Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T01:01:40.926Z Has data issue: false hasContentIssue false

Autoregressive modeling of fMRI time series: state space approaches and the general linear model

from Part I - State space methods for neural data

Published online by Cambridge University Press:  05 October 2015

A. Galka
Affiliation:
University of Kiel
M. Siniatchkin
Affiliation:
University of Frankfurt
U. Stephani
Affiliation:
University of Kiel
K. Groening
Affiliation:
University of Kiel
S. Wolff
Affiliation:
University of Kiel
J. Bosch-Bayard
Affiliation:
Cuban Neuroscience Center
T. Ozaki
Affiliation:
Tohoku University
Zhe Chen
Affiliation:
New York University
Get access

Summary

Introduction

In this chapter we discuss predictive modeling of series time obtained by functional magnetic resonance imaging (fMRI), representing an important case of spatiotemporal data. Following its development in the early 1990s, fMRI has become a well established approach to investigating brain activity in vivo (Huettel et al. 2004), providing temporally and spatially resolved recordings of the “blood oxygen level dependent” (BOLD) signal of neural tissue. fMRI time series consist of a temporal sequence of scans of the brain and the surrounding space (discretized into voxels), such that the resulting data sets may be stored as vector time series.

The practical work with fMRI time series poses considerable challenges in many aspects, including the huge dimensionality of the data, which usually is recorded from several 10 of voxels, and the plethora of artifacts and contaminations disturbing the data (Strother 2006). Further difficulties arise from the low temporal sampling frequency, typically well below 1 Hz, and the indirect relationship between the BOLD signal and the underlying neural processes.

Currently available approaches to fMRI time series analysis may be broadly classified into three groups:

  1. • exploratory methods, such as cluster analysis (Goutte et al. 1999), principal component analysis (PCA) (Anderson et al. 1999) and independent component analysis (ICA) (McKeown 2000);

  2. • massively univariate (voxel-wise) regression methods, implemented in software packages such as statistical parametric mapping (SPM) (Friston et al. 1994), the FMRIB software library (FSL) (Smith et al. 2004), or the analysis of functional Neuroimages (AFNI) package (Cox 1996);

  3. • generative dynamic models, based on specific assumptions regarding the properties of the underlying neural masses and the biophysical processes which produce the experimental data; as examples we mention dynamic causal modeling (DCM) (Friston et al. 2003) and the hemodynamic state space model (SSM) of Riera et al. (2004a).

Among these three groups of methods, the third may be interpreted as an example of predictive modeling, while for the second group this is possible only in a very limited sense, and essentially impossible for the first group.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. & Kitagawa, G., eds (1999). The Practice of Time Series Analysis, Berlin: Springer.
Akaike, H. & Nakagawa, T. (1988). Statistical Analysis and Control of Dynamic Systems, Dordrecht: Kluwer.
Anderson, A., Grash, D. & Avison, M. (1999). Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Journal of Magnetic Resonance Imaging 17, 795–815.CrossRefGoogle Scholar
Aoki, M. (1987). State Space Modeling of Time Series,Berlin: Springer.
Babadi, B., Obregon-Henao, G., Lamus, C., Hämäläinen, M. S., Brown, E. N. & Purdon, P. L. (2014). A subspace pursuit-based iterative greedy hierarchical solution to the neuromagnetic inverse problem. Neuroimage 87, 427–443.CrossRefGoogle Scholar
Bishop, C. M. (2006). Pattern Recognition and Machine Learning, New York: Springer.
Büchel, C. & Friston, K. J. (1998). Dynamic changes in effective connectivity characterised by variable parameter regression and Kalman filtering. Human Brain Mapping 6, 403–408.3.0.CO;2-9>CrossRefGoogle Scholar
Bullmore, E., Brammer, M., Williams, S.C.R., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R. & Sham, P. (1996). Statistical methods of estimation and inference for functional MR image analysis. Magnetic Resonance in Medicine 35, 261–277.CrossRefGoogle Scholar
Chui, C. K. & Chen, G. (1999). Kalman Filtering: with Real-time Applications, 3rd edn, Berlin: Springer.
Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research 29, 162–173.CrossRefGoogle Scholar
David, O., Kiebel, S., Harrison, L. M., Mattout, J., Kilner, J. M. & Friston, K. J. (2006). Dynamical causal modeling of evoked responses in EEG and MEG. Neuroimage 30, 1255–1272.CrossRefGoogle Scholar
Durbin, J. & Koopman, S. J. (2001). Time Series Analysis by State Space Methods, New York: Oxford University Press.
Fletcher, R. (1987). Practical Methods of Optimization, 2nd edn, New York: Wiley.
Friston, K. J., Fletcher, P., Josephs, O., Holmes, A. P., Rugg, M. D. & Turner, R. (1998b). Eventrelated fMRI: characterising differential responses. Neuroimage 7, 30–40.Google Scholar
Friston, K. J., Frith, C. D., Frackowiak, R. S. J., Mazziotta, J. & Evans, A. (1995). Characterizing evoked hemodynamics with fMRI. Neuroimage 2, 157–165.CrossRefGoogle Scholar
Friston, K. J., Harrison, L. & Penny, W. (2003). Dynamic causal modelling. Neuroimage 19, 1273–1302.CrossRefGoogle Scholar
Friston, K. J., Jezzard, P. & Turner, R. (1994). The analysis of functionalMRI time series. Human Brain Mapping 1, 153–171.CrossRefGoogle Scholar
Friston, K. J., Josephs, O., Rees, G. & Turner, R. P. (1998a). Nonlinear event-related responses in fMRI. Magnetic Resonance in Medicine 39, 41–52.Google Scholar
Galka, A., Ozaki, T., Bosch-Bayard, J. & Yamashita, O. (2006). Whitening as a tool for estimating mutual information in spatiotemporal data sets. Journal of Statistical Physics 124, 1275–1315.CrossRefGoogle Scholar
Galka, A., Siniatchkin, M., Stephani, U., Groening, K., Wolff, S., Bosch-Bayard, J. & Ozaki, T. (2010). Optimal HRF and smoothing parameters for FMRI time series within an autoregressive modeling framework. Journal of Integrative Neuroscience 9, 439–452.CrossRefGoogle Scholar
Galka, A., Yamashita, O., Ozaki, T., Biscay, R. & Valdés-Sosa, P.A. (2004). A solution to the dynamical inverse problem of EEG generation using spatiotemporal Kalman filtering. Neuroimage 23, 435–453.CrossRefGoogle Scholar
Glover, G. H. (1999). Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9, 416–429.CrossRefGoogle Scholar
Gössl, C., Fahrmeir, L. & Auer, D. P. (2001). Bayesian modeling of the hemodynamic response function in BOLD fMRI. Neuroimage 14, 140–148.CrossRefGoogle Scholar
Goutte, C., Toft, P., Rostrup, E., Nielsen, F.A. & Hansen, L. K. (1999). On clustering fMRI time series. Neuroimage 9, 298–310.CrossRefGoogle Scholar
Grewal, M. S. & Andrews, A. P. (2001). Kalman Filtering: Theory and Practice Using MATLAB, New York: Wiley-Interscience.
Harrison, L., Penny, W. D. & Friston, K. J. (2003). Multivariate autoregressive modelling of fMRI time series. Neuroimage 19, 1477–1491.CrossRefGoogle Scholar
Hartvig, N.V. (2000). Parametric modelling of functional magnetic resonance imaging data. Ph.D. thesis, Department of Theoretical Statistics, University of Aarhus, Aarhus.
Haynes, J.-D. & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7, 523–534.CrossRefGoogle Scholar
Huettel, S. A., Song, A.W. & McCarthy, G. (2004). Functional Magnetic Resonance Imaging, Sunderland: Sinauer Associates.
Kailath, T. (1968). An innovations approach to least-squares estimation – part I: Linear filtering in additive white noise. IEEE Transactions on Automatic Control 13, 646–655.CrossRefGoogle Scholar
Kailath, T. (1980). Linear Systems, Englewood Cliffs, NJ: Prentice-Hall.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82, 35–45.CrossRefGoogle Scholar
Lange, N. & Zeger, S. L. (1997). Non-linear Fourier time series analysis for human brain mapping by functional magnetic resonance imaging. Applied Statistics 46, 1–29.CrossRefGoogle Scholar
Locascio, J. J., Jennings, P. J., Moore, C. I. & Corkin, S. (1997). Time series analysis in the time domain and resampling methods for studies of functional magnetic resonance brain imaging. Human Brain Mapping 5, 168–193.3.0.CO;2-1>CrossRefGoogle Scholar
Luessi, M., Babacan, S. D., Molina, R., Booth, J. R. & Katsaggelos, A. K. (2014). Variational Bayesian causal connectivity analysis for fMRI. Frontiers in Neuroinformatics 8.CrossRefGoogle Scholar
Lütkepohl, H. (1993). Introduction to Multiple Time Series Analysis, 2nd edn, Berlin: Springer.
Marr, D. (1982). Vision: a Computational Investigation into the Human Representation and Processing of Visual Information, San Francisco, CA: W.H. Freeman.
McKeown, M. (2000). Detection of consistently task-related activation in fMRI data with hybrid independent component analysis. Neuroimage 11, 24–35.CrossRefGoogle Scholar
Nelder, J. A. & Mead, R. (1965). A simplex method for function minimization. Computer Journal 7, 308–313.CrossRefGoogle Scholar
Nelder, J. & Wedderburn, R. (1972). Generalized linear models. Journal of the Royal Statistical Society 135, 370–384.CrossRefGoogle Scholar
Ozaki, T. (1992). A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Statistica Sinica 2, 113–135.Google Scholar
Ozaki, T. (2012). Time Series Modeling of Neuroscience Data, London: Chapman & Hall/CRC Press.
Ozaki, T. & Iino, M. (2001). An innovation approach to non-gaussian time series analysis. Journal of Applied Probability 38, 78–92.CrossRefGoogle Scholar
Penny, W., Ghahramani, Z. & Friston, K. (2005a). Bilinear dynamical systems. Philosophical Transactions of the Royal Society, Series B 360, 983–993.Google Scholar
Penny, W., Kiebel, S. & Friston, K. (2003). Variational bayesian inference for fMRI time series. Neuroimage 19, 727–741.CrossRefGoogle Scholar
Penny, W. D., Trujillo-Barreto, N. J. & Friston, K. J. (2005b). Bayesian fMRI time series analysis with spatial priors. Neuroimage 24, 350–362.Google Scholar
Protter, P. (1990). Stochastic Integration and Differential Equations, Berlin: Springer-Verlag.
Purdon, P. L., Solo, V., Weisskoff, R. M. & Brown, E.N. (2001). Locally regularized spatiotemporal modeling and model comparison for functional MRI. Neuroimage 14, 912–923.CrossRefGoogle Scholar
Rao, C. R. & Toutenburg, H. (1995). Linear Models: Least Squares and Alternatives, Berlin: Springer.
Rauch, H. E., Tung, G. & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. American Institute of Aeronautics and Astronautics (AIAA) Journal 3, 1445–1450.CrossRefGoogle Scholar
Riera, J. J., Bosch-Bayard, J., Yamashita, O., Kawashima, R., Sadato, N., Okada, T. & Ozaki, T. (2004b). fMRI activation maps based on the NN-ARX model. Neuroimage 23, 680–697.Google Scholar
Riera, J. J., Watanabe, J., Iwata, K., Miura, N., Aubert, E., Ozaki, T. & Kawashima, R. (2004a). A state-space model of the hemodynamic approach: non-linear filtering of BOLD signal. Neuroimage 21, 547–567.Google Scholar
Shumway, R.H. & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the em algorithm. Journal of Time Series Analysis 3, 253–264.CrossRefGoogle Scholar
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P.R., Luca, M. D., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N. D., Brady, J.M. & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, 208–219.CrossRefGoogle Scholar
Solo, V., Purdon, P. L., Weisskoff, R. M. & Brown, E.N. (2001). A signal estimation approach to functional MRI. IEEE Transactions on Medical Imaging 20, 26–35.CrossRefGoogle Scholar
Strother, S. C. (2006). Evaluating fMRI preprocessing pipelines. IEEE Engineering in Medicine and Biology Magazine 25, 27–41.CrossRefGoogle Scholar
Sugawara, M. (1995). Tank model. In V. P., Singh, ed., Computer Models of Watershead Hydrology, Highlands Ranch, CO: Water Resources Publications, pp. 165–214.
Valdés-Sosa, P. A., Sánchez-Bornot, J. M., Lage-Castellanos, A., Vega-Hernández, M., Bosch-Bayard, J., Melie-García, L. & Canales-Rodríguez, E. (2005). Estimating brain functional connectivity with sparse multivariate autoregression. Philosophical Transactions of the Royal Society, Series B 360, 969–981.CrossRefGoogle Scholar
van Gerven, M. A. J., Cseke, B., de Lange, F. P. & Heskes, T. (2010). Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior. Neuroimage 50, 150–161.CrossRefGoogle Scholar
Wiener, N. (1949). The Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications, New York: Wiley.
Woolrich, M. W., Behrens, T. E. J. & Smith, S. M. (2004). Constrained linear basis sets for HRF modelling using variational Bayes. Neuroimage 21, 1748–1761.CrossRefGoogle Scholar
Worsley, K. J. & Friston, K. J. (1995). Analysis of fMRI time series revisited – again. Neuroimage 2, 173–181.CrossRefGoogle Scholar
Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F. & Evans, A. C. (2002). A general statistical analysis for fMRI data. Neuroimage 15, 1–15.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×