Mathematical Foundations of Infinite-Dimensional Statistical Models
Part of Cambridge Series in Statistical and Probabilistic Mathematics
- Authors:
- Evarist Giné, University of Connecticut
- Richard Nickl, University of Cambridge
- Date Published: February 2016
- availability: Available
- format: Hardback
- isbn: 9781107043169
Hardback
Other available formats:
eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.
Read more- Describes the theory of statistical inference in statistical models with an infinite-dimensional parameter space
- Develops a mathematically coherent and objective approach to statistical inference
- Much of the material arises from courses taught by the authors at the beginning and advanced graduate level; each section ends with exercises
Awards
- Winner, 2017 PROSE Award for Mathematics
Reviews & endorsements
'Finally - a book that goes all the way in the mathematics of nonparametric statistics. It is reasonably self-contained, despite its depth and breadth, including accessible overviews of the necessary analysis and approximation theory.' Aad van der Vaart, Universiteit Leiden
See more reviews'This remarkable book provides a detailed account of a great wealth of mathematical ideas and tools that are crucial in modern statistical inference, including Gaussian and empirical processes (where the first author, Evarist Giné, was one of the key contributors), concentration inequalities and methods of approximation theory. Building upon these ideas, the authors develop and discuss a broad spectrum of statistical applications such as minimax lower bounds and adaptive inference, nonparametric likelihood methods and Bayesian nonparametrics. The book will be exceptionally useful for a great number of researchers interested in nonparametric problems in statistics and machine learning, including graduate students.' Vladimir Koltchinskii, Georgia Institute of Technology
'This is a very welcome contribution. The wealth of material on the empirical processes and nonparametric statistics is quite exceptional. It is a masterly written treatise offering an unprecedented coverage of the classical theory of nonparametric inference, with glimpses into advanced research topics. For the first time in the monographic literature, estimation, testing and confidence sets are treated in a unified way from the nonparametric perspective with a comprehensive insight into adaptation issues. A delightful major reading that I warmly recommend to anyone wanting to explore the mathematical foundations of these fields.' Alexandre Tsybakov, ENSAE ParisTech
'This is a remarkably comprehensive, detailed and rigorous treatment of mathematical theory for non-parametric and high-dimensional statistics. Special emphasis is on density and regression estimation and corresponding confidence sets and hypothesis testing. The minimax paradigm and adaptivity play a key role.' Natalie Neumeyer, MathSciNet
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: February 2016
- format: Hardback
- isbn: 9781107043169
- length: 720 pages
- dimensions: 261 x 186 x 45 mm
- weight: 1.38kg
- availability: Available
Table of Contents
1. Nonparametric statistical models
2. Gaussian processes
3. Empirical processes
4. Function spaces and approximation theory
5. Linear nonparametric estimators
6. The minimax paradigm
7. Likelihood-based procedures
8. Adaptive inference.-
General Resources
Find resources associated with this title
Type Name Unlocked * Format Size Showing of
This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to lecturers whose faculty status has been verified. To gain access to locked resources, lecturers should sign in to or register for a Cambridge user account.
Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other lecturers may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.
Supplementary resources are subject to copyright. Lecturers are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.
If you are having problems accessing these resources please contact lecturers@cambridge.org.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×