Skip to content
Register Sign in Wishlist

An Introduction to Optimization on Smooth Manifolds

$49.99 (P)

  • Date Published: March 2023
  • availability: Available
  • format: Paperback
  • isbn: 9781009166157

$ 49.99 (P)

Add to cart Add to wishlist

Other available formats:
Hardback, eBook

Looking for an examination copy?

If you are interested in the title for your course we can consider offering an examination copy. To register your interest please contact providing details of the course you are teaching.

Product filter button
About the Authors
  • Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.

    • Provides readers rigorous, versatile tools motivated by applicative goals
    • Takes a charts-last approach to differential geometry that is more intuitive to an optimization researcher
    • Discusses topics of new importance, including worst-case complexity and geodesic convexity, getting readers up to speed with current research trends
    • Includes finer points and tricks of the trade that would normally require mentorship or years of study to pick up
    Read more

    Reviews & endorsements

    ‘With its inviting embedded-first progression and its many examples and exercises, this book constitutes an excellent companion to the literature on Riemannian optimization - from the early developments in the late 20th century to topics that have gained prominence since the 2008 book ‘Optimization Algorithms on Matrix Manifolds’, and related software, such as Manopt/Pymanopt/Manopt.jl.’ P.-A. Absil, University of Louvain

    ‘This new book by Nicolas Boumal focuses on optimization on manifolds, which appears naturally in many areas of data science. It successfully covers all important and required concepts in differential geometry with an intuitive and pedagogical approach which is adapted to readers with no prior exposure. Algorithms and analysis are then presented with the perfect mix of significance and mathematical depth. This is a must-read for all graduate students and researchers in data science.’ Francis Bach, INRIA

    See more reviews

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity


    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?


    Product details

    • Date Published: March 2023
    • format: Paperback
    • isbn: 9781009166157
    • length: 400 pages
    • dimensions: 253 x 178 x 20 mm
    • weight: 0.67kg
    • availability: Available
  • Table of Contents

    1. Introduction
    2. Simple examples
    3. Embedded geometry: first order
    4. First-order optimization algorithms
    5. Embedded geometry: second order
    6. Second-order optimization algorithms
    7. Embedded submanifolds: examples
    8. General manifolds
    9. Quotient manifolds
    10. Additional tools
    11. Geodesic convexity

  • Resources for

    An Introduction to Optimization on Smooth Manifolds

    Nicolas Boumal

    General Resources

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    This title is supported by one or more locked resources. Access to locked resources is granted exclusively by Cambridge University Press to instructors whose faculty status has been verified. To gain access to locked resources, instructors should sign in to or register for a Cambridge user account.

    Please use locked resources responsibly and exercise your professional discretion when choosing how you share these materials with your students. Other instructors may wish to use locked resources for assessment purposes and their usefulness is undermined when the source files (for example, solution manuals or test banks) are shared online or via social networks.

    Supplementary resources are subject to copyright. Instructors are permitted to view, print or download these resources for use in their teaching, but may not change them or use them for commercial gain.

    If you are having problems accessing these resources please contact

  • Author

    Nicolas Boumal, École Polytechnique Fédérale de Lausanne
    Nicolas Boumal is Assistant Professor of Mathematics at the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, and an Associate Editor of the journal Mathematical Programming. His current research focuses on optimization, statistical estimation and numerical analysis. Over the course of his career, Boumal has contributed to several modern theoretical advances in Riemannian optimization. He is a lead-developer of the award-winning toolbox Manopt, which facilitates experimentation with optimization on manifolds.

Related Books

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner Please see the permission section of the catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×
warning icon

Turn stock notifications on?

You must be signed in to your Cambridge account to turn product stock notifications on or off.

Sign in Create a Cambridge account arrow icon

Find content that relates to you

Join us online

This site uses cookies to improve your experience. Read more Close

Are you sure you want to delete your account?

This cannot be undone.


Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

Please fill in the required fields in your feedback submission.