Scaling up Machine Learning
Parallel and Distributed Approaches
$110.00 (C)
- Editors:
- Ron Bekkerman, LinkedIn Corporation, Mountain View, California
- Mikhail Bilenko, Microsoft Research, Redmond, Washington
- John Langford, Yahoo! Research, New York
- Date Published: December 2011
- availability: Available
- format: Hardback
- isbn: 9780521192248
$
110.00
(C)
Hardback
Other available formats:
Paperback, eBook
Looking for an examination copy?
If you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.
-
This book presents an integrated collection of representative approaches for scaling up machine learning and data mining methods on parallel and distributed computing platforms. Demand for parallelizing learning algorithms is highly task-specific: in some settings it is driven by the enormous dataset sizes, in others by model complexity or by real-time performance requirements. Making task-appropriate algorithm and platform choices for large-scale machine learning requires understanding the benefits, trade-offs, and constraints of the available options. Solutions presented in the book cover a range of parallelization platforms from FPGAs and GPUs to multi-core systems and commodity clusters, concurrent programming frameworks including CUDA, MPI, MapReduce, and DryadLINQ, and learning settings (supervised, unsupervised, semi-supervised, and online learning). Extensive coverage of parallelization of boosted trees, SVMs, spectral clustering, belief propagation and other popular learning algorithms and deep dives into several applications make the book equally useful for researchers, students, and practitioners.
Read more- A comprehensive view of modern machine learning, covering most of the contemporary research on large-scale problems
- Presents methods for scaling up a wide array of learning tasks, including classification, clustering, regression and feature selection
- Shows how to run state-of-the-art machine learning algorithms, such as boosted decision trees and SVMs, on multiple parallel-computing platforms
Reviews & endorsements
"One of the landmark achievements of our time is the ability to extract value from large volumes of data. Engineering and algorithmic developments on this front have gelled substantially in recent years, and are quickly being reduced to practice in widely-available, reusable forms. This book provides a broad and timely snapshot of the state of developments in scalable machine learning, which should be of interest to anyone who wishes to understand and extend the state of the art in analyzing data."
Joseph M. Hellerstein, University of California, BerkeleySee more reviews"This is a book that every machine learning practitioner should keep in their library."
Yoram Singer, Google Inc."This unique, timely book provides a 360 degrees view and understanding of both conceptual and practical issues that arise when implementing leading machine learning algorithms on a wide range of parallel and high-performance computing platforms. It will serve as an indispensable handbook for the practitioner of large-scale data analytics and a guide to dealing with BIG data and making sound choices for efficient applying learning algorithms to them. It can also serve as the basis for an attractive graduate course on Parallel/Distributed Machine Learning and Data Mining."
Joydeep Ghosh, University of Texas"The contributions in this book run the gamut from frameworks for large-scale learning to parallel algorithms to applications, and contributors include many of the top people in this burgeoning subfield. Overall this book is an invaluable resource for anyone interested in the problem of learning from and working with big datasets."
William W. Cohen, Carnegie Mellon University"... an excellent resource for researchers in the field."
J. Arul for Computing ReviewsCustomer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: December 2011
- format: Hardback
- isbn: 9780521192248
- length: 492 pages
- dimensions: 259 x 185 x 33 mm
- weight: 1kg
- contains: 144 b/w illus.
- availability: Available
Table of Contents
1. Scaling up machine learning: introduction Ron Bekkerman, Mikhail Bilenko and John Langford
Part I. Frameworks for Scaling Up Machine Learning:
2. Mapreduce and its application to massively parallel learning of decision tree ensembles Biswanath Panda, Joshua S. Herbach, Sugato Basu and Roberto J. Bayardo
3. Large-scale machine learning using DryadLINQ Mihai Budiu, Dennis Fetterly, Michael Isard, Frank McSherry and Yuan Yu
4. IBM parallel machine learning toolbox Edwin Pednault, Elad Yom-Tov and Amol Ghoting
5. Uniformly fine-grained data parallel computing for machine learning algorithms Meichun Hsu, Ren Wu and Bin Zhang
Part II. Supervised and Unsupervised Learning Algorithms:
6. PSVM: parallel support vector machines with incomplete Cholesky Factorization Edward Chang, Hongjie Bai, Kaihua Zhu, Hao Wang, Jian Li and Zhihuan Qiu
7. Massive SVM parallelization using hardware accelerators Igor Durdanovic, Eric Cosatto, Hans Peter Graf, Srihari Cadambi, Venkata Jakkula, Srimat Chakradhar and Abhinandan Majumdar
8. Large-scale learning to rank using boosted decision trees Krysta M. Svore and Christopher J. C. Burges
9. The transform regression algorithm Ramesh Natarajan and Edwin Pednault
10. Parallel belief propagation in factor graphs Joseph Gonzalez, Yucheng Low and Carlos Guestrin
11. Distributed Gibbs sampling for latent variable models Arthur Asuncion, Padhraic Smyth, Max Welling, David Newman, Ian Porteous and Scott Triglia
12. Large-scale spectral clustering with Mapreduce and MPI Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin and Edward Y. Chang
13. Parallelizing information-theoretic clustering methods Ron Bekkerman and Martin Scholz
Part III. Alternative Learning Settings:
14. Parallel online learning Daniel Hsu, Nikos Karampatziakis, John Langford and Alex J. Smola
15. Parallel graph-based semi-supervised learning Jeff Bilmes and Amarnag Subramanya
16. Distributed transfer learning via cooperative matrix factorization Evan Xiang, Nathan Liu and Qiang Yang
17. Parallel large-scale feature selection Jeremy Kubica, Sameer Singh and Daria Sorokina
Part IV. Applications:
18. Large-scale learning for vision with GPUS Adam Coates, Rajat Raina and Andrew Y. Ng
19. Large-scale FPGA-based convolutional networks Clement Farabet, Yann LeCun, Koray Kavukcuoglu, Berin Martini, Polina Akselrod, Selcuk Talay and Eugenio Culurciello
20. Mining tree structured data on multicore systems Shirish Tatikonda and Srinivasan Parthasarathy
21. Scalable parallelization of automatic speech recognition Jike Chong, Ekaterina Gonina, Kisun You and Kurt Keutzer.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×