The Geometry of Efficient Fair Division
- Author: Julius B. Barbanel, Union College, New York
- Introduction by: Alan D. Taylor, Union College, New York
- Date Published: January 2005
- availability: Temporarily unavailable - available from TBC
- format: Hardback
- isbn: 9780521842488
Hardback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available for inspection. However, if you are interested in the title for your course we can consider offering an inspection copy. To register your interest please contact asiamktg@cambridge.org providing details of the course you are teaching.
-
What is the best way to divide a 'cake' and allocate the pieces among some finite collection of players? In this book, the cake is a measure space, and each player uses a countably additive, non-atomic probability measure to evaluate the size of the pieces of cake, with different players generally using different measures. The author investigates efficiency properties (is there another partition that would make everyone at least as happy, and would make at least one player happier, than the present partition?) and fairness properties (do all players think that their piece is at least as large as every other player's piece?). He focuses exclusively on abstract existence results rather than algorithms, and on the geometric objects that arise naturally in this context. By examining the shape of these objects and the relationship between them, he demonstrates results concerning the existence of efficient and fair partitions.
Read more- Contains the study of abstract existence results, rather than algorithms
- A purely mathematical approach to problems that often arise in an economic setting
- Contains interesting studies that lead to results about efficiency and about fairness that would not be apparent otherwise
Reviews & endorsements
'In Chapters 12 and 13, he studies the relationship between the IPS and the RNS, and he provides a new presentation of the fundamental result that ensures the existence of a partition that is both Pareto optimal and envy-free.' Zentralblatt MATH
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: January 2005
- format: Hardback
- isbn: 9780521842488
- length: 472 pages
- dimensions: 235 x 157 x 30 mm
- weight: 0.738kg
- contains: 73 b/w illus.
- availability: Temporarily unavailable - available from TBC
Table of Contents
0. Preface
1. Notation and preliminaries
2. Geometric object #1a: the individual pieces set (IPS) for two players
3. What the IPS tells us about fairness and efficiency in the two-player context
4. The general case of n players
5. What the IPS and the FIPS tell us about fairness and efficiency in the n-player context
6. Characterizing Pareto optimality: introduction and preliminary ideas
7. Characterizing Pareto optimality I: the IPS and optimization of convex combinations of measures
8. Characterizing Pareto optimality II: partition ratios
9. Geometric object #2: The Radon-Nikodym set (RNS)
10. Characterizing Pareto optimality III: the RNS, Weller's construction, and w-association
11. The shape of the IPS
12. The relationship between the IPS and the RNS
13. Other issues involving Weller's construction, partition ratios, and Pareto optimality
14. Strong Pareto optimality
15. Characterizing Pareto optimality using hyperreal numbers
16. The multi-cake individual pieces set (MIPS): symmetry restored.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×