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Abstract

This is and updated and somewhat extended version of Chapter
9 of Logit Models from Economics and Other Fields (Cambridge Uni-
versity Press, 2003) which includes additional material obtained since
the completion of that book. The text has been adapted so that this
paper can be read independently.

The paper describes the origins of the logistic function and its
history up to the adoption of the logit in bio-assay and the beginning
of its wider acceptance in statistics. Its roots spread back to the
19th century, when the function was invented to describe population
growth and given its name by the Belgian mathematician Verhulst.
Subsequent events have been determined decisively by the individual
actions and personal histories of a few scholars: the rediscovery of the
growth function is due to Pearl and Reed, the survival of the term
logistic to Yule, and the introduction of the function in bio-assay (and
hence in statistics in general) to Berkson.
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1 Introduction
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Figure 1. The logistic curve P(Z)

The sigmoid curve of Figure 1 is traced by the logistic function

P (Z) =
expZ

1 + expZ
. (1)

P behaves like the distribution function of a symmetrical density, with mid-
point zero; as Z moves through the real number axis, P rises monotonically
between the bounds of zero and 1. The meaning of this function varies ac-
cording to the the definition of the variables. In the logit version of bio-assay,
P is the probability of a binary outcome (the survival or death of an organ-
ism), and Z = α + βX, with X a continuous stimulus or exposure variable
(like the dosage of an insecticide); α determines the location of the curve on
the X-axis, and β its slope. In logistic regression there are several deter-
minants of P , and Z = xT β, with x a vector of covariates (including a unit
constant) and β their coefficients. But the logistic function was originally de-
signed to describe the course of a proportion P over time t, with Z = α+βt;
it is a growth curve, since P (t) rises monotonically with t.

Over a fairly wide central range, for values of P from .3 to .7, the shape
of the logistic curve closely resembles the normal probability distribution
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function. The two functions

Pl(x) =
exp(βx)

1 + exp(βx)
. (2)

and

Pn(x) =
1

σ
√

2π

∫ x

− inf
exp{−1/2(u/σ)2}du. (3)

both pass through the point (0, .5), and they can be made almost to coincide
upon a suitable adjustment of β and σ. This is a sheer algebraic coincidence,
for there appears to be no intrinsic relation between the two forms.

2 The origins of the logistic function

The logistic function was invented in the 19th century for the description of
the growth of populations and the course of autocatalytic chemical reactions,
or chain reactions. In either case we consider the time path of a quantity
W (t) and its growth rate

Ẇ (t) = dW (t)/dt. (4)

The simplest assumption is that Ẇ (t) is proportional to W (t)

Ẇ (t) = βW (t), β = Ẇ (t)/W (t), (5)

with β the constant rate of growth. This leads of course to exponential
growth

W (t) = A exp βt,

where A is sometimes replaced by the initial value W (0). With W (t) the
human population of a country, this is a model of unopposed growth; as
Malthus (1789) put it, a human population, left to itself, will increase in ge-
ometric progression. It is a reasonable model for a young and empty country
like United States in its early years1. Like many others, Alphonse Quetelet
(1795–1874), the Belgian astronomer turned statistician, was well aware that
the indiscriminate extrapolation of exponential growth must lead to impos-
sible values. He experimented with several adjustments of (5) and also asked

1Two hundred years later exponential growth played a major part in the Report to the
Club of Rome of Meadows, Meadows, Randers, and Behrens (1972), and it is still implicit
in many economic analyses.
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his pupil, the mathematician Pierre–François Verhulst (1804–1849), to look
into the problem.

Like Quetelet, Verhulst approached the problem by adding an extra term
to (5) to represent the increasing resistance to further growth, as in

Ẇ (t) = βW (t)− φ(W (t)). (6)

and then experimenting with various forms of φ. The logistic appears when
this is a simple quadratic, for in that case we may rewrite (6) as

Ẇ (t) = βW (t)(Ω−W (t)) (7)

where Ω denotes the upper limit or saturation level of W , its asymptote as
t →∞. Growth is now proportional both to the population already attained
W (t) and to the remaining room for further expansion Ω − W (t). If we
express W (t) as a proportion P (t) = W (t)/Ω this gives

P (t) = βP (t){1− P (t)}, (8)

and the solution of this differential equation is

P (t) =
exp(α + βt)

1 + exp(α + βt)
, (9)

which Verhulst named the logistic function. The population W (t) then fol-
lows

W (t) = Ω
exp(α + βt)

1 + exp(α + βt)
. (10)

Verhulst published his suggestions between 1838 and 1847 in three papers.
The first is a brief note in the Correspondance Mathématique et Physique,
edited by Quetelet, in 1838. It contains the essence of the argument in
four small pages, followed by a demonstration that the curve agrees very
well with the actual course of the population of France, Belgium, Essex and
Russia for periods up to 1833; Verhulst explains that he did his research a
couple of years before, that he did not have the time for an update and that he
publishes this note only at the insistence of Quetelet. He does not say how he
fitted the curves. The second paper, in the Proceedings of the Belgian Royal
Academy of 1845, is a much fuller account of the function and its properties.
Here Verhulst names it the logistic, without further explanation: in a neat
diagram, the courbe logistique is drawn alongside the courbe logarithmique,
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which we would nowadays call the exponential. Verhulst also determines the
three parameters Ω, α and β of (10) by making the curve pass through three
observed points. With data for some twenty or thirty years only this is a
hazardous method, as is borne out by the resulting estimates of the limiting
population Ω. Employing the known values of the Belgian population in
1815, 1830 and 1845 Verhulst finds a limiting population of 6.6 million for
that country, and in a similar exercise 40 million for France: at present these
populations number 10.2 and 58.7 million. In 1847 there followed a second
paper in the Proceedings, which is chiefly notable for an adjustment of the
correction term that leads to a much better estimate of 9.5 millions for the
Belgian Ω.

Verhulst was in poor health and died in 1849. He was primarily a math-
ematician - professor of mathematics at the Belgian Military Academy - but
sensitive to social and political issues. In his obituary of Verhulst, Quetelet
(1850) attributes his early death to overwork and, rather curiously, to his
great stature, as Verhulst was 1.89 meters or six feet tall. His discovery of
the logistic curve was not taken up with much enthusiasm by Quetelet; as
Vanpaemel (1987) has shown, the two men did not see eye to eye on the
question of population growth. This may in part account for some curious
elements in Quetelet’s obituary; while ostensibly praising his lamented pupil,
Quetelet stresses his impulsive nature and depicts him as a somewhat silly
man. Quetelet recounts at length Verhulst’s adventures in Rome. Verhulst
was staying in that city in the summer of 1830, when the news broke of the
revolution in Paris and of the Belgian secession from the Netherlands. These
events moved him strongly and set him drafting a democratic constitution
for the Papal State. He submitted this document to some cardinals he had
met, who expressed great interest; still the police were called in, and Ver-
hulst banished from Rome. He left under somewhat dramatic circumstances,
having at first barricaded his apartment with the intention of withstanding
a siege by the forces of law and order. But then he was only 26 years old at
the time.

Quetelet did not pay much attention to the logistic curve in his writings;
it is barely mentioned, in an aside, in Quetelet (1848). But Verhulst’s work
was quoted with approval by Liagre (1852), his colleague at the Military
Academy, and in the second edition of this textbook Camille Peney repeats
the estimation of Ω for Belgium on the basis of more recent population figures,
arriving at a value of 13.7 millions.

5



As a model of population growth the logistic function was discovered
anew in 1920 by Pearl and Reed. They were unaware of Verhulst’s work
(though not of the curves for autocatalytic reactions discussed presently),
and they arrived independently at the logistic curve of (10). When this was
fitted to Census figures of the U.S., again by making the curve pass through
three points, it gave a good fit for the period from 1790 to 1910. But the
estimate of Ω of 197 millions once more compares badly with the present
value of about 270 millions. Along with the pursuit of many other interests,
Pearl and his collaborators in the next twenty years went on to apply the
logistic growth curve to almost any living population from fruit flies to the
human population of the French colonies in North Africa as well as to the
growth of cantaloupes.

In 1920, Raymond Pearl (1879–1940) had just been appointed Director of
the Department of Biometry and Vital Statistics at Johns Hopkins Univer-
sity, and Lowell J. Reed (1886–1966) was his deputy (and his successor when
a few years later Pearl was promoted to Professor of Biology). Pearl was
trained as a biologist and acquired his statistics as a young man by spending
the year 1905–1906 in London with Karl Pearson (and later quarrelling with
him). He became a prodigious investigator and a prolific writer on a wide
variety of phenomena like longevity, fertility, contraception, and the effects
of alcohol and tobacco consumption on health, all subsumed under the head-
ing of human biology. During World War I Pearl worked in the U.S. Food
Administration, and this may account for his preoccupation with the food
needs of a growing population in the 1920 paper. Reed, who was trained as a
mathematician, made a quiet career in biostatistics; he excelled as a teacher
and as an administrator, and was brought back in 1953 from retirement to
serve as President of Johns Hopkins. Among his publications in the after-
math of the 1920 paper with Pearl is an application of the logistic curve to
autocatalytic reactions, Reed and Berkson (1929). We shall hear more about
this co-author in the next section.

Verhulst’s work was rediscovered soon after Pearl and Reed’s first paper
of 1920. The immediate sequel, Pearl and Reed (1922), does not mention it;
Verhulst’s priority is first acknowledged in a footnote in Pearl (1922), and,
at greater length, in Pearl and Reed (1923). In this paper, Pearl and Reed
call Verhulst’s papers ”long since forgotten”, except for a single article by
Du Pasquier (1918), and they then go out of their way to criticize that author
for an ”entirely unjustified and in practice usually incorrect modification” of
Verhulst’s formula, without substantiating this harsh judgment. In fact Du
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Pasquier’s paper is a harmless reflection on four mathematical theories of
population, of a very formal and abstract character to the point of inanity.
The four theories are ascribed to Halley, de Moivre, Euler and Verhulst, and
these authors are briefly introduced; Halley, for example, as ”the famous
astronomer”, and Verhulst, rather oddly, as ”a Belgian who died in 1847”.
No references are given.

Louis–Gustave Du Pasquier (1876–1957), Professor of Mathematics at
the University of Neuchâtel, took his degrees in mathematics in Zürich, but
followed courses in the social sciences as well and spent the year 1900–1901
in Paris, taking courses at a variety of academic institutions. He may well
have read about Verhulst in Liagre or elsewhere in the French literature, but
I have been unable to find a useful reference to this effect in his textbook of
probability (1926) . It is also not clear how Pearl learned about Verhulst, or,
for that matter, about Du Pasquier2.

The next important publication is Yule’s Presidential Address to the
Royal Statistical Society of 1925. Yule, who says he owes the reference to
Pearl (1922), treats Verhulst much more handsomely than Pearl and Reed
did, devoting an appendix to his work. Yule is also the first author to revive
the name logistic, which is not used by Liagre or Du Pasquier nor by Pearl
and Reed in their earlier references. By 1924, however, ”logistic” is used as a
commonplace term in the correspondence between Pearl and Yule, who were
lifelong friends. It would take until 1933 for Miner (a collaborator of Pearl)
to pay tribute to Verhulst, if in an oblique way: instead of reproducing at
least one of Verhulst’s papers, Miner translates Quetelet’s obituary, and em-
phasises Verhulst’s Roman imbroglio by adding an extract from the memoirs
of Queen Hortense de Beauharnais recording this episode.

As we have already hinted there is another early root of the logistic func-
tion in chemistry, where it was employed (again with some variations) to
describe the course of autocatalytic or chain reactions, where the product
itself acts as a catalyst for the process while the supply of raw material is
fixed. This leads naturally to a differential equation like (8) and hence to the
logistic function for the time path of the amount of the reaction product. The
review of the application of logistic curves to a number of such processes by
Reed and Berkson (1929) quotes work of the German professor of chemistry

2The Pearl archives at the American Philosophical Society in Philadelphia contain
Pearl’s correspondence with several hundred individuals, but Du Pasquier is not among
them.
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Wilhelm Ostwald of 1883. Authors like Yule (1925) and Wilson (1925) were
well aware of this strand of the literature.

The basic idea of logistic growth is simple and effective, and it is used to
this day to model population growth and market penetration of new products
and technologies. The introduction of mobile telephones is an autocatalytic
process, and so is the spread of many new products and techniques in indus-
try.

3 The invention of the probit and the advent of the logit in bio-
assay

The invention of the probit model is usually credited to Gaddum (1933) and
Bliss (1934a,1934b), but one look at the historical section of Finney (1971)
or indeed at Gaddum’s paper and his references will show that this is too
simple. The roots of the method and in particular the transformation of fre-
quencies to equivalent normal deviates can be traced to the German scholar
Fechner (1801–1887). Stigler (1986) recounts how Fechner was drawn to
study human responses to external stimuli by experimental test of the abil-
ity to distinguish differences in weight. The issue of the variability of human
responses had been raised by astronomers, who relied on human observers
of celestial phenomena and found that their readings showed much unac-
countable variation. Fechner recognized that human response to an identical
stimulus is not uniform, and he was the first to transform observed differences
to equivalent normal deviates. The historical sketches of Finney (1971), Ch.
3.6, and of Aitchison and Brown (1957), Ch. 1.2, record a long line of largely
independent rediscoveries of this approach that spans the seventy years from
Fechner (1860) to the early 1930’s when Gaddum and Bliss published their
contributions. Both authors regard the assumption of a normal distribution
as commonplace, and attach more importance to the logarithmic transfor-
mation of the stimulus. Their papers contain no major innovations, but
they mark the emergence of a standard paradigm of bio-assay and of a new
terminology. Gaddum wrote a comprehensive and authoritative report with
the emphasis on practical aspects of the experiments and on the statistical
interpretation of bio-assay, giving several worked examples from the medical
and pharmaceutical literature. Bliss published two brief notes in Science, in-
troducing the term probit; he followed this up with a series of articles setting
out the maximum likelihood estimation of the probit curve, in one instance
with assistance from R.A. Fisher, Bliss (1935). Both Gaddum and Bliss set
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standards of estimation; until the 1930’s this was largely a matter of ad hoc
numerical and graphical adjustment of curves to categorical data.

John Henry Gaddum (1900–1965) studied medicine at Cambridge but
failed in his final examinations. He turned to pharmacology and worked un-
der Trevan at the Wellcome Laboratories, then transferred to the National
Institute for Medical Research (where he wrote the 1933 report) before em-
barking on an academic career of professorships in pharmacology in Cairo,
London and Edinburgh. He was elected to the Royal Society in 1945 and
knighted in 1964. To this day the British Pharmacological Society awards an
annual Gaddum Memorial Prize for pharmaceutical research. Charles Ittner
Bliss (1899–1979) studied as an entomologist at Ohio State University and
was a field worker with the U.S. Department of Agriculture until this employ-
ment was terminated in 1933. He then spent two years in London studying
statistics with R.A. Fisher, and Fisher found him a job as a statistician in
Leningrad where he lived from 1936 and 1938. The political conditions were
not propitious for serious research. Bliss returned to the Connecticut Agri-
cultural Experiment Station, combining his work as a practising statistician
with a Lecturership at Yale from 1942 until his retirement. He played an
important role in the founding of the Biometric Society.

In their early writings on bio-assay both authors adhere firmly to the
classical model of bio-assay, where the stimulus is determinate and responses
are random because of the variability of individual tolerance levels. Bliss
introduced the term probit (short for ’probability unit’) originally as a con-
venient scale for normal deviates, but abandoned this within a year in favour
of a different definition which has since been generally accepted. For any
(relative) frequency f there is an equivalent normal deviate Z̃ such that the
cumulative normal distribution at Z̃ equals f ; Z̃ is the solution of

f =
1√
2π

∫ Z̃

− inf
exp{−(1/2)u2}du, (11)

and this can be read off from a table of the normal distribution. The probit
of f is this equivalent normal deviate Z̃, or initially Z̃ increased by 5; this
ensures that the probit is almost always positive, which facilitates calculation.
In the 1930’s such additive constants were a common device. In the probit
method probits of relative frequencies or of probabilities f are linearly related
to (the logarithm of the) stimulus.

The acceptance of the probit method was aided by the articles of Bliss,
who published regularly in this field until the 1950’s, and by Finney and
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others (Gaddum returned to pharmacology). The full flowering of this school
probably coincides with the first edition of Finney’s monograph in 1947.
Without the underlying theory of bio-assay, probit analysis was quickly used
for any relation of a discrete binary outcome to one or more determinants.
In economics and market research, for example, the first applications appear
already in the 1950’s: Farrell (1954) uses a probit model for the ownership
of cars of different vintage as a function of household income, and Adam
(1958) fits lognormal demand curves to survey data of the willingness to buy
cigarette lighters and the like at various prices. The classic monograph on
the lognormal distribution of Aitchison and Brown (1957) brought probit
analysis to the notice of a wider audience of economists.

As far as I can see the introduction of the logistic as an alternative to the
normal probability function is the work of a single person, namely Joseph
Berkson (1899–1982), Reed’s co-author of the paper on autocatalytic func-
tions of 1929. Berkson read physics at Columbia, then went to Johns Hopkins
for his M.D. and a doctorate in statistics in 1928. He stayed on as an assistant
for three years and this is when he collaborated with Reed on autocatalytic
functions. Berkson then moved to the Mayo Clinic where he remained for
the rest of his working life as chief statistician. In the 1930’s he published nu-
merous papers on medical and public health matters, but in 1944 he turned
his attention to the statistical methodology of bio-assay and proposed the
use of the logistic instead of the normal probability function of (11), coining
the term ’logit’ by analogy to the ’probit’ of Bliss (for which he was initially
much derided). As we have indicated earlier the two functions are almost
indistinguishable. By the inverse of the logistic function (1) we have

logit(P ) = log
P

1− P
= Z, (12)

which is of course much simpler than the definition of the probit of (11). The
issue of logit versus probit was tangled by Berkson’s simultaneous attacks on
the method of maximum likelihood and his advocacy of minimum chi-squared
estimation instead. Between 1944 and 1980 he wrote a large number of papers
on both issues; examples are Berkson (1951) and Berkson (1980). He often
adopted a somewhat provocative style, and much controversy ensued.

The close resemblance of the logistic to the normal distribution function
must have been common knowledge among those who were familiar with
the logistic; it had been demonstrated by Wilson (1925) and written up by
Winsor (1932) (another collaborator of Pearl). Wilson was probably the
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first to publish an application of the logistic curve in bio-assay in Wilson
and Worcester (1943), just before Berkson (1944). But it was Berkson who
persisted and fought a long and spirited campaign which lasted for several
decades.

Berkson’s suggestion was not well received by the biometric establish-
ment. In the first place, the logit was regarded as somewhat inferior and
disreputable because unlike the probit it can not be related to an underly-
ing (normal) distribution of tolerance levels. Aitchison and Brown (1957)
dismiss the logit in a single sentence, because it ”lacks a well-recognized and
manageable frequency distribution of tolerances which the probit curve does
possess in a natural way” (p.72). Berkson was aware of this defect and tried
to remedy it by adapting the autocatalytic argument, in Berkson (1951), but
this did not convince as this argument essentially deals with a process over
time. In retrospect it is surprising that so much importance was attached
to these somewhat ideological points of interpretation. At the time no one
(not even Berkson) seems to have recognized the formidable power of the
logistic’s analytical properties. In the second place, Berkson’s case for the
logit was not helped by his simultaneous attacks on the established wisdom
of maximum likelihood estimation and his advocacy of minimum chi-squared.
The unpleasant atmosphere in which this discussion was conducted can be
gauged from the acrimonious exchanges between R.A. Fisher and Berkson in
Fisher (1954).

In the practical aspect of ease of computation the logit had a clear advan-
tage over the probit, even with maximum likelihood estimation. To quote
Cochran (from his comments on Fisher (1954), p.147) ”.. the speed with
which a new technique becomes widely used is considerably influenced by the
simplicity or otherwise of the calculations that it requires. Next door to the
lecture room in which the probit method is expounded one may still find the
laboratory in which the workers compute their LD 50s by the [much less so-
phisticated] Behrens (Reed–Muench) method ..”. On this count the logit
spread much more quickly in workfloor practice than in the academic dis-
course. Until the advent of the computer and the pocket calculator, some
twenty years later, all numerical work was done by hand, that is with pencil
and paper, sometimes aided by graphical inspection of ’freehand curves’, ’fit-
ted by eye’. For probit and logit analyses of grouped data or class frequencies
there was graph paper with a special grid on which a probit or logit curve
would appear as a straight line. Wilson (1925) had introduced the logistic
(or ’autocatalytic’) grid, and examples of lognormal paper can be found in
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Aitchison and Brown (1957) and Adam (1958);3 Berkson himself had de-
signed logistic graph paper as well as several nomograms.4 Numerical work
was supported rather feebly by the slide rule and by mechanical calculating
machines, driven by hand or powered by a small electric motor, which were
capable of addition and multiplication; punched card equipment was helpful
if numerous data had to be analysed. Values of the normal distribution (and
of exponentials and logarithms) were obtained from printed tables like Pear-
son’s Biometrika Tables or the Statistical Tables of Fisher and Yates (1938).
From the first edition the latter carried specially designed tables for probit
analysis (with auxiliary tables contributed by Bliss and by Finney), and from
the fifth edition of 1957 onwards they also included special tables for logit
analysis.

In time, the ideological conflict over bio-assay abated. Finney, who had
ignored the logit in the second edition of his textbook of 1952, made amends
in the third edition of 1970, recognizing (somewhat belatedly) that ”what
matters is the dependence of P on dose and the unknown parameters, and
the tolerance distribution is merely a substructure leading to this” (p.47). In
fact the narrow conflict between probit and logit in bio-assay had long been
overtaken by independent developments in statistics and biometrics.

4 The ascent of the logit

When the ideological debate about logit and probit in bio-assay had abated,
around 1960, the logit terminology and the logit transformation of (12) were
soon much more widely adopted, and their origins forgotten. An accurate
history of the adoption and further development of the logit would require
an intimate knowledge of several quite distinct disciplines, for many new
generalizations were introduced independently and in almost complete isola-
tion in completely unrelated applied work. We shall here only briefly touch
upon some major movements in statistics, in epidemiology, and in the social
sciences and econometrics, without attempting a systematic treatment.

The earliest developments took place in the late 1950’s and the 1960’s
in statistics and epidemiology. In statistics, the analytical advantages of
the logit transformation as a means of dealing with discrete binary outcomes

3Finney (1971) traces the invention of the probability grid to a French artilleryman of
the late 1890’s.

4A nomogram is a graph from which one can read off a transformations, as from a table;
sophisticated nomograms may permit the quick solution of more complicated equations.
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were soon recognized. Cox was among the first to explore (and exploit) these
possibilities; he wrote a series of papers between around 1960, and followed
these up with an influential textbook in 1969. The logit model of bio-assay is
easily generalized to logistic regression where binary outcomes are related to
a number of determinants, without a specific theoretical background, and this
statistical model proved as fertile as linear regression in an earlier era. Later,
the link of the logistic model with discriminant analysis was recognized, and
its ready association with loglinear models in general. In epidemiology, case-
control studies began even earlier, and since these are directly concerned with
odds, and odds ratios, the log-odds or logit transformation arises naturally.
The practice had already called for a theoretical justification, especially of the
sampling aspects, from an early date; see, for example, the work of Cornfield
in the early 1950’s.

Table 1. Number of articles in statistical journals
containing the word ’probit’ or ’logit’.

probit logit

1935 – 39 6 -
1940 – 44 3 1
1945 – 49 22 6
1950 – 54 50 15
1955 – 59 53 23
1960 – 64 41 27
1965 – 69 43 41
1970 – 74 48 61
1975 – 79 45 72
1980 – 84 93 147
1985 – 89 98 215
1990 – 94 127 311

The ascent of the logit in the statistical literature is illustrated in Table
1, which is drawn from the jstor electronic repertory of major statistical
journals in the english language5. The table shows the number of articles
which contain the word ”probit” or ”logit”. It must be borne in mind that

5These are all the journals of the Royal Statistical Society and of the American Statis-
tical Association; the Annals of Applied Probability, Annals of (Mathematical) Statistics,
Annals of Probability, Biometrics, Biometrika and Statistical Science.
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the overall number of articles in these journals increases substantially over
time; from 1935 to 1985 it increased about eightfold. Up to around 1970 the
relative numbers show the predominance of probit in bio-assay; then logit
soars ahead - not because of the after-effects of a victory over probit in bio-
assay, but because of its much wider use in statistical theory and applications
generally.

Until about 1980 computational effort was still an important issue in the
discussion of statistical techniques, but by then the computer revolution put
an end to this. On the specific issue of estimating logit and probit analy-
ses, maximum likelihood estimation became the norm when routines for this
method, applicable to individual data, were included in commercial statisti-
cal program packages. This facility was probably first offered by the bmdp
(or biomedical data processing) program of 1977. By the time the first
comprehensive textbook with medical applications of Hosmer and Lemeshow
(1989) was published the use of such routines was taken for granted. Of the
two causes Berkson advocated, minimum chi-squared estimation was effec-
tively overtaken by the computer revolution, while the logit transformation
of (12) was triumphant.

We conclude with some remarks on contributions from econometrics and
the social sciences. We have earlier indicated that the probit model of bio-
assay was readily adopted in these disciplines. The theoretical justification
of bio-assay in terms of determinate stimulus and random thresholds was
first jettisoned in the change to logistic regression, and then retrieved in
the form of the latent regression equation model that is still dear to the
behavioural sciences. This is probably due to McKelvey and Zavoina (1975),
who introduce it in an ordered probit analysis of the voting behaviour of
US Congressmen. An example of simultaneous independent discoveries is
the generalization of logistic regression to the multinomial or polychotomous
case. This was first set out, at some length, by Gurland, Lee, and Dahm
(1960). Several years later it was put forward quite independently by the
statistician Cox (1966) and by the biometric statistician Mantel (1966). And
some years later again it was once more rediscovered independently by the
econometrician Theil (1969), who arrived at it from the general perspective
of modelling shares.

For a long time, logistic regression, whether in the binary or the multi-
nomial context, was principally used as a technique, a simple tool without
a specific underlying process and therefore without a characteristic interpre-
tation. But in 1973 McFadden, working as a consultant for a Californian
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public transportation project, linked the multinomial logit to the theory of
discrete choice from mathematical psychology. This provided a theoretical
foundation of the logit model that is much more profound than any theory
put forward for the use of the probit in bio-assay. It earned its author the
Nobel prize in economics in 2000.
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population. Vierteljahrsschrift der Naturforschenden Gesellschaft in
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