The Finite-Difference Modelling of Earthquake Motions
Waves and Ruptures
$183.00 (C)
- Authors:
- Peter Moczo, Univerzita Komenského v Bratislave, Slovakia
- Jozef Kristek, Univerzita Komenského v Bratislave, Slovakia
- Martin Gális, King Abdullah University of Science and Technology, Saudi Arabia
- Date Published: June 2014
- availability: Available
- format: Hardback
- isbn: 9781107028814
$
183.00
(C)
Hardback
Other available formats:
eBook
Looking for an examination copy?
If you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact collegesales@cambridge.org providing details of the course you are teaching.
-
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.
Read more- Based on graduate-level mathematics, provides a systematic tutorial and explains relevant background theory
- Includes an appendix on time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals
- Supported by online resources enabling application of the theory, including problem configurations along with their numerical solutions and computer codes - for further information and for access to the codes, please go to www.cambridge.org/computercodes
Reviews & endorsements
'This is an excellent book for those who wish to learn about the current state of the art of FD modeling of earthquake ground motion, bring themselves 'up to speed' in it, and apply it to their own research problems. Aside from the introductory chapters containing preliminary material, all chapters include detailed and comprehensive discussions of the various topics … Given that this book covers both past work and recent advances in the subject of the FD modeling of earthquake ground motion, it should make a significant contribution to the discipline.' Edward S. Krebes, The Leading Edge
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Date Published: June 2014
- format: Hardback
- isbn: 9781107028814
- length: 383 pages
- dimensions: 252 x 178 x 21 mm
- weight: 0.92kg
- contains: 71 b/w illus. 26 tables
- availability: Available
Table of Contents
Preface
Acknowledgements
List of symbols
1. Introduction
Part I. Mathematical-Physical Model:
2. Basic mathematical-physical model
3. Rheological models of continuum
4. Earthquake source
Part II. Time-Domain Numerical Modelling and the Finite-Difference Method:
5. Time-domain numerical methods
6. Introduction to the finite-difference (FD) method
7. 1D problems
8. Basic comparison of the 1D and 3D FD schemes
9. The FD method applied to seismic-wave propagation – a brief historical summary
10. Overview of the FD schemes for 3D problems
11. Velocity-stress staggered-grid scheme for an unbounded heterogeneous viscoelastic medium
12. Velocity-stress staggered-grid schemes for a free surface
13. Discontinuous spatial grid
14. Perfectly matched layer
15. Simulation of the kinematic sources
16. Simulation of the dynamic rupture propagation
17. Other wavefield excitations
18. Memory optimization
19. Complete FD algorithm for a 3D problem based on the 4th-order velocity-stress staggered-grid scheme
20. Finite-element (FE) method
21. TSN modelling of rupture propagation with the adaptive smoothing algorithm
22. Hybrid FD-FE method
Part III. Numerical Modelling of Seismic Motion at Real Sites:
23. Mygdonian Basin, Greece
24. Grenoble Valley, France
Part IV. Concluding Remarks: Appendix. Time-frequency (TF) misfit and goodness-of-fit criteria for quantitative comparison of time signals Miriam Kristekova, Peter Moczo, Josef Kristek and Martin Gális
References
Index.-
General Resources
Find resources associated with this title
Type Name Unlocked * Format Size Showing of
This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to instructors whose faculty status has been verified. To gain access to locked resources, instructors should sign in to or register for a Cambridge user account.
Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other instructors may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.
Supplementary resources are subject to copyright. Instructors are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.
If you are having problems accessing these resources please contact lecturers@cambridge.org.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×