Skip to content

Due to scheduled maintenance, online ordering, in regions where offered, will not be available on this site from 08:00 until noon GMT on Sunday 17th February. We apologise for the inconvenience.

Cart

Your Cart

×

You have 0 items in your cart.

Register Sign in Wishlist
Look Inside Introduction to Quantum Mechanics

Introduction to Quantum Mechanics

3rd Edition

$74.99 (X)

textbook
  • Date Published: August 2018
  • availability: In stock
  • format: Hardback
  • isbn: 9781107189638

$ 74.99 (X)
Hardback

Add to cart Add to wishlist

Request examination copy

Instructors may request a copy of this title for examination

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • Changes and additions to the new edition of this classic textbook include a new chapter on symmetries, new problems and examples, improved explanations, more numerical problems to be worked on a computer, new applications to solid state physics, and consolidated treatment of time-dependent potentials.

    • Provides clear and accessible explanations of the foundations of quantum mechanics, using an attractive and informal style
    • It is thorough, with an appropriate amount of mathematical rigor and a good variety of examples and problems
    • Students emerge with a confident understanding of what the theory says and how to apply it, a solid foundation for more advanced work, and an appreciation for one of the greatest products of the human mind
    Read more

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Edition: 3rd Edition
    • Date Published: August 2018
    • format: Hardback
    • isbn: 9781107189638
    • length: 508 pages
    • dimensions: 252 x 191 x 26 mm
    • weight: 1.26kg
    • availability: In stock
  • Table of Contents

    Part I. Theory:
    1. The wave function
    2. Time-independent Schrodinger equation
    3. Formalism
    4. Quantum mechanics in three dimensions
    5. Identical particles
    6. Symmetry
    Part II. Application:
    7. Time-independent perturbation theory
    8. The variational principle
    9. The WKB approximation
    10. Scattering
    11. Quantum dynamics
    12. Afterword
    Appendix A. Linear algebra
    Index.

  • Resources for

    Introduction to Quantum Mechanics

    David J. Griffiths, Darrell F. Schroeter

    Welcome to the resources site

    Here you will find free-of-charge online materials to accompany this book. The range of materials we provide across our academic and higher education titles are an integral part of the book package whether you are a student, instructor, researcher or professional.

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to instructors adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.


    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email lecturers@cambridge.org

  • Authors

    David J. Griffiths, Reed College, Oregon
    David J. Griffiths received his B.A. (1964) and Ph.D. (1970) from Harvard University. He taught at Hampshire College, Mount Holyoke College, and Trinity College before joining the faculty at Reed College in 1978. In 2001–02 he was visiting Professor of Physics at the Five Colleges (University of Massachusetts, Amherst, Mount Holyoke, Smith, and Hampshire), and in the spring of 2007 he taught Electrodynamics at Stanford. He retired in 2009. Griffiths is a Consulting Editor of The American Journal of Physics, and a Fellow of the American Physical Society. In 1997 he was awarded the Millikan Medal by the American Association of Physics Teachers. He has spent sabbaticals at SLAC, Lawrence Berkeley Laboratory, and University of California, Berkeley. Although his Ph.D. was in elementary particle theory, his recent research is in electrodynamics and quantum mechanics. He is the author of over fifty articles and four books: Introduction to Electrodynamics (4th edition, Cambridge, 2013), Introduction to Elementary Particles (2nd edition, 2008), Introduction to Quantum Mechanics (2nd edition, Cambridge, 2016), and Revolutions in Twentieth-Century Physics (Cambridge, 2012).

    Darrell F. Schroeter, Reed College, Oregon
    Darrell F. Schroeter is a condensed matter theorist. He received his B.A. (1995) from Reed College and his Ph.D. (2002) from Stanford University where he was a National Science Foundation Graduate Research Fellow. Before joining the Reed College, Oregon, faculty in 2007, Schroeter taught at both Swarthmore College and Occidental College. His record of successful theoretical research with undergraduate students was recognized in 2011 when he was named as a KITP-Anacapa scholar.

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×