Worked solutions

AS Level practice paper

1 Let X represent the number of beetles in a $2 \mathrm{~m}^{2}$ area, $X \sim \operatorname{Po}(2 \times 6.2=12.4)$.
$\mathrm{P}(X<10)=\sum_{n=0}^{9} \frac{12.4^{n} \mathrm{e}^{-12.4}}{n!}=0.209$ (3 s.f.) (Answer C)

2 Using the fact that the summed probabilities must be equal to 1 :

$$
\begin{aligned}
& k(1+4+9)=1 \Rightarrow k=\frac{1}{14} \\
& \mathrm{E}(X)=\sum x \mathrm{P}(X=x)=\sum k x^{3}=\frac{18}{7}=2.57(3 \text { s.f. })(\text { Answer } \mathrm{C})
\end{aligned}
$$

3 a Using the fact that the summed probabilities must be equal to 1:

$$
0.9+k=1 \Rightarrow k=0.1
$$

b $\quad \mathrm{P}(1 \leq Y<3)=\mathrm{P}(X=1)+\mathrm{P}(X=2)=0.3+0.5=0.8$
c $\mathrm{E}(Y)=0.3+1+0.3=1.6$ $\sigma(Y)=\sqrt{\mathrm{E}\left(Y^{2}\right)-(\mathrm{E}(Y))^{2}}=\sqrt{0.3+2+0.9-1.6^{2}}=0.8$

4 a The total number of buses arriving in an hour. $T \sim \operatorname{Po}(3+4.5=7.5)$
[2 marks]
b $\quad \mathrm{P}(T \leq 3)=\mathrm{e}^{-7.5}+7.5 \mathrm{e}^{-7.5}+\frac{7.5^{2} \mathrm{e}^{-7.5}}{2}+\frac{7.5^{3} \mathrm{e}^{-7.5}}{6}$ $=0.0591$ (3 s.f.)
c For example: Both are dependent on traffic.
d \quad Mean $=7.45$ (3 s.f.)
Variance $=11.5$ (3 s.f.)
Mean \neq variance. The Poisson distribution is not feasible.

5 a Using the fact that $\int_{0}^{3} \mathrm{f}(x) \mathrm{d} x=1$:

$$
\int_{0}^{3} k x^{2} \mathrm{~d} x=\frac{27 k}{3}=1 \Rightarrow k=\frac{1}{9}
$$

b For the median, m :

$$
\begin{aligned}
& \int_{0}^{m} k x^{2} \mathrm{~d} x=\frac{m^{3}}{27}=0.5 \\
& \Rightarrow m=2.38 \text { (3 s.f.) } \\
& \mathrm{E}(X)=\int_{0}^{3} x \mathrm{f}(x) \mathrm{d} x=\int_{0}^{3} k x^{3} \mathrm{~d} x=\frac{81}{36}=2.25<2.38
\end{aligned}
$$

c $\quad \operatorname{Var}(1-X)=\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=\int_{0}^{3} k x^{4} \mathrm{~d} x-(\mathrm{E}(X))^{2}$

$$
=\frac{243}{45}-2.25^{2}=0.338(3 \text { s.f. })
$$

$6 \quad \mathrm{H}_{0}$: school year and hours spent watching TV are independent. H_{1} : school year and hours spent watching TV are dependent.

Calculating the expected frequencies:

		School year		
		$\mathbf{7 - 9}$	$\mathbf{1 0}-\mathbf{1 1}$	$\mathbf{1 2}-\mathbf{1 3}$
Hours	$\leqslant \mathbf{5}$	18.814	14.237	11.949
	$\mathbf{6 - 1 0}$	17.977	13.605	11.418
	$\mathbf{1 1 - 2 0}$	25.085	18.983	15.932
	$\mathbf{> 2 0}$	12.124	9.175	7.701

$v=(4-1)(3-1)=6$
Calculating the χ^{2} value and comparing this to the critical value from the table at the 5% significance level with $v=6$:

$$
\chi_{\text {calc }}^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=4.22(3 \text { s.f. })<12.592
$$

Do not reject H_{0}. There is no significant evidence of an association.

7 a Let the random variable X be the number of leaks in a 2 km stretch of pipe.
$X \sim \operatorname{Po}(\lambda)$, where $\lambda=9$.
$\mathrm{H}_{0}: \lambda=9, \mathrm{H}_{1}: \lambda<9$.
In a one-tailed test at the 5% significance level, the sample value $x=3$ will lie in the critical region if $\mathrm{P}(x \leqslant 3)<5 \%$.
$\mathrm{P}(X \leqslant 3)=\sum_{n=0}^{3} \frac{9^{n} \mathrm{e}^{-9}}{n!}=172 \times \mathrm{e}^{-9}=2.12 \%$ (3 s.f.)
$\mathrm{P}(X \leqslant 3)<5 \%$, so reject H_{0}, as there is evidence to support the contractor's claim that the number of leaks has been reduced.
b $\quad \mathrm{P}($ type 1 error $)=$ significance level of test $=0.0212(3$ s.f. $)$ as calculated in part \mathbf{a}.
[2 marks]

Worked solutions

A Level practice paper

1 Let the continuous random variable X be the average time in minutes between emissions of a beta particle, then $X \sim \exp (0.5)$, where $\mathrm{f}(x)=0.5 \mathrm{e}^{-0.5 x}$.

$$
\begin{aligned}
\mathrm{P}(1<X<2) & =\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=\int_{1}^{2} 0.5 \mathrm{e}^{-0.5 x} \mathrm{~d} x=\left[-\mathrm{e}^{-0.5 x}\right]_{1}^{2}=-\mathrm{e}^{-1}+\mathrm{e}^{-0.5} \\
& =0.239 \text { (3 s.f.) (Answer B) }
\end{aligned}
$$

$2 \mathrm{P}(Y \leq 5)=0.714$ (3 s.f.) $\mathrm{P}(Y \geq 5)=0.524$ (3 s.f.)

So the median is 5. (Answer D)

3 a $\mathrm{E}(X)=\sum x \mathrm{P}(X=x)=0.5+\frac{2}{3}+\frac{3}{6}=\frac{5}{3}$
b $\quad \operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}=0.5+\frac{4}{3}+\frac{9}{6}-\left(\frac{5}{3}\right)^{2}=\frac{5}{9}$
c $\quad \operatorname{Var}(3 X+2)=9 \operatorname{Var}(X)=5$
[1 mark]
4 a H_{0} : Gender and lessons are independent, H_{1} : Gender and lessons are not independent.
[2 marks]
b $\quad v=(2-1)(2-1)=1$
[1 mark]
c Calculating the expected frequencies:

	Music lessons	No music lessons
Female	18.255	25.745
Male	20.745	29.255

Using Yates' correction and comparing the χ^{2} value to the critical value from the table at the 5% significance level:

$$
\chi_{\text {Yates }}^{2}=\sum \frac{\left(\left|O_{i}-E_{i}\right|-0.5\right)^{2}}{E_{i}}=4.84 \text { (3 s.f.) }>3.841
$$

Reject H_{0}. There is significant evidence that gender and lessons are not independent.

5 a Using the fact that $\int_{1}^{2} \mathrm{f}(x) \mathrm{d} x=1$:

$$
\int_{1}^{2} \frac{k}{x} \mathrm{~d} x=k \ln 2=1 \Rightarrow k=\frac{1}{\ln 2}
$$

[3 marks]
b $\mathrm{E}(X)=\int_{1}^{2} x \mathrm{f}(x) \mathrm{d} x=\int_{1}^{2} k \mathrm{~d} x=\frac{1}{\ln 2}=1.44$ (3 s.f.)

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{1}^{2} x^{2} \mathrm{f}(x) \mathrm{d} x-(\mathrm{E}(X))^{2} \\
& =\int_{1}^{2} x k \mathrm{~d} x-(\mathrm{E}(X))^{2}=\frac{3}{2 \ln 2}-\frac{1}{(\ln 2)^{2}}=0.0827 \text { (3 s.f.) }
\end{aligned}
$$

[4 marks]
c $\quad \operatorname{Var}\left(\frac{2 X+1}{X}\right)=\operatorname{Var}(2)+\operatorname{Var}\left(\frac{1}{X}\right)=\sigma^{2}\left(\frac{1}{X}\right)$

$$
\begin{aligned}
& =\int_{1}^{2} \frac{1}{x^{2}} \mathrm{f}(x) \mathrm{d} x-\left(\int_{1}^{2} \frac{1}{x} \mathrm{f}(x) \mathrm{d} x\right)^{2}=\int_{1}^{2} \frac{k}{x^{3}} \mathrm{~d} x-\left(\int_{1}^{2} \frac{k}{x^{2}} \mathrm{~d} x\right)^{2} \\
& =\frac{3}{8 \ln 2}-\frac{1}{4(\ln 2)^{2}}=0.0207 \text { (3 s.f.) }
\end{aligned}
$$

$$
\Rightarrow \sigma\left(\frac{2 X+1}{X}\right)=0.144 \text { (3 s.f.) }
$$

$6 \quad$ a $\quad s^{2}=\frac{n}{n-1}\left(\frac{1}{n} \sum t^{2}-\left(\frac{\sum t}{n}\right)^{2}\right)=3.48$ (2 d.p.)
b $\mathrm{H}_{0}: \mu=35, \mathrm{H}_{1}: \mu<35$
c $\quad v=12-1=11$
d $\bar{T}=33.25$
$T=\frac{\bar{T}-35}{\frac{s}{\sqrt{12}}}=-3.25$ (3 s.f.)
Comparing your t-value to the critical value from the table at the 5% significance level:
$|T|=3.25$ (3 s.f.) >1.796
Reject H_{0}. There is significant evidence that the new technique improved the mean 50 m time.
e Assume that the swimming times are drawn from a normal distribution. Any reasonable comment, for example: OK because swimming times will be mainly clustered around the average with few people at extremes; or not OK because the swimming club is likely to have people at the upper tail of the distribution.

7 a Let X represent the number of phone calls received in a 3-hour period, $X \sim \operatorname{Po}(4 \times 3=12)$.
$\mathrm{P}(X \leq 6)=\sum_{n=0}^{6} \frac{12^{n} \mathrm{e}^{-12}}{n!}=0.0458$ (3 s.f.)
[3 marks]
b The mean number of calls is 3.7 per hour, so $X \sim \operatorname{Po}(3 \times 3.7=11.1)$.

$$
\mathrm{P}(X>6)=1-\mathrm{P}(X \leq 6)=1-\sum_{n=0}^{6} \frac{11.1^{n} \mathrm{e}^{-111.1}}{n!}=0.925 \text { (3 s.f.) }
$$

8 a Rectangular, between -0.5 and 0.5 .
b The PDF for E is given by $\mathrm{f}(e)=\frac{1}{0.5-(-0.5)}$
i.e. $\mathrm{f}(e)=1$ for $-0.5<e<0.5$.
$\mathrm{P}(|E|<0.4)=\mathrm{P}(-0.4<E<0.4)$, which is the area of a 0.8 by 1 rectangle, so $\mathrm{P}(|E|<0.4)=0.8$.

Tip
Alternatively, $\mathrm{P}(|E|<0.4)=\int_{-0.4}^{0.4} \mathrm{f}(e) \mathrm{d} e=\int_{-0.4}^{0.4} 1 \mathrm{~d} e=[e]_{-0.4}^{0.4}=0.8$
c For each independent observation:

$$
\mathrm{P}(|E|<x)=\int_{-x}^{x} 1 \mathrm{~d} e=[e]_{-x}^{x}=2 x
$$

So for two independent observations:

$$
\mathrm{P}(|E|<x) \times \mathrm{P}(|E|<x)=4 x^{2}
$$

d $\mathrm{f}(M)=\frac{\mathrm{d}}{\mathrm{d} x}\left(4 x^{2}\right)= \begin{cases}8 x & 0<x<0.5 \\ 0 & \text { otherwise. }\end{cases}$

