Skip to content
Register Sign in Wishlist

Hardy Martingales
Stochastic Holomorphy, L^1-Embeddings, and Isomorphic Invariants

Part of New Mathematical Monographs

  • Date Published: July 2022
  • availability: Available
  • format: Hardback
  • isbn: 9781108838672

Hardback

Add to wishlist

Other available formats:
eBook


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.

    • Presents the theory of Hardy martingales for an audience interested in applications to complex, harmonic, and functional analysis
    • Includes important core material on stochastic analysis and Banach space theory
    • Suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis
    Read more

    Reviews & endorsements

    'A beautiful exposition of the holomorphic side of martingale theory, where Hardy martingales play the leading role, with many deep applications to Banach spaces. Unlike most books on martingale theory where convexity is central, Müller's remarkable and unique book places the emphasis on the martingales that arise from averaging the boundary values of analytic functions in Hardy spaces. The latter discretize the continuous martingales obtained by composing an analytic function with complex Brownian motion. Consideration of the Banach space valued case leads to deep geometric applications.' Gilles Pisier, Texas A&M

    'The book is a must for anyone interested in the delicate geometry of the Lebesgue space L1(𝕋), of its subspace H1(𝕋) and of related Banach spaces. It exposes deep results of Bourgain, Pisier, Talagrand and other top analysts.' Gideon Schechtman, Weizmann Institute of Sciences

    'This book presents a wonderful bridge between Probability Theory, Functional Analysis and Complex Analysis, that emerged in last decades due to the work of many great mathematicians. It is a pleasure to read. The results are placed in their logical context and connections between them are clearly explained. Many remarks put the development of the subject into historical perspective. The presentation is clear and reasonably detailed.' Przemysław Wojtaszczyk, IMPAN Warsaw

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 2022
    • format: Hardback
    • isbn: 9781108838672
    • length: 500 pages
    • dimensions: 235 x 158 x 35 mm
    • weight: 0.92kg
    • availability: Available
  • Table of Contents

    Preface
    1. Stochastic Holomorphy
    2. Hardy Martingales
    3. Embedding L1 in L1/H1
    4. Embedding L1 in X or L1/X 5. Isomorphic Invariants
    6. Operators on Lp(L1)
    7. Formative Examples
    Bibliography
    Notation Index
    Subject Index.

  • Author

    Paul F. X. Müller, Johannes Kepler Universität Linz
    Paul F. X. Müller is Professor at Johannes Kepler University in Linz, Austria. He is the author of more than fifty papers in complex, harmonic and functional analysis and of the monograph Isomorphisms between H^1 spaces (Springer, 2005).

Related Books

also by this author

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×