Graphs, Surfaces and Homology
3rd Edition
- Author: Peter Giblin, University of Liverpool
- Date Published: August 2010
- availability: Available
- format: Paperback
- isbn: 9780521154055
Paperback
Other available formats:
Hardback, eBook
Looking for an inspection copy?
This title is not currently available on inspection
-
Homology theory is a powerful algebraic tool that is at the centre of current research in topology and its applications. This accessible textbook will appeal to mathematics students interested in the application of algebra to geometrical problems, specifically the study of surfaces (sphere, torus, Mobius band, Klein bottle). In this introduction to simplicial homology - the most easily digested version of homology theory - the author studies interesting geometrical problems, such as the structure of two-dimensional surfaces and the embedding of graphs in surfaces, using the minimum of algebraic machinery and including a version of Lefschetz duality. Assuming very little mathematical knowledge, the book provides a complete account of the algebra needed (abelian groups and presentations), and the development of the material is always carefully explained with proofs given in full detail. Numerous examples and exercises are also included, making this an ideal text for undergraduate courses or for self-study.
Read more- At last, this book is back in print, with updated references and redesigned illustrations
- Numerous examples introduce the main theorems of homology theory, enabling the reader to understand basic concepts and gradually develop their understanding
- No prerequisites beyond elementary algebra
Customer reviews
Not yet reviewed
Be the first to review
Review was not posted due to profanity
×Product details
- Edition: 3rd Edition
- Date Published: August 2010
- format: Paperback
- isbn: 9780521154055
- length: 272 pages
- dimensions: 227 x 151 x 15 mm
- weight: 0.39kg
- contains: 150 b/w illus. 200 exercises
- availability: Available
Table of Contents
Preface to the third edition
Preface to the first edition
List of notation
Introduction
1. Graphs
2. Closed surfaces
3. Simplicial complexes
4. Homology groups
5. The question of invariance
6. Some general theorems
7. Two more general theorems
8. Homology modulo 2
9. Graphs in surfaces
Appendix. Abelian groups
References
Index.
Sorry, this resource is locked
Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org
Register Sign in» Proceed
You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.
Continue ×Are you sure you want to delete your account?
This cannot be undone.
Thank you for your feedback which will help us improve our service.
If you requested a response, we will make sure to get back to you shortly.
×