Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T01:50:20.068Z Has data issue: false hasContentIssue false

22 - Anisotropic Properties of Black Phosphorus

from Part III

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 413 - 434
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

22.4 References

Geim, A. and Novoselov, K. S. The rise of graphene. Nat. Mater., 6, 183–91, 2007.CrossRefGoogle ScholarPubMed
Geim, A. Graphene: status and prospects. Science, 324, 1530–4, 2009.Google Scholar
Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. A roadmap for graphene. Nature, 490, 192200, 2012.Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. V., and Firsov, A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197200, 2005.Google Scholar
Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature, 438, 201–4, 2005.Google Scholar
Schwierz, F. Graphene transistors. Nat. Nanotechnol., 5, 487–96, 2010.Google Scholar
Wu, Y., Lin, Y.-M., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., Zhu, Y., and Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74–8, 2011.Google Scholar
Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229–32, 2008.Google Scholar
Bai, J., Zhong, X., Jiang, S., Huang, Y., and Duan, X. Graphene nanomesh. Nat. Nanotechnol., 5, 190–4, 2010.CrossRefGoogle ScholarPubMed
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8, 1102–20, 2014.Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805, 2010.Google Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147–50, 2011.CrossRefGoogle ScholarPubMed
Liu, H., Si, M., Najmaei, S., Neal, A. T., Du, Y., Ajayan, P.M., Lou, J., and Ye, P. D. Statistically study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett., 13, 2640–6, 2013.Google Scholar
Splendiani, A., Sun, L., Zhang, Y. B., Li, T. S., Kim, J., Chim, C. Y., Galli, G., and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271–5, 2010.Google Scholar
Yoon, Y., Ganapathi, K., and Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett., 11, 3768–73, 2011.CrossRefGoogle Scholar
Du, Y., Liu, H., Neal, A. T., Si, M., and Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett., 34, 1328–30, 2013.Google Scholar
Du, Y., Yang, L., Zhang, J., Liu, H., Majumdar, K., Kirsch, P. D., and Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett., 35, 599601, 2014.Google Scholar
Du, Y., Yang, L., Liu, H., and Ye, P. D. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Materials, 2, 092510, 2014.CrossRefGoogle Scholar
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033–41, 2014.Google Scholar
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., and Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372–7, 2014.Google Scholar
Xia, F., Wang, H., and Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458, 2014.CrossRefGoogle ScholarPubMed
Gomez, A. et al. Isolation and characterization of few-layer BP. 2D Mat., 1, 025001, 2014.Google Scholar
Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C., and Özyilmaz, B. Electrical field effect in ultra-thin black phosphorus. Appl. Phys. Lett., 104, 103106, 2014.Google Scholar
Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc., 36, 1344–63, 1914.Google Scholar
Warschauer, D. Electrical and optical properties of crystalline BP. J. Appl. Phys., 34, 1853–60, 1963.Google Scholar
Nishii, T., Maruyama, Y., Inabe, T., and Shirotani, I. Synthesis and characterization of BP intercalation compounds. Synth. Met., 18, 559–64, 1987.Google Scholar
Narita, S. et al. Electrical and optical properties of BP single crystals. Physica, 117B–118B, 422–4, 1983.Google Scholar
Baba, M., Nakamura, Y., Takeda, Y., Shibata, K., Morita, A., Koike, Y., and Fukase, T. Hall effect and two-dimensional electron gas in BP. J. Phys.: Condens. Matter, 4, 1535–44, 1992.Google Scholar
Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of BP single crystals. Physica, 105B, 99102, 1981.Google Scholar
Morita, A. Semiconducting BP. Appl. Phys. A: Mater. Sci. Process., 39, 227–42, 1986.Google Scholar
Shirotani, I. Growth of large single crystals of BP at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.CrossRefGoogle Scholar
Akahama, Y., Endo, S., and Narita, S. Electrical properties of single-crystal BP under pressure. Physica B + C, 139–140, 397400, 1986.Google Scholar
Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillation in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.Google Scholar
Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat., 2, 011001, 2015.CrossRefGoogle Scholar
Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.Google Scholar
Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett., 15, 4914–21, 2015.Google Scholar
Doganov, R. A., O’Farrell, E. C. T., Koening, S. P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F., Watanabe, K., Taniguchi, T., Neto, A. H. C., and Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by ver Waals passivation in an inert atmosphere. Nat. Commun., 6, 6647, 2014.CrossRefGoogle Scholar
Du, Y., Liu, H., Deng, Y., and Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, 8, 10035–42, 2014.Google Scholar
Deng, Y., Luo, Z., Conrad, N. J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P. M., Lou, J., Xu, X., and Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 8, 8292–9, 2014.Google Scholar
Haratipour, N., Robbins, M. C., and Koester, S. J. Black phosphorus p-MOSFET with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Device Lett., 36, 411–13, 2015.CrossRefGoogle Scholar
Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.CrossRefGoogle ScholarPubMed
Das, S., Demarteau, M., and Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano, 8, 11730–8, 2014.Google Scholar
Bridgman, P. W. Further note on black phosphorus. J. Am. Chem. Soc., 38, 609–12, 1914.Google Scholar
Keyes, R. W. The electric properties of black phosphorus. Phys. Rev., 92, 580–4, 1953.Google Scholar
Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.CrossRefGoogle Scholar
Li, X., Deng, B., Wang, X., Chen, S., Vaisman, M., Karato, S.-I., Pan, G., Lee, M. L., Cha, J., Wang, H., and Xia, F. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mat., 2, 031002, 2015.Google Scholar
Krebs, H., Weitz, H., and Worms, K. H. Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Anorg. Allg. Chem., 280, 119–33, 1955.Google Scholar
Brown, A. and Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst., 19, 684–5, 1965.Google Scholar
Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of black phosphorus single crystal. Physica B, 105, 99102, 1981.Google Scholar
Maruyama, Y., Inabe, T., Nishii, T., He, L., Dann, A. J., Shirotani, I., Fahy, M. R., and Willis, M. R. Electrical conductivity of black phosphorus–silicon compound. Synthetic Met., 29, 213–18, 1989.Google Scholar
Maruyama, Y., Inabe, T., He, L., and Oshima, K. Electrical conductivity of black phosphorous–germanium compound. Synthetic Met., 43, 4067–70, 1991.CrossRefGoogle Scholar
Lange, S., Schmidt, P., and Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem., 46, 4028–35, 2007.CrossRefGoogle ScholarPubMed
Nilges, T., Kersting, M., and Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 181, 1707–11, 2008.Google Scholar
Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., and Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Crystal Growth, 405, 610, 2014.Google Scholar
Yang, Z., Hao, J., Yuan, S., Lin, S., Yau, H. M., Dai, J., and Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 27, 3748–54, 2015.CrossRefGoogle ScholarPubMed
Qiu, G., Nian, Q., Deng, Y., Jin, S., Charnas, A. R., Cheng, G., Ye, P. D. Synthesis of black phosphorus films by ultra-fast laser exfoliation. In preparation.Google Scholar
Liu, H., Du, Y., Deng, Y., and Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44, 2732–43, 2015.Google Scholar
Takao, Y., Asahina, H., and Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn, 50, 3362–9, 1981.Google Scholar
Asahina, H., Shindo, K., and Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn, 51, 1192–9, 1982.Google Scholar
Goodman, N. B., Ley, L., and Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B, 27, 7440–50, 1983.Google Scholar
Rodin, A. S., Carbalho, A., and Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.Google Scholar
Favron, A, Gaufres, E., Fossard, F., Levesque, P. L., Heureux, A. P., Tang, N. Y.-W., Loiseau, A., Leonelli, R., Francoeur, R. S., and Martel, R. arXiv:1408.0345, 2014.Google Scholar
Wood, J. D., Wells, S. A., Jariwala, D., Chen, K. S., Cho, E., Sangwan, V. K., Liu, X., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 14, 6964–70, 2014.CrossRefGoogle ScholarPubMed
Molle, A., Grazianetti, C., Chiappe, D., Cinquanta, E., Cianci, E., Tallarida, G., and Fanciulli, M. Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater., 23, 4340–4, 2013.Google Scholar
Liu, H., Neal, A. T., Si, M., Du, Y., and Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Lett., 35, 795–7, 2014.Google Scholar
Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.CrossRefGoogle ScholarPubMed
Luo, X., Rahbarihagh, Y., Hwang, J. C. M., Liu, H., Du, Y., and Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett., 35, 1314–16, 2014.Google Scholar
Kim, J. S., Liu, Y., Zhu, W., Kim, S., Wu, D., Tao, L., Dodabalapur, A., Lai, K., and Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep., 5, 8989–95, 2015.Google Scholar
Li, L., Yang, F., Ye, G., Zhang, Z., Watanabe, K., Taniguchi, T., Wang, Y., Chen, X., and Zhang, Y. arXiv:1504.04731, 2015.Google Scholar
Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.Google Scholar
Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat. 2 011001, 2015.Google Scholar
Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.Google Scholar
Cao, Y., Mishchenko, A., Yu, G. L., Khestanova, E., Rooney, A. P., Prestat, E., Kretinin, A. V., Blake, P., Shalom, M. B., Woods, C., Chapman, J., Balakrishnan, G., Grigorieva, I. V., Novoselov, K. S., Piot, B. A., Potemski, M., Watanabe, K., Taniguchi, T., Haigh, S. J., Geim, A. K., and Gorbachev, R. V. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere, Nano Lett., 15, 4914–21, 2015.Google Scholar
Schroder, D. K. Semiconductor Material and Device Characterization. Wiley Interscience, 1990.Google Scholar
Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R., Lundstrom, M. S., Ye, P. D., and Xu, X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572, 2015.Google Scholar
Wu, J., Mao, N., Xie, L., Xu, H., and Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., 127, 2396–9, 2015.Google Scholar
Feng, Y., Zhou, J., Du, Y., Miao, F., Duan, C. G., Wang, B., and Wan, X. Raman spectra of few-layer phosphorene studied from first-principles calculations. J. Phys.: Condens. Matter, 27, 185302, 2015.Google Scholar
Wang, X., Jones, A. M., Seyler, K. L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., and Xia, F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517–21, 2015.Google Scholar
Li, L., Kim, J., Jin, K., Ye, G., Qiu, D. Y., Jornada, F., Shi, Z., Chen, L., Zhang, Z., Yang, F., Watanabe, K., Taniguchi, T., Ren, W., Louie, S. G., Chen, X., Zhang, Y., and Wang, F. Direct observation of layer-dependent electronic structure in phosphorene. Nat. Nanotechnol., 12, 2125, 2017.Google Scholar
Flores, E. et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett., 106, 022102, 2015.Google Scholar
Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys., 17, 4854–8, 2015.Google Scholar
Jain, A. and McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep., 5, 8501, 2015.CrossRefGoogle ScholarPubMed
Ong, Z., Cai, Y., Zhang, G., and Zhang, Y. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C, 118, 25272, 2014.Google Scholar
Liu, T.-H. and Chang, C.-C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale 7, 10648–54, 2015.Google Scholar
Lee, S. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573, 2015.Google Scholar
Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C., and Cahill, D.G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater., 27, 8017–22, 2015.Google Scholar
Rodin, A. S., Carvalho, A., and Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.Google Scholar
Fei, R. and Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 14, 28842889, 2014.Google Scholar
Peng, X., Wei, Q., and Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B, 90, 085402, 2014.Google Scholar
Caklr, D., Sahin, H., and Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 205421, 2014.Google Scholar
Wei, Q. and Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104, 251915, 2014.Google Scholar
Kou, L., Ma, Y., Smith, S. C., and Chen, C. Anisotropic ripple deformation in phosphorene. The J. of Phys. Chem. Lett., 5, 1509–13, 2015.Google Scholar
Jiang, J. and Park, H. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun., 5, 4727, 2014.Google Scholar
Fei, R. and Yang, L. Lattice vibration modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett., 105, 083120, 2014.Google Scholar
Wang, Y., Cong, C., Fei, R., Yang, W., Chen, Y., Cao, B., Yang, L., and Yu, T. Remarkable anistropic phono response in uniaxially strained few-layer black phosphorus. Nano Research, 8, 3944–53, 2015.Google Scholar
Du, Y., Maassen, J., Wu, W., Luo, Z., Xu, X., Ye, P.D., Auxetic black phosphorus: A 2D material with negative Poisson’s ratio. Nano Lett., 16, 6701–8, 2016.Google Scholar
Conley, H. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 13, 3626–30, 2013.Google Scholar
Ni, Z. et al. Uniaxial strain on graphene: Raman spectroscopy study and band gap opening. ACS Nano, 2, 2301–5, 2008.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×