

0 1 0

1 0 0

1 1 1

Worksheet 11.2
1	

A B C D E Q
0 0 0 1 0 1

0 0 0 1 1 1

0 1 0 1 0 1

0 1 0 1 1 1

1 0 0 1 0 1

1 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 1 1

Worksheet 11.3
1 	

B
C

A

A B C
0 0 0

0 1 1

1 0 0

1 1 0

2	

C
D

A

B

GCSE Computer Science for AQA Teacher’s Resource

A B C D
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 1

Worksheet 12.1
1	 The instruction set of a computer is the set of instructions for its particular processor that it can
understand and is able to process.

2	 Machine code or machine language presents the instructions in a form that the processor can
execute; strings of 0s and 1s.

3	 (a) Assembly languages are called low level languages because they are very similar to machine
code in concepts and structure. There is a one-to-one relationship between the commands in assembly
language and those in machine code. Assembly language is at a low level of abstraction from the machine
language.

(b) The binary opcodes which are binary in machine code are represented as descriptive words
called mnemonics in assembly language (e.g. SUB, MUL and DIV). These are easier for humans to remember
and use.

4	 An assembler translates the mnemonics of assembly language programs into machine language
instructions for the microprocessor to execute.

Worksheet 12.2
1	 (a) and (b) Answers could include:

• Faster program development: it is less time consuming to write and then test the program.

• It is not necessary to remember the registers of the CPU and mnemonic instructions.

• Portability of a program from one machine to other: each assembly language is specific to a
particular type of CPU, but most high-level languages are generally portable across different
CPUs.

2	 (a) Programs written in high-level languages (source code) must be converted into machine code
by a translator into machine code (object code) before the processor can execute them as it can execute
instructions only if they are presented in machine code.

(b) (i) A compiler translates the source code into a standalone, machine code program (object
code) which is output as a new file that can then be executed by the processor.

An interpreter translates the high-level code line-by-line into machine code each time it is run.

(ii) Benefits of compiler:

• The program that is run is already translated into machine code, so it can be executed more
rapidly.

• It protects the software from competitors who would otherwise be able to see the source
code.

© Cambridge University Press 15

Worksheets: Answers

16 © Cambridge University Press

• If it encounters any errors, it carries on.

Benefits of interpreter:

• When an error is found, the interpreter reports it, stops and pinpoints the error, so that the
programmer knows where it has occurred.

• The code is not platform-specific and can be run on diff erent operating systems and
platforms if there is an interpreter.

• The program can be easily edited as it always exists as source code.

Worksheet 13.1
1 (a) Diagram to show computers connected to a single point.

Client (computer)

Switch
or a hub

Using a star topology, each computer is connected individually to a central point, which can be a file
server or switch. The computers are individually connected by cable to a switch. The cable is connected to
the network adapter in each device.

Required hardware: a network adapter for each computer, cabling, and a switch or a hub.

(b) Advantages:

• Easy and cheap to install as only access points are required.

• Very mobile. Users can access the network from anywhere on the site. They can move
from room to room and remain connected.

Disadvantage:
Any one from:

• Far lower bandwidth leading to lower download and upload speeds.

• Security is poor. Anyone within range can see the network and connect to it to use
it. The access point must be secured with a security password and some form of
encryption must be set up.

GCSE Computer Science for AQA Teacher’s Resource

• The signal can be affected by walls and electronic equipment such as microwave ovens.
It is also affected by distance from the access point and the number of connected
computers.

Worksheet 13.2
1	 (a) Domain names are used to identify IP addresses as they are more convenient to use and easier
to remember than the four octets of binary numbers (e.g. mysite.org is easier to remember and enter than
192.100.321.003).

(b) The domain name service (DNS) returns the IP address when a client requests access using
a domain name. When a browser requests access to a host using its domain name, the client computer
contacts a DNS server. The DNS server contains a database of domain names which allows it to look up the
domain name and returns the IP address. This is known as resolving the domain name.

2	 When devices transmit data, the data are broken down into small pieces called packets. These are
sent separately, and then joined up at the end so that the message is complete. This process is called packet
switching.

• These packets are then sent onto the network using cables or microwaves as in a wireless
network.

• Routers on the network inspect each packet and decide on the most efficient path for the
packet to take on the next stage of its journey.

• To do this, each router has a configuration table containing information about which
connections lead to particular groups of addresses.

• The routers can balance the load across the network on a millisecond-by-millisecond basis.

• If there is a problem with one part of the network while a message is being transferred,
packets can be routed around the problem, ensuring the delivery of the entire message.

• The final router can direct the packet to the correct recipient.

Worksheet 13.3
1	 (a) TCP (Transmission Control Protocol)/IP (Internet protocol).

(b)

• Transport layer

• Internet layer or Network layer

• Data link layer or Network access layer.

(c) (i) and (ii) any two from:

• FTP (File Transfer Protocol): provides the rules that must be followed when files are being
transmitted between computers.

• HTTP (Hypertext Transfer Protocol): the rules to be followed by a web server and a web
browser when requesting and supplying information. HTTP is used for sending requests from
a web client (a browser) to a web server and returning web content from the server back to
the client.

• HTTPS (Secure HTTP): ensures that communications between a host and client are secure
by ensuring that all communication between them is encrypted.

© Cambridge University Press 17

Worksheets: Answers

18 © Cambridge University Press

• SMTP (Simple Mail Transfer Protocol): the protocol for sending email messages from client
to server and then from server to server until it reaches its destination.

• POP (Post Office Protocol): used by a client to retrieve emails from a mail server. All of the
emails are downloaded when there is a connection between client and server.

• IMAP (Internet Message Access Protocol): unlike POP, the messages do not have to
be downloaded. They can be read and stored on the message server. This is better for
users with many different devices as they can be read from each one rather than being
downloaded to just one.

(d) Any two from:

• It simplifies the overall model by dividing it into functional parts.

• Each layer is specialised to perform a particular function.

• The different layers can be combined in different ways, as required.

• One layer can be developed or changed without affecting the other layers.

• It makes it easier to identify and correct networking errors and problems.

• It provides a universal standard for hardware and software manufacturers to follow, so that
they will be able to communicate with each other.

Worksheet 14.1
1	 Answer to include:

• Users often pose the greatest threats to networks, either through their direct actions or by
allowing criminals access to the networks illegally.

• Users can pose a threat to network security by using their own portable devices. These
devices pose a threat because they can introduce malware to the network or remove data.

• If data is removed illegally, the company may be sued if this data is covered by the Data
Protection Act.

• Network policies should cover the use of removable media such as USB flash drives,
smartphones, CDs, DVDs, MP3 players and digital cameras.

• Network policies may state that only devices provided by the company can be used.

• Network policies should cover user authentication and the use of passwords.

• Network policies should ensure that users do not use passwords which are easy to remember
and are based on personal details such as birth dates and the names of family members.

• All user passwords are at least eight characters long and contain numbers, letters (upper and
lower case) and non-alphanumeric characters such as exclamation marks.

• Passwords should be changed regularly and old ones should never be reused.

• Users may be susceptible to social engineering (tricking people into divulging secret

GCSE Computer Science for AQA Teacher’s Resource

information or doing things that they would not otherwise do).

• Social engineering techniques include:
o ‘blagging’, where a criminal uses a voice call or email to try to get a user to

divulge information
o ‘phishing’, which is the use of fraudulent emails
o ‘shouldering’, where a user can be watched or filmed entering user names and

passwords.

• Network policies should ensure that users do not divulge any details.

• Users should be given information about, and training on how to deal with, suspicious
emails.

• Users can be a risk to the networks they use and they should be given security training,
reinforced by strict network policies.

Worksheet 14.2
1	 (a) Denial of service attacks flood a network or website with useless network communications,
such as repeated login requests, which prevent legitimate users from gaining access to the network or
website. They are caused by hackers taking over thousands of computers which they then use in the attack.

(b) Many websites use databases to store users’ details such as names, addresses, credit card
details, etc. SQL (structured query language) is used legitimately to analyse this data and carry out business
activities. In SQL injection, criminals input specially created commands instead of a username or password.
These commands gain access to the database so that the criminals have access to users’ data.

(c) During data interception attacks, criminals use software called packet analysers or packet
sniffers to intercept network packets. The packets are analysed and decoded. This allows criminals to steal
sensitive data such as logins, passwords, credit card numbers and PINs.

Worksheet 14.3
1	 (a) Encryption is the scrambling of data into a form that cannot be understood by unauthorised
recipients. The encrypted data must be decrypted back to its original form.
A common method is the use of a ‘public’ and a ‘private’ key. The public key is freely available to anyone,
but the private key is only known to the owner. Messages encrypted by a particular public key can only be
decrypted with the corresponding private key.

(b) Penetration testing is the testing of a computer system, network or web application to find
vulnerabilities that an attacker could exploit. The test then indicates how those vulnerabilities could be
exploited to demonstrate the security risks. The main objective is to determine security weaknesses. It
can also be used to test an organisation’s security policy, the security awareness of the users, and the
organisation’s ability to identify and respond to security incidents.

There are two types:

• White-box penetration testing, which simulates hacking by ‘insiders’, people who have full
knowledge of the network. It is also called ‘full disclosure’ testing as the testers are given
details of items such as IP addresses, source code, network protocols and even login names
and passwords.

• Black-box penetration testing, which is also called ‘blind testing’ because testers are given
very little or no information. The testers must find their own way into the network without
any knowledge or normal means of access. Black-box testing is more realistic to everyday
penetration attacks.

(c) Firewalls are either software or hardware devices that protect against unauthorised access to a
network, and are primarily used to prevent unauthorised access from the Internet.

© Cambridge University Press 19

Worksheets: Answers

20 © Cambridge University Press

They can be configured to prevent communications from entering the network and also to prevent programs
and users from accessing the Internet from the network. A firewall, for example, can inspect the incoming
packets and reject those that are not from a trusted IP address list or block communication to certain
external IP addresses.

Worksheet 15.1
1	 Answer to include:

Energy

• Manufacturing involves energy-intensive mining and processing of minerals.

• The use of devices involves the energy used by the devices themselves, but also by data
centres. These data centres generate heat, so energy is needed to keep them cool.

• Much of the energy used comes from non-renewable sources such as gas and coal.

• Computer science is used in efficient energy production.

• Computer software is used to design, model and test efficient devices to produce electricity
from wind, wave and solar power.

• Energy use can be reduced using smart technologies, such as light- sensitive switches that
turn off lights when they are not needed.

• Efficient transport planning using computer modelling and analysis can reduce fuel use.

Sustainability

• Digital devices use many different chemical elements. Some of these are rare and will be in
short supply as they are used up.

• It is difficult to recycle devices to reuse these elements.

Waste

• Electronic devices are difficult to recycle and are often disposed of in landfill sites as e-waste.

• Landfill sites take up areas of land that could be used for other purposes.

• Toxic substances such as lead, mercury and cobalt can get into the soil and the water supply
from the landfill sites and so cause health problems.

• Often old computing devices are dumped illegally in third world countries where toxic fumes
(caused by reprocessing and leakage) cause health problems and death.

Data analysis

• Computer science technology can be used to monitor environmental factors by transmitting
and analysing data.

• This data can be shared by scientists around the world who can collaborate to find solutions
to problems.

• Computers can be used to develop models to forecast environmental behaviour and identify
options for action.

GCSE Computer Science for AQA Teacher’s Resource

Worksheet 15.2
1	 (a) Any three from:

• Data will be kept securely.

• Data must be accurate and up-to-date.

• Data can only be used for the purpose for which it was collected.

• Only data that is actually needed should be held.

• Data must not be held longer than it is needed for.

• Data will be used in accordance with the rights of the data subjects.

(b) Any three from:

• A right of access to a copy of the information contained in their personal data.

• A right to object to useage that is likely to cause or is causing damage or distress.

• A right to have inaccurate personal data rectified, blocked, erased or destroyed.

• A right to claim compensation for damages caused by a breach of the Confidentiality/
Protection Act.

• A right to prevent usage for direct marketing.

Worksheet 15.3
1	 Answer to include the following:

• Greater broadband access to the Internet allows fast online communications from more
locations and also when ‘on the move’.

• Convergence technology allows many more devices (e.g. smartphones, tablets, games
consoles) to access the Internet and to be used for communications.

• Mobile devices are faster and more capable of high speed Internet access.

• Protocols allow users to communicate using different devices, access the same conversations
and sync data between them.

• Fast broadband access allows video and voice communication as well as emails and texts.

• Instant chat with video (as well are purely text) is available.

• The building of large server farms and cheaper storage enables the infrastructure behind
large social networking websites.

• Communication with a group of friends is accessible and the uploading of images, videos,
music etc.

• Software is increasingly easier to use and easily adopted by the younger generation.

© Cambridge University Press 21

Worksheets: Answers

The authors and publishers acknowledge the following sources of copyright material and are grateful for
the permissions granted. While every effort has been made, it has not always been possible to identify the
sources of all the material used, or to trace all copyright holders. If any omissions are brought to our notice,
we will be happy to include the appropriate acknowledgements on reprinting.

Screenshots in Chapter 12 used with permission from Stephen Chen, Associate Professor, School of
Information Technology.

© Cambridge University Press

Acknowledgements
Acknowledgements

	9781316504116frcvr
	GCSE+Computer+Science+for+AQA

