Skip to content
Cart

Your Cart

×

You have 0 items in your cart.

Register Sign in Wishlist

Introduction to Bayesian Econometrics

2nd Edition

$44.99 (X)

textbook
  • Date Published: August 2014
  • availability: Available
  • format: Paperback
  • isbn: 9781107436770

$ 44.99 (X)
Paperback

Add to cart Add to wishlist

Other available formats:
Hardback, eBook


Request examination copy

Instructors may request a copy of this title for examination

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • This textbook, now in its second edition, is an introduction to econometrics from the Bayesian viewpoint. It begins with an explanation of the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It then turns to the definitions of the likelihood function, prior distributions, and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. The Bernoulli distribution is used as a simple example. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions, which leads to an explanation of classical and Markov chain Monte Carlo (MCMC) methods of simulation. The latter is proceeded by a brief introduction to Markov chains. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics, and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH, and stochastic volatility models. The new edition also emphasizes the R programming language, which has become the most widely used environment for Bayesian statistics.

    • New chapter on semiparametric regression, new sections on ordinal probit, item response, facto analysis, ARCH-GARCH and stochastic volatility models
    • New edition emphasizes the R programming language, the most widely used environment for Bayesian statistics
    • Clear, concise explanation of how Bayesian approach arises from basic principles of probability theory emphasizing Markov chain Monte Carlo methods
    Read more

    Reviews & endorsements

    'Edward Greenberg's Introduction to Bayesian Econometrics provides clear and concise coverage of Bayesian theory, computational methods, and important applications. Three years of teaching from its first edition convince me that it is a splendid textbook. The second edition is further enhanced by more applications and new guidance on use of free R software.' John P. Burkett, University of Rhode Island

    'The apple has not fallen far from the tree, as this second edition of Introduction to Bayesian Econometrics continues in the fine tradition of its predecessor. Along with considerable new material, this second edition contains a thoughtful discussion of important models in time series and financial econometrics (including ARCH/GARCH and stochastic volatility models), as well as an introduction to flexible Bayesian techniques for distribution and regression function modeling. Throughout the text Greenberg engages the reader with an accessible writing style, real data applications, and references to the R programming language. There is much to be learned within these pages. Students and researchers in statistics, biostatistics, economics, and the social sciences will find this to be a tremendously valuable resource.' Justin Tobias, Purdue University

    Review of the first edition: 'Professor Greenberg has assembled a tremendously valuable resource for anyone who wants to learn more about the Bayesian world. The book begins at an introductory level that should be accessible to a wide range of readers and then builds on these fundamental ideas to help the reader develop an in-depth understanding of modern Bayesian econometrics. The explanations are very clearly written, and the content is supported with many detailed examples and real-data applications.' Douglas J. Miller, University of Missouri, Columbia

    Review of the first edition: 'This concise textbook covers the theoretical underpinnings of econometrics, the MCMC algorithm, and a large number of important econometric applications in an accessible yet rigorous manner. I highly recommend Greenberg's book as a PhD-level textbook and as a source of reference for researchers entering the field.' Rainer Winkelmann, University of Zurich

    Review of the first edition: 'This book provides an excellent introduction to Bayesian econometrics and statistics with many references to the recent literature that will be very helpful for students and others who have a strong background in calculus.' Arnold Zellner, University of Chicago

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Edition: 2nd Edition
    • Date Published: August 2014
    • format: Paperback
    • isbn: 9781107436770
    • length: 270 pages
    • dimensions: 254 x 178 x 14 mm
    • weight: 0.47kg
    • contains: 29 b/w illus. 19 tables
    • availability: Available
  • Table of Contents

    Part I. Fundamentals of Bayesian Inference:
    1. Introduction
    2. Basic concepts of probability and inference
    3. Posterior distributions and inference
    4. Prior distributions
    Part II. Simulation:
    5. Classical simulation
    6. Basics of Markov chains
    7. Simulation by MCMC methods
    Part III. Applications:
    8. Linear regression and extensions
    9. Semiparametric regression
    10. Multivariate responses
    11. Time series
    12. Endogenous covariates and sample selection
    A. Probability distributions and matrix theorems
    B. Computer programs for MCMC calculations.

  • Resources for

    Introduction to Bayesian Econometrics

    Edward Greenberg

    General Resources

    Welcome to the resources site

    Here you will find free-of-charge online materials to accompany this book. The range of materials we provide across our academic and higher education titles are an integral part of the book package whether you are a student, instructor, researcher or professional.

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to instructors adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.


    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email lecturers@cambridge.org

  • Instructors have used or reviewed this title for the following courses

    • Advanced International Finance
    • Advanced Macroeconomic Theory
    • Econometrics I and Econometrics ll
    • Research in Accounting
    • Time Series Methods in Financial Econometrics
    • Topics in Quantitative Political Methodologies: Statistical Modeling
  • Author

    Edward Greenberg, Washington University, St Louis
    Edward Greenberg is Professor Emeritus of Economics at Washington University, St Louis, where he served as a Full Professor on the faculty from 1969 to 2005. Professor Greenberg also taught at the University of Wisconsin, Madison, and has been a Visiting Professor at the University of Warwick (UK), Technion University (Israel) and the University of Bergamo (Italy). A former holder of a Ford Foundation Faculty Fellowship, Greenberg is the author of the first edition of Introduction to Bayesian Econometrics (Cambridge University Press, 2008) and the co-author of four books: Wages, Regime Switching, and Cycles (1992), The Labor Market and Business Cycle Theories (1989), Advanced Econometrics (1983, revised 1991) and Regulation, Market Prices, and Process Innovation (1979). His published research has appeared in leading journals such as the American Economic Review, Econometrica, the Journal of Econometrics, the Journal of the American Statistical Association, Biometrika and the Journal of Economic Behavior and Organization. Professor Greenberg's current research interests include dynamic macroeconomics as well as Bayesian econometrics.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×