Skip to content
Register Sign in Wishlist
Look Inside Oeuvres complètes

Oeuvres complètes
Series 2

Volume 6

Part of Cambridge Library Collection - Mathematics

  • Date Published: July 2009
  • availability: Available
  • format: Paperback
  • isbn: 9781108003193

Paperback

Add to wishlist

Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Augustin-Louis, Baron Cauchy (1789–1857) was the pre-eminent French mathematician of the nineteenth century. He began his career as a military engineer during the Napoleonic Wars, but even then was publishing significant mathematical papers, and was persuaded by Lagrange and Laplace to devote himself entirely to mathematics. His greatest contributions are considered to be the Cours d'analyse de l'École Royale Polytechnique (1821), Résumé des leçons sur le calcul infinitésimal (1823) and Leçons sur les applications du calcul infinitésimal à la géométrie (1826–8), and his pioneering work encompassed a huge range of topics, most significantly real analysis, the theory of functions of a complex variable, and theoretical mechanics. Twenty-six volumes of his collected papers were published between 1882 and 1958. The first series (volumes 1-12) consists of papers published by the Académie des Sciences de l'Institut de France; the second series (volumes 13-26) of papers published elsewhere.

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: July 2009
    • format: Paperback
    • isbn: 9781108003193
    • length: 432 pages
    • dimensions: 297 x 22 x 210 mm
    • weight: 1.03kg
    • availability: Available
  • Table of Contents

    1. Sur l'analyse des sections angulaires
    2. Sur un nouveau genre de calcul
    3. Sur les formules de Taylor et de Maclaurin
    4. Sur la résultante
    5. Application du calcul
    6. Sur une formule
    7. Sur un nouveau genre d'intégrales
    8. Sur les moments linéaires
    9. De l'influence
    10. Sur diverses relations
    11. Démonstration d'un théorème
    12. Sur les moments linéaires
    13. Usage des moments linéaires
    14. Sur quelques formules
    15. Sur un théorème
    16. Sur les divers ordres de quantités infiniment petits
    17. Sur les conditions d'équivalence
    18. Usage des moments linéaires
    19. Sur un théorème d'analyse
    20. Sur quelques transformations
    21. Sur les divers ordres de contact
    22. Application du calcul
    23. Sur les limites
    24. Sur la résolution
    25. Application du calcul
    26. Démonstration du théorème de Fermat
    27. Sur la nature des racines
    28. Usage du calcul des résidus.

  • Author

    Augustin-Louis Cauchy

Related Books

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon
×

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×