Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-21T01:48:14.129Z Has data issue: false hasContentIssue false

17 - The Early Mars Climate System

Published online by Cambridge University Press:  05 July 2017

Robert M. Haberle
Affiliation:
NASA Ames Research Center
R. Todd Clancy
Affiliation:
Space Science Institute, Boulder, Colorado
François Forget
Affiliation:
Laboratoire de Météorologie Dynamique, Paris
Michael D. Smith
Affiliation:
NASA-Goddard Space Flight Center
Richard W. Zurek
Affiliation:
NASA-Jet Propulsion Laboratory, California
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altheide, T., Chevrier, V. F., and Noe Dobrea, E. (2010) Mineralogical characterization of acid weathered phyllosilicates with implications for secondary Martian deposits, Geochim. Cosmochim. Acta, 74, 62326248.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions, Science, 297, 16781683.Google Scholar
Anders, E., and Owen, T. (1977) Mars and Earth – origin and abundance of volatiles, Science, 198, 453465.Google Scholar
Ansan, V., and Mangold, N. (2013) 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: implications for climatic evolution through time, J. Geophys Res., 118, 18731894, doi:10.1002/jgre.20117Google Scholar
Asplund, M., Grevesse, N., Sauval, A. J., and Scott, P. (2009). The chemical composition of the Sun. Annu. Rev. Astron. and Astrophys., 47, 481582, doi:10.1146/annurev.astro.46.060407.145222.Google Scholar
Atreya, S. K., Trainer, M. G., Franz, H. B., et al. (2013) Primordial argon isotop fractionation in the atmosphre of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss, Geophys. Res. Lett., 40, 15, doi:10.1002/2013GL057763.Google Scholar
Baker, V. R. (1982) The Channels of Mars, Texas University Press, Austin, TX.Google Scholar
Baker, V. R. (2001) Water and the Martian landscape, Nature, 412, 228236.Google Scholar
Baker, V. R., and Partridge, J. (1986) Small Martian valleys: pristine and degraded morphology, J. Geophys. Res., 91, 35613572.CrossRefGoogle Scholar
Baker, V. R., Kochel, C. R., Laity, J. E., and Howard, A. D. (1990) Spring sapping and valley network development, Geol. Soc. America, Spec. Paper 252, 235265.Google Scholar
Baker, V. R., Strom, R. G., Gulick, V. C., et al. (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature, 352, 589594.CrossRefGoogle Scholar
Baker, V. R., Dohm, J. M., Gulick, V. C., et al. (2000) Mars: Oceanus Borealis, ancient glaciers and the MEGAOUTFLO hypothesis, Lunar Planet Sci. XXXI, abstract 1863, Houston, TX.Google Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R. (2003) Spectroscopic identification of carbonate minerals in the Martian dust, Science, 301, 10841087.CrossRefGoogle ScholarPubMed
Baranov, Y. I., Lafferty, W. J., and Fraser, G. T. (2004) Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures, J. Mol. Spectrosc., 228, 432440. doi:10.1016/j.jms.2004.04.010.CrossRefGoogle Scholar
Barnhart, C. J., Howard, A. D., and Moore, J. M. (2009) Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars, J. Geophys. Res., 114, E01003, doi:10.1029/2008JE003122.Google Scholar
Batalha, N., Domagal-Goldman, S. D., Ramirez, R., and Kasting, J. F. (2015) Testing the early Mars H2–CO2 greenhouse hypothesis with a 1-D photochemical model, Icarus, 258, 337349, doi:10.1016/j.icarus.2015.06.016.Google Scholar
Beaty, D.W., Clifford, S. M., Borg, L. E., et al. (2005) Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life, Astrobiology, 5, 663689.Google Scholar
Bell, J. F., McSween, H. Y., Crisp, J. A., et al. (2000) Mineralogic and compositional properties of Martian soil and dust: results from Mars Pathfinder. J. Geophys. Res., 105, 17211755.Google Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al. (2005) Mars surface diversity as revealed by OMEGA/Mars Expresss observations, Science, 307, 15761581.Google Scholar
Bibring, J. P., Langevin, Y., Mustard, J. F., et al. (2006) Global mineralogical and aqueous mars history derived from OMEGA/Mars express data, Science, 312, 400404.Google Scholar
Bibring, J. P., Arvidson, R. E., Gendrin, A., et al. (2007) Coupled ferric oxides and sulfates on the Martian surface, Science, 317, 12061210.CrossRefGoogle ScholarPubMed
Bishop, J. L., Noe Dobrea, E. Z., McKeown, N. K., et al. (2008) Phyllosilicate diversity and past aqueous activity revealed at Mawrth Vallis, Mars, Science, 321, 830833.Google Scholar
Bishop, J. L., Parente, M., Weitz, C. M., et al. (2009) Mineralogy of Juventae Chasma: sulfates in the light-toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated ferric sulfate on the plateau, J. Geophys. Res., 114, E00D09, doi:10.1029/2009JE003352.Google Scholar
Boctor, N. Z., Alexander, C. M., Wang, J., and Hauri, E. (2003) The sources of water in Martian meteorites: clues from hydrogen isotopes, Geochim. Cosmochim. Acta, 67, 39713989.Google Scholar
Bogard, D. D, and Garrison, D. H. (2006) Ar–Ar dating of Martian chassignites, NWA 2737 and Chassigny, and nakhlite MIL 03346. In 38th Lunar Planet Sci. Conf., abstract 1108, Houston, TX.Google Scholar
Bogard, D. D., Clayton, R. N, Marti, K., et al. (2001) Martian volatiles: isotopic composition, origin, and evolution, Space Sci. Rev., 96, 425460.Google Scholar
Boothroyd, A. I., Sackmann, I.-J., and Fowler, W. A. (1991) Our Sun. II – Early mass loss of 0.1 solar mass and the case of the missing lithium. ApJ. 377, 318329.Google Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al. (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science, 297, 8185.Google Scholar
Boynton, W. V., Ming, D. W., Kounaves, S. P., et al. (2009) Evidence for calcium carbonate at the Mars Phoenix landing site, Science, 325, 6164.Google Scholar
Brain, D. A., and Jakosky, B. M. (1998) Atmospheric loss since the onset of the Martian geologic record: combined role of impact erosion and sputtering, J. Geophys. Res., 103, 2268922694.CrossRefGoogle Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., et al. (2001) Alteration assemblages in Martian meteorites: implications for near-surface processes, Space Science Reviews, 96, 365392.CrossRefGoogle Scholar
Brown, L. L., and Kasting, J. F. (1993) A carbon dioxide/methane greenhouse atmosphere on early Mars, In Lunar and Planet. Inst. Workshop on Early Mars: How Warm and How Wet?, 3.Google Scholar
Bullock, M. A., and Grinspoon, D. H. (2001) The recent evolution of climate on Venus, Icarus, 150, 1937.Google Scholar
Bullock, M. A., and Moore, J. M. (2007) Atmospheric conditions on early Mars and the missing layered carbonates, Geophys. Res. Lett., 34, doi:10.1029/2007GL030688.Google Scholar
Bullock, M. A., Stoker, C. R., McKay, C. P., and Zent, A.P. (1994) A coupled soil atmosphere model of H2O2 on Mars, Icarus, 107, 142154.Google Scholar
Burns, R. G. (1987) Ferric sulfates on Mars, J. Geopys. Res., 92, E570–E574.Google Scholar
Cabrol, N. A., and Grin, E. A. (1999) Distribution, classification and ages of Martian impact crater lakes, Icarus, 142, 160172.Google Scholar
Cabrol, N. A., and Grin, E. A. (2010) Lakes on Mars, Elsevier.Google Scholar
Caffau, E., Ludwig, H.-G., Steffen, M., et al. (2010) Solar chemical abundances determined with a CO5BOLD 3D model atmosphere, Solar Phys., 268, 255269, doi:10.1007/s11207-010-9541-4.Google Scholar
Carr, M. H. (1981) The Surface of Mars, Yale Press, New Haven, CT.Google Scholar
Carr, M. H. (1986) Mars – a water-rich planet? Icarus, 68, 187216.Google Scholar
Carr, M. H. (1989) Recharge of the early atmosphere of Mars by impact-induced release of CO2, Icarus, 79, 311327.Google Scholar
Carr, M. H. (1990) D/H on Mars – effects of floods, volcanism, impacts, and polar processes, Icaurs, 87, 210227.Google Scholar
Carr, M. H. (1996), Water on Mars, Oxford University Press, New York.CrossRefGoogle Scholar
Carr, M. H. (2006) The Surface of Mars, Cambridge University Press, London, UK.Google Scholar
Carr, M. H., and Clow, G. D. (1981) Martian channels and valleys: their characteristics, distribution and age, Icarus, 48, 91117.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. (2003) Oceans on Mars: an assessment of the observational evidence and possible fate, J. Geophys. Res. 108, E5, 5042 doi:10.1029/2002JE001963.CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. (2010) Geologic history of Mars, Earth and Planet. Sci. Lett. 294, 185203, doi:10.1016/j.epsl.2009.06.042CrossRefGoogle Scholar
Carr, M. H., and Head, J. W. (2014) Martian unbound water inventories: changes with time, in 8th International Conference on Mars, Abstract 1278, Pasadena, CA.Google Scholar
Carr, M., and Wänke, H. (1992) Earth and Mars: water inventories as clues to accretional histories, Icarus, 98, 6171.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., and Murchie, S. L. (2012) Composition, setting and timing of clays on Mars: an evolutionary pathway, in Third Int. Conf. on Early Mars, 7050.Google Scholar
Cartwright, J. A., Ott, U., Herrmann, S., and Agee, C. H. (2014) Modern atmospheric signatures in 4.4 Ga Martian meteorite NWA 7034, Earth and Planet. Sci. Lett., 400, 7787, doi:10.106/j.epsl.2014.05.008Google Scholar
Cassata, W. S., Shuster, D.L., Renne, P. R., and Weiss, B. P. (2012) Trapped Ar isotopes in meteorite ALH 84001 indicate Mars did not have a thick ancient atmosphere, Icarus, 221, 461465, doi:10.1016/j.icarus.2012.05.005.Google Scholar
Catling, D. C. (1999) A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration, J. Geophys. Res. 104, 1645316469.Google Scholar
Catling, D. C., and Claire, M. W. (2005) How Earth’s atmosphere evolved to an oxic state: a status report, Earth and Planet. Sci. Lett., 237, 120, doi:10.1016/j.epsl.2005.06.013.Google Scholar
Catling, D. C., Wood, S. E., Leovy, C., et al. (2006) Light-toned layered deposits in Juventae Chasma, Mars, Icarus, 181, 2651.Google Scholar
Catling, D. C., Claire, M. W., Zahnle, K. J., et al. (2010) Atmospheric origins of perchlorate on Mars and in the Atacama, J. Geophys. Res., 115, doi:10.1029/2009/JE003425.Google Scholar
Chambers, J. E. (2001) Making more terrestrial planets, Icarus, 152, 205224.Google Scholar
Chevrier, V., Poulet, F., and Bibring, J.-P. (2007) Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates, Nature, 448, 6063.Google Scholar
Christensen, P. R., Morris, R. V., Lane, M. D., et al. (2001) Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res., 106, 2387323885.Google Scholar
Chyba, C. F. (1990) Impact delivery and erosion of planetary oceans in the early inner Solar System, Nature, 343, 129133.Google Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al. (2005) Chemistry and mineralogy of outcrops at Meridiani Planum, Earth and Planet. Sci. Lett., 240, 7394.Google Scholar
Clifford, S. M., and Parker, T. J. (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains, Icarus, 154, 4079.Google Scholar
Colaprete, A., and Toon, O. B. (2003) Carbon dioxide clouds in an early dense Martian atmosphere, J. Geophys. Res., 108, 5025, doi:10.1029/2002JE001967.Google Scholar
Colaprete, A., Haberle, R. M., and Toon, O. B. (2003) Formation of convective carbon dioxide clouds near the south pole of Mars, J. Geophys. Res., 188 (E7), doi:10.1029/2003JE002053.Google Scholar
Craddock, R. A., and Greeley, R. (2009) Minimum estimates of the amount and timing of fases released into the Martian atmosphere from volcanic eruptions, Icarus, 204, 512526.Google Scholar
Craddock, R. A., and Howard, A. D. (2002) The case for rainfall on a warm, wet early Mars, J. Geophys. Res., 107, doi:10.1029/2001JE001505.Google Scholar
Craddock, R. A., and Maxwell, T. A. (1993) Geomorphic evolution of the Martian highlands through ancient fluvial processes, J. Geophys. Res., 98, 34533468.Google Scholar
Cull, S. C., Arvidson, R. E., Catalano, J. G., et al. (2010) Concentrated perchlorate at the Mars Phoenix landing site: evidence for thin film liquid water on Mars, Geophys. Res. Lett., 37, doi:10.1029/2010GL045269.Google Scholar
Dauphas, N. (2003) The dual origin of the terrestrial atmosphere, Icarus, 165, 326339.CrossRefGoogle Scholar
Dauphas, N., and Pourmand, A. (2011) Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo, Nature, 473, 489492.Google Scholar
Davila, A. F., Fairén, A. G., Stokes, C. R., et al. (2013) Evidence for Hesperian glaciation along the Martian dichotomy boundary, Geology, 41, 755758. doi:10.1130/G34201.1Google Scholar
Di Achille, G., and Hynek, B. M. (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys, Nature Geoscience, 3, 459463.Google Scholar
Dohm, J. M., Baker, V. R., Boynton, W. V., et al. (2009) GRS evidence and the possibility of paleooceans on Mars, Planet. Space Sci., 57, 664684.Google Scholar
Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T., et al. (2008) Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era, Earth and Planet. Sci. Lett., 269, 2940,Google Scholar
Drake, M. J., and Righter, K. (2002) Determining the composition of the Earth, Nature, 416, 3944.Google Scholar
Dreibus, G., and Wänke, H. (1987) Volatiles on Earth and Mars: a comparison, Icarus, 71, 225240.Google Scholar
Ehlmann, B. (2010) Diverse aqueous environments during Mars’ first billion years: the emerging view from orbital visible-near infrared spectroscopy, Geochem. News, 142.Google Scholar
Ehlmann, B. L., and Edwards, C. S. (2014) Carbon sequestration on Mars, Geology, doi:10.1130/G36983.1Google Scholar
Ehlmann, B. L., Mustard, J. F., Murchie, S. L. et al. (2008a) Orbital identification of carbonate-bearing rocks on Mars, Science, 322, 18281832.Google Scholar
Ehlmann, B. L., Mustard, J. F., Fassett, C. I., et al. (2008b) Clay minerals in delta deposits and organic preservation potential on Mars, Nature Geoscience, 1, 355358.Google Scholar
Ehlmann, B. L., Mustard, J. F., Swayze, G. A., et al. (2009) Identification of hydrated silicate minerals on Mars using MRO-CRISM: geologic context near Nili Fossae and implications for aqueous alteration, J. Geophys. Res, 114, doi:10.1029/2009JE003339.Google Scholar
Ehlmann, B. L., Mustard, , and Murchie, J. F. (2010) Geologic setting of serpentine deposits on Mars. Geophys. Res. Letters, 37, doi:10.1029/2010GL042596.CrossRefGoogle Scholar
Ehlmann, B. L., Mustard, J. F., Murchie, S. L., et al. (2011) Subsurface water and clay mineral formation during the early history of Mars, Nature, 479, 5360.Google Scholar
Ehlmann, B. L., Berger, G., Mangold, N., et al. (2013) Geochemical consequences of widespread clay mineral formation in Mars’ ancient crust, Space Sci. Rev., 174, 329364.Google Scholar
Elkins-Tanton, L. T., Hess, P. C., and Parmentier, E. M. (2005) Possible formation of ancient crust on Mars through magma ocean processes, J. Geophys. Res., 110, doi:10.1029/2005JE002480.Google Scholar
Fairén, A. G. (2010) A cold and wet Mars, Icarus, 208, 165175, doi:10.1016/j.icarus.2010.01.006Google Scholar
Fairén, A. G., Fernández-Remolar, D., Dohm, J. M., et al. (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars, Nature, 431, 423426.Google Scholar
Fairén, A. G., Davila, A. F., Gago-Duport, L., et al. (2009) Stability against freezing of aqueous solutions on early Mars, Nature, 459, 401404.Google Scholar
Fairén, A. G., Chevrier, V., Abramov, O., et al. (2010) Noachian and more recent phyllosilicates in impact craters on Mars, Proc. Nat. Acad. Sci. U.S.A., 107, 1209512100.Google Scholar
Fairén, A. G., Davila, A. F., Gago-Duport, L., et al. (2011) Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars, Nature, 4, 667670, doi:10.1038/ngeo1243.Google Scholar
Farquhar, J., and Johnston, D. T. (2008) The oxygen cycle of the terrestrial planets: insights into the processing and history of oxygen in surface environments, Rev. Mineral. Geochem., 68, 463492.Google Scholar
Farquhar, J., and Thiemens, M. H. (2000) Oxygen cycle of the Martian atmosphere–regolith system: Δ17O of secondary phases in Nakhla and Lafayette, J. Geophys. Res., 105, 1199111998.CrossRefGoogle Scholar
Farquhar, J., Savarino, J., Jackson, T. L., and Thiemens, M. H. (2000) Evidence of atmospheric sulfur in the Martian regolith from sulphur isotopes in meteorites, Nature, 404, 5052.Google Scholar
Farquhar, J., Kim, S.-T., and Masterson, A. (2007) Implications from sulfur isotopes of the Nakhla meteorite for the origin of sulfate on Mars, Earth Planet. Sci. Lett., 264, 18.Google Scholar
Farrand, W. H., Glotch, T. D., Rice, J. W., et al. (2009) Discovery of jarosite within the Mawrth Vallis region of Mars: implications for the geologic history of the region, Icarus, 204, 478488.Google Scholar
Fassett, C. I., and Head, J. W. (2005) New evidence for fluvial sedimentary deposits on Mars: deltas formed in a crater lake in the Nili Fossae region, in 36th Lunar and Planet. Sci. Conference, League City, TX, Abstract No. 1098.Google Scholar
Fassett, C. I., and Head, J. W. (2008) Valley network-fed, open-basin lakes on Mars: distribution and implications for Noachian surface and subsurface hydrology, Icarus, 198, 3756, doi:10.1016/j.icarus.2008.06.016.Google Scholar
Fassett, C. I., and Head, J. W. (2010) Conditions on early Mars: scenarios, transitions and events. In 41st Lunar Planet Sci. Conf., abstract 1951, Houston, TX.Google Scholar
Fassett, C. I., and Head, J. W. (2011) Sequence and timing of conditions on early Mars, Icarus, 211, 12041214.Google Scholar
Forget, F., and Pierrehumbert, R. T. (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science, 278, 12731276.Google Scholar
Forget, F., Hourdin, F., and Talagrand, O. (1998) CO2 snowfall on Mars: simulation with a general circulation model, Icarus, 131, 302316, doi:10.1006/icar.1997.5874.Google Scholar
Forget, F., Wordsworth, R., Millour, E., et al. (2013) 3D modeling of the early Martian climate under a denser CO2 atmosphere: temperatures and CO2 ice clouds, Icarus, 222, 8189, doi:10.106/j.icarus.2012.10.019.Google Scholar
Fox, J. L. (1993) On the escape of oxygen and hydrogen from Mars, Geophys. Res. Lett., 20, 18471850.Google Scholar
Fox, J. L. (2007) Comment on the papers “Production of hot nitrogen atoms in the Martian thermosphere” by F. Bakalian and “Monte Carlo computations of the escape of atomic nitrogen from Mars” by F. Bakalian and R. E. Hartle, Icarus, 192, 296301.Google Scholar
Fox, J. L., and Hać, A. B. (1997a) The 15N/14N isotope fractionation in dissociative recombination of N2+, J. Geophys. Res., 102, 91919204.Google Scholar
Fox, J. L, and Hać, A. B. (1997b) Spectrum of hot O at the exobases of the terrestrial planets, J. Geophys. Res. 102, 2400524011.Google Scholar
Fox, J. L., and Hać, A. B. (2010) Isotope fractionation in the photochemical escape of O from Mars, Icarus, 208, 176191.Google Scholar
Frey, H. V. (2003) Buried impact basins and the earliest history of Mars, 6th International Conf. on Mars, Pasadena, CA.Google Scholar
Gaidos, E., and Marion, G. (2003) Geological and geochemical legacy of a cold early Mars, J. Geophys. Res., 198, doi:10.1029/2002JE002000.Google Scholar
Gaillard, F., and Scaillet, B. (2009) The sulfur content of volcanic gases on Mars, Earth Planet. Sci. Lett., 279, 3443.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P. et al. (2005) Sulfates in Martian layered terrains: the OMEGA/Mars Express view, Science, 307, 15871591.Google Scholar
Glandorf, D. L., Colaprete, A., Tolbert, M. A., and Toon, O. B. (2002) CO2 snow on Mars and early Earth: experimental constraints, Icarus, 160, 6672, doi:10.1006/icar.2002.6953.Google Scholar
Glavin, D. P., Freissinet, C., Miller, K. E., et al. (2013) Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest Aeolian deposit in Gale Crater, J. Geophys. Res., 118, 19551973, doi:10.1002/jgre.20144.Google Scholar
Glotch, T. D., and Rogers, A. D. (2007) Evidence for aqueous deposition of hematite- and sulfate-rich light-toned layered deposits in Aureum and Iani Chaos, Mars, J. Geophys. Res., 112, E06001, doi:10.1029/2006JE002863.Google Scholar
Glotch, T. D., Bandfield, J.L., Tomabene, L. L., et al. (2010) Distribution and formation of chlorides and phyllosilicates in Terra Sirenum, Mars, Geophys. Res. Lett., 37, doi:10.1029/2010GL044557.Google Scholar
Golden, D. C., Ming, D. W., Morris, R. V., and Graff, T. G. et al. (2008) Hydrothermal synthesis of hematite spherules and jarosite: implications for diagenesis and hematite spherule formation in sulfate outcrops at Meridiani Planum, Mars, American Mineralogist, 93, 12011214.Google Scholar
Golombek, M. P., and Bridges, N. T. (2000) Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site, J. Geophys. Res., 105, 18411853.Google Scholar
Golombek, M. P., Grant, J. A., Crumpler, L., et al. (2006) Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars, J. Geophys. Res., 111, doi:10.1029/2006JE002754.Google Scholar
Gooding, J. L. (1992) Soil mineralogy and chemistry on Mars – possible clues from salts and clays in SNC meteorites, Icarus, 99, 2841.Google Scholar
Gough, D. O. (1981) Solar interior structure and luminosity variations, Solar Physics, 74, 2134, doi:10.1007/BF00151270.Google Scholar
Grant, J. A., Wilson, S. A., Mangold, N., et al. (2014) The timing of alluvial activity in Gale Crater, Mars, Geophys. Res. Lett., 41, 11421148, doi:10.1002/2013GL058909.Google Scholar
Greeley, R., and Schneid, B. D. (1991) Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus, Science, 254, 996998.Google Scholar
Greenwood, J. P., Riciputi, L. R., McSween, H. Y. Jr., Taylor, L. A. (2000) Modified sulfur isotopic compositions of sulfides in the nakhlites and Chassigny, Geochim. Cosmochim. Acta, 64, 11211131.Google Scholar
Greenwood, J. P., Itoh, S., Sakamoto, N., Vicenzi, E. P., and Yurimoto, H. (2008) Hydrogen isotope evidence for loss of water from Mars through time, Geophys. Res. Lett., 35, doi:10.1029/2007GL032721.Google Scholar
Greenwood, J. P., Itoh, S., Sakamoto, N., Vicenzi, E. P., and Yurimoto, H. (2010) D/H zoning in apatite of Martian meteorites QUE 94201 and Los Angeles: implications for water on Mars, Amer. Met. Soc., 73, 5347.Google Scholar
Grott, M., Morschhauser, A., Breuer, D., and Hauber, E. (2011) Volcanic outgassing of CO2 and H2O on Mars, Earth and Planet. Sci. Lett., 308, 391400.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al. (2005) Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth and Planet. Sci. Lett., 240, 1172, doi:10.1016/j.epsl.2005.09.039.CrossRefGoogle Scholar
Grotzinger, J. P., Sumner, D. Y., Kah, L. C., et al. (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 343, 6169, doi:10.1126/science.1242777.Google Scholar
Grotzinger, J. P., Gupta, S., Malin, M. C., et al. (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars, Science, 350, 6257, doi:10.1126/science.aac7575.Google Scholar
Gruszka, M., and Borysow, A. (1998) Computer simulation of the far infrared collision induced absorption spectra of gaseous CO2, Mol. Phys., 93, 10071016, doi:10.1080/002689798168709.Google Scholar
Gulick, V. C. (1998) Magmatic intrusions and a hydrothermal origin for fluvial valleys on Mars, J. Geophys. Res., 103, 1936519387.Google Scholar
Guzik, J. A., and Cox, A. N. (1995) Early solar mass loss, element diffusion, and solar oscillation frequencies, ApJ., 448, 905914.Google Scholar
Guzik, J. A., and Mussack, K. (2010) Exploring mass loss, low-Z accretion, and convective overshoot in solar models to mitigate the solar abundance problem, ApJ, 713, 11081119, doi:10.1088/0004-637X/713/2/1108.Google Scholar
Haberle, R. M. (1998) Early Mars climate models, J. Geophys. Res., 103, 2846728480, doi:10/1029/98JE01396.Google Scholar
Haberle, R. M. (2013) Estimating the power of Mars’ greenhouse effect, Icarus, 223, 619620.Google Scholar
Haberle, R. M., Tyler, D., McKay, C. P., and Davis, W. L. (1994) A model for the evolution of CO2 on Mars, Icarus, 109, 102120, doi:10.1006/icar.1994.1079.Google Scholar
Haberle, R. M., McKay, C. P., Schaeffer, J. et al. (2001) On the possibility of liquid water on present day Mars, J. Geophys. Res., 106, 2331723326, doi:10.1029/2000JE001360.Google Scholar
Haberle, R. M., Forget, F., Colaprete, A., et al. (2008) The effect of ground ice on the Martian seasonal CO2 cycle, Planet. and Space Sci., 56, 251255.Google Scholar
Haberle, R. M., Kahre, M. A., Hollingsworth, J. L., et al. (2012) A cloud greenhouse effect on Mars: significant climate change in the recent past?, in 43rd Lunar and Planetary Science Conf., abstract 1665, Houston, TX.Google Scholar
Halevy, I., and Eiler, J. M. (2011) Carbonates in ALH 84001 formed in a short-lived hydrothermal system, in 42nd Lunar and Planet. Sci. Conf., abstract 2512, Houston, TX.Google Scholar
Halevy, I., Zuber, M. T., and Schrag, D. P. (2007) A sulfur dioxide climate feedback on early Mars, Science, 318, 19031907, doi:10.1126/science.1147039.Google Scholar
Halevy, I., Pierrehumbert, R. T., and Schrag, D. P. (2009) Radiative transfer in CO2-rich paleoatmospheres, J. Geophys. Res., 114, doi:10.1029/2009JD01915.Google Scholar
Hansen, J., Sato, M., Nazarenko, L., et al. (2002) Climate forcings in Goddard Institute for Space Studies SI2000 simulations, J. Geophys. Res., 107, doi:10.1029/2001JD001143.Google Scholar
Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J., and Kasting, J. F. (2008) A revised, hazy methane greenhouse for the Archean Earth, Astrobiology, 8, 11271137.Google Scholar
Hartmann, W. K. (2004), Updating the crater count chronology system for Mars, in 35th Lunar and Planet. Sci. Conf., March 15–19, League City, TX, Abstract No. 1374.Google Scholar
Hartmann, W. K., and Neukum, G. (2001) Cratering chronology and the evolution of Mars, Space Sci. Rev., 96, 165194.CrossRefGoogle Scholar
Hausrath, E. M., and Olsen, A. A. (2013) Using the chemical composition of carbonate rocks on Mars as a record of secondary interaction with liquid water, Am. Mineral., 98, 897906.Google Scholar
Head, J. W., and Marchant, D. R. (2014) The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system, Antarctic Science, 26, 774800, doi:10.1017/S0954102014000686.Google Scholar
Head, J. W., Heisinger, H., Ivanov, M. A., et al. (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data, Science, 286, 21342137.Google Scholar
Hecht, M. H., Kounaves, S. P., Quinn, R. C., et al. (2009) Detection of perchlorate and the soluble chemistry of Martian soil: findings from the Phoenix Mars Lander, Science, 325, 6467.Google Scholar
Hirschmann, M. M., and Withers, A. C. (2008) Ventilation of CO2 from a reduced mantle and consequences for the early Martian greenhouse, Earth and Planet. Sci. Lett., 270, 147155.Google Scholar
Hoke, M. R. T., Hynek, B. M., and Tucker, G. E. (2011) Formation timescales of large Martian valley networks, Earth and Planet. Sci. Lett., 312, 112.Google Scholar
Howard, A. D. (2007) Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion and variable hydrologic forcing, Geomorphology, 91, 332363.Google Scholar
Howard, A. D., Moore, J. M., and Irwin, R. P. (2005) An intense terminal epoch of widespread fluvial activity on Mars: 1. Valley network incision and associated deposits, J. Geophys. Res., 110, E12S14, doi:10.1029/2005JE002459.Google Scholar
Hu, R., Kass, D. M., Ehlmann, B. L., and Yung, G. E. (2015) Tracing the fate of carbon and the atmospheric evolution of Mars, Nature, 6, doi:10.1038/ncomms10003.Google Scholar
Huck, F., Jobson, D. J., Park, S. K., et al. (1977) Spectrophotometric and color estimates of the Viking Lander sites, J. Geophys. Res., 82, 44014411.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature, 505, doi:10.1038/nature12764.Google Scholar
Hunten, D. M., and Donahue, T. M. (1976) Hydrogen loss from the terrestrial planets, Ann. Rev. Earth and Planet. Sci., 4, 265292, doi:10.1146/annurev.ea.04.050176.001405.Google Scholar
Hunten, D. M., Pepin, R. O., and Walker, J. C. G. (1987) Mass fractionation in hydrodynamic escape, Icarus, 69, 532549.Google Scholar
Hutchins, K. S., and Jakosky, B. M. (1996) Evolution of Martian atmospheric argon: implications for sources of volatiles, J. Geophys. Res., 101, 1493314949.Google Scholar
Hutchins, K. S., Jakosky, B. M., and Luhmann, J. G. (1997) Impact of a paleomagnetic field on sputtering loss of Martian atmospheric argon and neon, J. Geophys. Res., 102, 91839190.Google Scholar
Hynek, B. M., and Phillips, R. J. (2003) New data reveal mature, integrated drainage systems on Mars indicative of past precipitation, Geology, 31, 757760.Google Scholar
Hynek, B. M., and Phillips, R. J. (2008) The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin, Earth Planet. Sci. Lett., 274, 214220.Google Scholar
Hynek, B. M., Beach, M., and Hoke, M. R. T. (2010) Updated global map of Martian valley networks and implications for climate and hydrologic processes, J. Geophys. Res., 115, doi:10.1029/2009JE003548.Google Scholar
Ingersoll, A. P. (1970) Mars: occurrence of liquid water, Science, 168, 972973, doi:10.1126/science.168.3934.972.CrossRefGoogle ScholarPubMed
Irwin, R. P., and Howard, A. D. (2002) Drainage basin evolution in Noachian Terra Cimmeria, Mars, J. Geophys. Res., 107, doi:10.1029/2001JE001818.Google Scholar
Irwin, R. P., Maxwell, A. D., Howard, A. D., Craddock, R. A., and Moore, J. M. (2005) An intense terminal epoch of widespread fluvial activity of Mars: 2. Increased runoff and paleolake development, J. Geophys. Res., 110, E12S15, doi:10.1029/2005JE002460.Google Scholar
Jakosky, B. M., and Jones, J. H. (1997) The history of Martian volatiles, Rev. Geophys., 35, 116.Google Scholar
Jakosky, B. M., and Mellon, M. T. (2004) Water on Mars, Physics Today, 57, doi:10.1063/1.1752425.Google Scholar
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L. (1994) Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus, 111, 271288.Google Scholar
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015) Initial results from the MAVEN mission, Geophys. Res. Lett., 42, 87918802, doi:10.1002/2015GL065271Google Scholar
Jensen, H. B., and Glotch, T. D. (2011) Investigation of the near-infrared spectral character of putative Martian chloride deposits, J. Geophys. Res., 116, doi:10.1029/2011JE003887.Google Scholar
Jerolmack, D. J., Mohrig, D., Zuber, M. T., and Byrne, S. (2004) A minimum time for the formation of Holden Northeast fan, Mars, Geophys. Res. Lett., 31, doi:10.1029/2004GL021326.Google Scholar
Johnson, S. S., Mischna, M. A., Grove, T. L., and Zuber, M. T. (2008) Sulfur-induced greenhouse warming on early Mars, J. Geophys. Res., 113, doi:10.1029/2007JE002962.Google Scholar
Johnson, S. S., Pavlov, A. A., and Mischna, M. A. (2009) Fate of SO2 in the ancient Martian atmosphere: implications for transient greenhouse warming, J. Geophys. Res., 114, doi:10.1029/2008JE003313.Google Scholar
Jull, A. J. T., Eastoe, C. J., and Cloudt, S. (1997) Isotopic composition of carbonates in the SNC meteorites, Allan Hills 84001 and Zagami, J. Geophys. Res., 102 (E1), 16631670.Google Scholar
Jull, A. J. T., Beck, J. W., Burr, G. S., et al. (1999) Isotopic evidence for abiotic organic compounds in the Martian meteorite, Nakhla, Meter. and Planet. Sci., 34, p.A60.Google Scholar
Kahn, R. (1985) The evolution of CO2 on Mars, Icaurs, 62, 175190.Google Scholar
Karlsson, H. R., Clayton, R. N, Gibson, E. K., and Mayeda, T. K. (1992) Water in SNC meteorites: evidence for a Martian hydrosphere, Science, 255, 14091411.Google Scholar
Kass, D. M., and Yung, Y. L. (1999) Water on Mars: isotopic constraints on exchange between the atmosphere and surface, Geophys. Res. Lett., 26, 36533656.Google Scholar
Kasting, J. F. (1982) Stability of ammonia in the primitive terrestrial atmosphere, J. Geophys. Res., 87, 30913098.Google Scholar
Kasting, J. F. (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus, Icarus, 74, 472494.Google Scholar
Kasting, J. F. (1991) CO2 condensation and the climate of early Mars, Icarus, 94, 113.Google Scholar
Kasting, J. F. (1997) Planetary science update: the early Mars climate question heats up, Science, 278, 1245.Google Scholar
Kasting, J. F., and Catling, D. C. (2003) Evolution of a habitable planet, Annu. Rev. Astron. Astrophys., 41, 429–263, doi:10.1146/annurev.astro.41.071601.170049.Google Scholar
Kasting, J. F., and Pollack, J. B. (1983) Loss of water from Venus. I – Hydrodynamic escape of hydrogen, Icarus, 53, 479508.Google Scholar
Kasting, J. F., Pollack, J. B., and Crisp, D. (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, J. Atmos. Chem., 1, 403428.Google Scholar
Kasting, J. F., Zahnle, K. J., Pinto, J. P., and Young, A. T. (1989) Sulfur, ultraviolet radiation, and the early evolution of life, Origins of Life, 19, 95108.Google Scholar
Kasting, J. F., Brown, L. L., and Acord, J. M. (1992) Was early Mars warmed by ammonia?, in Lunar and Planetary Inst. Workshop on the Martian Surface and Atmosphere Through Time, 8485.Google Scholar
Kasting, J. F., Pavlov, A. A., and Siefert, J. L. (2001) A coupled ecosystem–climate model for predicting methane concentration in the Archean atmosphere, Origins Life Evol. Biosphere, 31, 271285.Google Scholar
Kelly, N. J., Boynton, W. V., Kerry, K, et al. (2006) Seasonal polar carbon dioxide frost on Mars: CO2 mass and columnar thickness distribution, J. Geophys. Res., 111, doi:10.1029/2006JE002678.Google Scholar
Kerridge, J. F., Signer, P., Wieler, R., et al. (1991) Long-term changes in composition of solar particles implanted in extraterrestrial materials, The Sun in Time, Sonnett, C., Giampapa, M., and Matthews, M. (ed), Univ. Arizona Press, Tucson, AZ, 389.Google Scholar
Kite, E. S., Williams, J.-P., Lucas, A., and Oded, A. (2014) Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters, Nature Geosci., 5, 335339.Google Scholar
Kleine, T., Münker, C., Mezger, K., and Palme, H. (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry, Nature, 418, 952955.Google Scholar
Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. (2013) Habitable zones around main-sequence stars: new estimates, ApJ., 765, doi:10.1088/0004-637X/765/2/131.Google Scholar
Kounaves, S. P., Hecht, M. H., Kapit, J., et al. (2010) Soluble sulfate in the Martian soil at the Phoenix landing site, Geophy. Res. Lett., 37, doi:10.1029/2010GL042613.Google Scholar
Kounaves, S. P., Chaniotakis, N. A., Chevrier, V. F., et al. (2014) Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications, Icarus, 232, 226231, doi:10.1016/j.icarus.2014.01.016.Google Scholar
Kral, T. A., Bring, K. M., Miller, S. L., and McKay, C. P. (1998) Hydrogen consumption by methanogens on the early Earth, Origins Life Evol. Biosphere, 28, 311319.Google Scholar
Krasnopolsky, V. A. (2000) Note: On the deuterium abundance on Mars and some related problems, Icarus, 148, 597602.Google Scholar
Krasnopolsky, V. A. (2002) Mars’s upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water, J. Geophys. Res., 107, doi:10.1029/2001JE001809.CrossRefGoogle Scholar
Krasnopolsky, V. A., Bjoraker, G. L., Mumma, M. J., and Jennings, D. E. (1997) High-resolution spectroscopy of Mars at 3.7 and 9 µm: a sensitive search of H2O2, H2CO, HCl, and CH4, and detection of HDO, J. Geophys. Res., 102, 65256534.Google Scholar
Krasnopolsky, V. A., Mumma, M. J., and Gladstone, G. R. (1998) Detection of atomic deuterium in the upper atmosphere of Mars, Science, 280, 15761580.Google Scholar
Krasnopolsky, V. A., Maillard, J. P., Owen, T. C., et al. (2007) Oxygen and carbon isotope ratios in the Martian atmosphere, Icarus, 192, 396403.Google Scholar
Kreslavsky, M. A., and Head, J. W. (2005) Mars at very low obliquity: atmospheric collapse and the fate of volatiles, Geophys. Res. Lett., 32, doi:10.1029/2005GL022645.Google Scholar
Kuhn, W. R., and Atreya, S. K. (1979) Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth, Icarus, 37, 207213.Google Scholar
Kurokawa, H., Sato, M., Ushioda, M., et al. (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in Martian meteorites, Earth Planet. Sci. Lett., 394, 179185.Google Scholar
Kuzmin, R. O., Mironenko, M. V., and Evdokimova, N. A. (2009) Spectral and thermodynamic constraints on the existence of gypsum at the Juventae Chasma on Mars, Planet. Space Sci., 57, 975981.Google Scholar
Lammer, H., Lichtenegger, H. I. M., Kolb, C., et al. (2003) Loss of water from Mars: implications for the oxidation of the soil, Icarus, 165, 925.Google Scholar
Lapen, T. J., Righter, M., Brandon, A. D., et al. (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars, Science, 328, 347351.Google Scholar
Lee, D.-C., and Halliday, A. N. (1997) Core formation on Mars and differentiated asteroids, Nature, 388, 854857.Google Scholar
Leovy, C. B. (1977) The atmosphere of Mars. Scientific American, 237, July, 3443.Google Scholar
Leovy, C. B, and Mintz, Y. A. (1969) Numerical simulation of the atmospheric circulation and climate of Mars, J. Atmos. Sci., 26, 11671190, doi:10.1175/1520-0469(1969)026<1167:NSOTAC> 2.0CO:2Google Scholar
Leshin, L. A. (2000) Insights into Martian water reservoirs from analyses of Martian meteorite QUE 94201, Geophys. Res. Lett., 27, 20172020.Google Scholar
Leshin, L. A., Epstein, S., and Stolper, E. M. (1996) Hydrogen isotope geochemistry of SNC meteorites, Geochim. Cosmochim. Acta, 60, 26352650.Google Scholar
Lichtenberg, K. A., Arvidson, R. E., Morris, R. V., et al. (2010) Stratigraphy of hydrated sulfates in the sedimentary deposits of Aram Chaos, Mars, J. Geophys. Res., 115, doi:10.1029/2009JE003353.Google Scholar
Lin, D. N. C. (1986) The nebular origin of the solar system, in The Solar System: Observations and Interpretations, Prentice-Hall, 2877.Google Scholar
Liu, S. C., and Donahue, T. M. (1976) The regulation of hydrogen and oxygen escape from Mars, Icarus, 28, 231246.Google Scholar
Lucchitta, B. K., Ferguson, H. M., and Summers, C. (1986) Sedimentary deposits in the northern lowland plains, Mars, J. Geophys. Res., 91, E166–E174.Google Scholar
Luhmann, J. G. (1997) Correction to “The ancient oxygen exosphere of Mars: implications for atmosphere evolution” by Zhang et al., J. Geophys. Res., 102 (E1), 16371638.Google Scholar
Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G. (1992) Evolutionary impact of sputtering of the Martian atmosphere by O+ pick up ions, Geophys. Res. Lett., 19, 21512154.Google Scholar
Lunine, J. I., Chambers, J,. Morbidelli, A., and Leshin, L. A. (2003) The origin of water on Mars, Icarus, 165, 18.Google Scholar
Lunine, J. I., O’Brien, D. P., Raymond, S. N., et al. (2011) Dynamical models of terrestrial planet formation, Adv. Sci. Lett., 4, 325223.Google Scholar
Madeleine, J.-B., Head, J.W., Forget, F., et al. (2013) What defines a Martian glacial state? Analysis of the Mars climate system under past conditions using the new LMD global climate model, in 44th Lunar and Planetary Science Conf., abstract 1895, Houston, TX.Google Scholar
Mahaffy, P. R., Webster, C. R., Atreya, S. L., et al. (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity Rover, Science, 341, 263266, doi:10.1126/science.1237966.Google Scholar
Mahaffy, P. R., Webster, C. R., Stern, J. C., et al. (2014) The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars, Science, submitted.Google Scholar
Malin, M. C., and Edgett, K. S. (2003) Evidence for persistent flow and aqueous sedimentation on early Mars, Science, 302, 19311934.Google Scholar
Mangold, N., Quantin, C., Anson, V., et al. (2004) Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area, Science, 305, 7881.Google Scholar
Manning, C. V., McKay, C. P., and Zahnle, K. J. (2006) Thick and thin models of the evolution of carbon dioxide on Mars, Icarus, 180, 3859, doi:10.1016/j.icarus.2005.08.014.Google Scholar
Manning, C. V., McKay, C. P., and Zahnle, K. J. (2009) Impact processing of nitrogen on early Mars, Icarus, 199, 273285.Google Scholar
Marion, G. M., Catling, D. C., Zahnle, K. J., and Claire, M. W. (2010) Modeling aqueous perchlorate chemistries with applications to Mars, Icarus, 207, 675685.Google Scholar
Marti, K., and Mathew, K. J. (2000) Ancient Martian nitrogen, Geophys. Res. Lett., 27, 14631466.Google Scholar
Massé, M., Bourgeois, O., Le Mouélic, S., et al. (2010) Martian polar and circumpolar sulfate-bearing deposits: sublimation tills derived from the north polar cap, Icarus, 209, 434451.Google Scholar
Mathew, K. J., and Marti, K. (2001) Evolution of Martian volatiles: nitrogen and noble gas components in ALH 84001 and Chassigny, J. Geophys. Res., 106, 14011422.Google Scholar
Mathew, K. J., Kim, J. S., and Marti, K. (1998) Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites, Meteorit. Planet. Sci., 33, 655664.Google Scholar
Matsubara, Y., Howard, A. D., and Drummond, S. A. (2011) Hydrology of early Mars: 1. Lake basins, J. Geophys. Res., 116, doi:10.1029/2010JE003739.Google Scholar
Matsui, T., and Abe, Y. (1987) Evolutionary tracks of the terrestrial planets, Earth, Moon, and Planets, 39, 207214.Google Scholar
Matsui, T., Tajika, E., and Abe, Y. (1988) Climate and impact: climatic change on Mars caused by impact basin formation, in 19th Lunar and Planet Sci. Conf., 742.Google Scholar
McAdam, A. C., Zolotov, M. Y., Mironenko, M. V., and Sharp, T. G. (2008) Formation of silica by low-temperature acid alteration of Martian rocks: physical-chemical constraints, J. Geophys. Res., 113, doi:10.1029/2007JE003056.Google Scholar
McElroy, M.B. (1972) Mars: an evolving atmosphere, Science, 175, 443445.Google Scholar
McElroy, M. B., Kong, T. Y., and Yung, Y. L. (1977) Photochemistry and evolution of Mars’s atmosphere: a Viking perspective, J. Geophys. Res., 82, 43794388.Google Scholar
McGouldrick, K., Toon, O. B., and Grinspoon, D. H. (2011) Sulfuric acid aerosols in the atmospheres of the terrestrial planets, Planet. Space Sci., 59, 934941.Google Scholar
McKay, C. P. (2004) Wet and cold thick atmosphere on early Mars, J. Phys. IV France, 121, 283288, doi:10.1051/jp4:2004121020.Google Scholar
McKay, C. P., Lorenz, R. D., and Lunine, J. I. (1999) Analytical solutions for the antigreenhouse effects: Titan and the early Earth, Icarus, 137, 5661.Google Scholar
McKeown, N. K., Bishop, J. L., Noe Dobrea, E. Z., et al. (2009) Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate, J. Geophys. Res., 114, doi:10.1029/2008JE003301.Google Scholar
McLennan, S. M., and Grotzinger, J. P. (2008) The sedimentary rock cycle on Mars. The Martian Surface: Composition, Mineralogy and Physical Properties. Bell, J., (Ed.), Cambridge Univ. Press, New York, 541577.Google Scholar
McSween, J. Y. (1994) What we have learned about Mars from the SNC meteorites, Meteoritics, 29, 757779.Google Scholar
Melosh, H. J., and Vickery, A. M. (1989) Impact erosion of the primordial atmosphere of Mars, Nature, 338, 487489.Google Scholar
Meunier, A., Petit, S., Ehlmann, B. L., et al. (2012) Magmatic precipitation as a possible origin of Noachian clays on Mars, Nature Geoscience, 5, 739743.Google Scholar
Michalski, G., Böhlke, J. K., and Thiemens, M. (2004) Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions, Geochim. Cosmochim. Acta, 68, 40234038.Google Scholar
Michalski, J. R., and Niles, P. B. (2010) Deep crustal carbonate rocks exposed by meteor impact on Mars. Nature Geosci., 3, 751755, doi:10.1038/ngeo971.Google Scholar
Milliken, R. E., Swayze, G. A., Arvidson, R. E., et al. (2008) Opaline silica in young deposits on Mars, Geology, 36, 847850.Google Scholar
Milliken, R. E., Grotzinger, J. P., and Thomson, B. J. (2010) Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater. Geophy. Res. Lett., 37, doi:10.1029/2009GL041870.Google Scholar
Minton, D. A., and Levison, H. F. (2011) Why is Mars small? A new terrestrial planet formation model including planetesimal-driven migration, in 42nd Lunar and Planetary Science Conf., abstract 2577, Houston, TX.Google Scholar
Minton, D. A., and Malhotra, R. (2007) Assessing the massive young Sun hypothesis to solve the warm young Earth puzzle, ApJ, 660, 17001706.Google Scholar
Mischna, M. A., Kasting, J. F., Pavlov, A., and Freedman, R. (2000) Influence of carbon dioxide clouds on early Martian climate, Icarus, 145, 546554, doi:10.1006/icar.2000.6380.Google Scholar
Mischna, M. A., Lee, C., and Richardson, M. (2012) Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present, J. Geophys. Res., 117, doi:1029/2012JE004110.Google Scholar
Mischna, M. A., Baker, V., Milliken, R., et al. (2013) effects of obliquity and water vapor/trace gas greenhouses in the early Martian climate, J. Geophys. Res., 118, 560576, doi:10.1002/jgre.20054.Google Scholar
Miura, Y. N., and Sugiura, N. (2000) Martian atmosphere-like nitrogen in the orthopyroxenite ALH 84001, Geochim. Cosmochim. Acta, 64, 559572.Google Scholar
Moore, J. M., and Wilhelms, D. E. (2001) Hellas as a possible site of ancient ice-covered lakes on Mars, Icarus, 154, 258276.Google Scholar
Moore, J. M., Howard, A. D., Dietrich, W. E., Schenk, P. M. (2003) Martian layered fluvial deposits: implications for Noachian climate scenarios, Geophys. Res. Lett., 30, doi:10.1029/2003GL01900.Google Scholar
Morel, P., Provost, J., and Berthomieu, G. (1997) Updated solar models, Astron. and Astrophy., 327, 349360.Google Scholar
Morris, R. V., Shelfer, T. D., Scheinost, A. C., et al. (2000) Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res., 105, 17571817.Google Scholar
Morris, R. V., Ruff, S. W., Gellert, R., et al. (2010) Identification of carbonate-rich outcrops on Mars by the Spirit Rover, Science, 329, 421424.Google Scholar
Murchie, S. L., Mustard, J. F., Ehlmann, B. L., et al. (2009a) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter, J. Geophys. Res., 114, doi:10.1029/2009JE003342.Google Scholar
Murchie, S., Roach, L., Seelos, F., et al. (2009b) Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling, J. Geophys. Res., 114, doi:10.1029/2009JE003343.Google Scholar
Mustard, J. F., Murchie, S. L., Pelkey, S. M., et al. (2008) Hydrated silicate minerals on mars observed by the Mars Reconnaissance Orbiter CRISM instrument, Nature, 454, 305309.Google Scholar
Mustard, J. F., Ehlmann, B. L., Murchie, S. L., et al. (2009) Composition, morphology, and stratigraphy of Noachian crust around the Isidis Basin, J. Geophys. Res., 114, doi:10.1029/2009JE003349.Google Scholar
Newman, M. J., and Rood, R. T. (1977) Implications of solar evolution for the Earth’s early atmosphere, Science, 198, 10351037.Google Scholar
Nier, A. O., and McElroy, M. B. (1977) Composition and structure of Mars’ upper atmosphere – results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 43414350.Google Scholar
Niles, P. B., Boynton, W. V., Hoffman, J. H., et al. (2010) Stable isotope measurements of Martian atmospheric CO2 at the Phoenix landing site, Science, 329, 13341337.Google Scholar
Niles, P. B., Catling, D. C., Berger, G., et al. (2013) Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments, Space Sci. Rev., 174, 301328.Google Scholar
Novak, R. E., Mumma, M. J., and Villanueva, G. L. (2011) Measurement of the isotopic signatures of water on Mars: implications for studying methane, Planet. Space Sci., 59, 163168.Google Scholar
Nyquist, L. E., Bogard, D. D, Shih, C.-Y., et al. (2001) Ages and geologic histories of Martian meteorites, Space Sci. Rev., 96, 105154.Google Scholar
Osterloo, M. M., Hamilton, V. E., Bandfield, J. L., et al. (2008) Chloride-bearing materials in the southern highlands of Mars, Science, 319, 16511654.Google Scholar
Ott, U. (1988) Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny, Geochim. Cosmochim. Acta, 52, 19371948.Google Scholar
Owen, T. (1992) The composition and early history of the atmosphere of Mars, in Mars, Kieffer, H. H., et al., editors, 818834, University of Arizona Press, Tucson.Google Scholar
Owen, T., and Bar-Nun, A. (2001) From the interstellar medium to planetary atmospheres via comets, In Collisional Processes in the Solar System, ed. Marov, M. Ya. and Rickman, H., Astrophysics and Space Science Library 261, 249264, Kluwer.Google Scholar
Owen, T., Maillard, J.-P., de Bergh, C., and Lutz, B. L. (1988) Deuterium on Mars: the abundance of HDO and the value of D/H, Science, 240, 17671770.Google Scholar
Ozima, M., and Nakazawa, K. (1980) Origin of rare gases in the Earth, Nature, 284, 313316.Google Scholar
Parker, T. J., Saunders, R. S., and Schneeberger, D. M. (1989) Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary, Icarus, 82, 111145.Google Scholar
Parker, T. J., Gorsline, D. S., Saunders, R. S., et al. (1993) Coastal geomorphology of the Martian northern plains, J. Geophys. Res., 98, 1106111078.Google Scholar
Pavlov, A. A., Brown, L. L., and Kasting, J. F. (2001) UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere, J. Geophys. Res., 106, 2326723288.Google Scholar
Pepin, R.O. (1991) On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles, Icarus, 92, 279.Google Scholar
Perron, J. T., Mitrovica, J. X., Manga, M., et al. (2007) Evidence for an ancient Martian ocean in the topography of deformed shorelines, Nature, 447, 840843.Google Scholar
Pestova, O. N., Myund, L. A., Khripun, M. K., and Prigaro, A. V. (2005) Polythermal study of the systems M(ClO4)2-H2O (M2+ = Mg2+, Ca2+, Sr2+, Ba2+), Russian J. Appl. Chem., 78, 409413.Google Scholar
Petty, G. W. (2006) A First Course in Atmospheric Radiation, 2nd edition, Sundog, Madison WI.Google Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al. (2001) Ancient geodynamics and global-scale hydrology on Mars, Science, 291, 25872591.Google Scholar
Phillips, R. J., Davis, B. J. Tanaka, K. L., et al. (2011) Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars, Science, 332, 838841.Google Scholar
Pieri, D. C. (1980) Geomorphology of Martian valleys, Ph.D. dissertation, Cornell University.Google Scholar
Pierrehumbert, R. T. (2010) Principles of Planetary Climate, Cambridge University Press, Cambridge, UK.Google Scholar
Pierrehumbert, R. T., and Erlick, C. (1998) On the scattering greenhouse effect of CO2 ice clouds, J. Atmos. Sci., 55, 18971902.Google Scholar
Pollack, J. B. (1979) Climatic change on the terrestrial planets, Icarus, 37, 479553.Google Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K. (1987) The case for a wet, warm climate on early Mars, Icarus, 71, 203224.Google Scholar
Postawko, S. E., and Kuhn, W. R. (1986) Effect of the greenhouse gases (CO2, H2O, SO2) on Martian paleoclimate, J. Geophys. Res., 91, D431D438.Google Scholar
Poulet, F., Bibring, J.-P., Mustard, J. F., (2005) Phyllosilicates on Mars and implications for early Martian climate, Nature, 438, 623627.Google Scholar
Ramirez, R. M., Kopparapu, R. K., Zugger, M. E., et al. (2014) A CO2–H2 greenhouse for early Mars, Nature Geosci., 7, 5963, doi:10.1038/ngeo2000.Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., and Audard, M. (2005) Evolution of the solar activitiy over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å) ApJ., 622, 680694.Google Scholar
Righter, K., Pando, K., and Danielson, L. R. (2009) Experimental evidence for sulfur-rich Martian magmas: implications for volcanism and surficial sulfur sources, Earth Planet. Sci. Lett., 288, 235243.Google Scholar
Roach, L. H., Mustard, J. F., Lane, M. D., et al. (2010a) Diagenetic haematite and sulfate assemblages in Valles Marineris, Icarus, 207, 659674.Google Scholar
Roach, L. H., Mustard, J. F., Swayze, G., et al. (2010b) Hydrated mineral stratigraphy of Ius Chasma, Valles Marineris, Icarus, 206, 253268.Google Scholar
Romanek, C. S., Grady, M. M, Wright, I. P., et al. (1994) Record of fluid-rock interactions on Mars from the meteorite ALH 84001, Nature, 372, 655657.Google Scholar
Rossow, W. B. (1978) Cloud microphysics: analysis of the clouds of Earth, Venus, Mars, and Jupiter, Icarus, 36, 150, doi:10.1016/0019-1035(78)90072-6.Google Scholar
Sackmann, I.-J., and Boothroyd, A. I. (2003) Our Sun. V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars, ApJ, 583, 10241039, doi:10.1086/345408.Google Scholar
Sagan, C. (1977) Reducing greenhouses and the temperature history of Earth and Mars, Nature, 269, 224236.Google Scholar
Sagan, C., and Chyba, C. (1997) The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases, Science, 276, 12171221.Google Scholar
Sagan, C., and Mullen, G. (1972) Earth and Mars: evolution of the atmospheres and surface temperatures, Science, 177, 5256.Google Scholar
Sasaki, S., and Nakazawa, K. (1988) Origin and isotopic fractionation of terrestrial Xe: hydrodynamic fractionation during escape of the primordial H2–He atmosphere, Earth Planet. Sci. Lett., 89, 323334.Google Scholar
Scott, E. R. D., and Krot, A. N. (2005) Chondrites and their components, In Treatise on Geochemistry, vol. 1, Meteorites, Comets and Planets. Elsevier, Amsterdam.Google Scholar
Sefton-Nash, E., and Catling, D. C. (2008) Hematitic concretions at Meridiani Planum, Mars: their growth timescale and possible relationship with iron sulfates, Earth Planet. Sci. Lett., 269, 365375.Google Scholar
Segura, T. L., Toon, O. B., Colaprete, A., and Zahnle, K. (2002) Environmental effects of large impacts on Mars, Science, 292, 19771980.Google Scholar
Segura, T. L. Toon, O. B., and Colaprete, A. (2008) Modeling the environmental effects of moderate-sized impacts on Mars, J. Geophys. Res., 113, doi:10.1029/2008/JE003147.Google Scholar
Segura, T. L. McKay, C. P., and Toon, O. B. (2012) An impact-induced, stable, runaway climate on Mars, Icarus, 220, 144148, doi:10.1016/j.icarus.2012.04.013.Google Scholar
Sekiya, M., Hayashi, C., and Kanazawa, K. (1981) Dissipation of the primordial terrestrial atmosphere due to irradiation of the solar far-UV during T Tauri stage, Progress in Theoretical Physics, 66, 13011316.Google Scholar
Settle, M. (1979) Formation and deposition of volcanic sulfate aerosols on Mars, J. Geophys. Res., 84, 83438354.Google Scholar
Smith, M. L., Claire, M. W., Catling, D. C., and Zahnle, K. J. (2014) The formation of sulfate, nitrate and perchlorate salts in the Martian atmosphere, Icarus, 231, 5164.Google Scholar
Soto, A., Richardson, M. I., and Newman, C. E. (2010) Global constraints on rainfall on ancient Mars: oceans, lakes, and valley networks, In 41st Lunar and Planet. Sci. Conf., Abstract 2395, Houston, TX.Google Scholar
Soto, A., Mischna, M. A., and Richardson, M. I. (2011) Ancient Mars and atmospheric collapse. In Fourth International Workshop on the Mars Atmosphere: Modelling and Observations, Paris.Google Scholar
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al. (2006) Two years at Meridiani Planum: results from the Opportunity Rover, Science, 313, 14031407.Google Scholar
Squyres, S. W., Arvidson, R. E., Ruff, S., et al. (2008) Detection of silica-rich deposits on Mars, Science, 320, 10631067.Google Scholar
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al. (2009) Exploration of Victoria Crater by the Mars Rover Opportunity, Science, 324, 10581061.Google Scholar
Stephens, S. K. (1995a) Carbonate formation on Mars: experiments and models, Ph.D. Thesis, California Institute of Technology, Pasadena, 276.Google Scholar
Stephens, S. K. (1995b) Carbonates on Mars: experimental results. In 26th Lunar Planet. Sci. Conf., 13551356.Google Scholar
Stepinski, T. F., and O’Hara, W. J. (2003) Vertical analysis of Martian drainage basins. In 35th Lunar Planet. Sci. Conf., abstract 1659.Google Scholar
Stillman, D. E., and Grimm, R. E. (2011) Dielectric signatures of adsorbed and salty liquid water at the Phoenix landing site, Mars, J. Geophys. Res., 116, doi:10.1029/2011JE003838.Google Scholar
Sugiura, N., and Hoshino, H. (2000) Hydrogen-isotopic compositions in Allan Hills 84001 and the evolution of the Martian atmosphere, Met. Planet. Sci., 35, 373.Google Scholar
Sutter, B., Boynton, W. V., Ming, D. W., et al. (2012) The detection of carbonate in the Martian soil at the Phoenix Landing site: a laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus, 213, 290296.Google Scholar
Swayze, G. A., Ehlmann, B. L., Milliken, R. E., et al. (2008) Discovery of the acid-sulfate mineral alunite in Terra Sirenum, Mars, using MRO CRISM: possible evidence for acid-saline lacustrine deposits? AGU Fall Meeting, abstract P44A-04, San Francisco, CA.Google Scholar
Swenson, F. J., and Faulkner, J. (1992) Lithium dilution through main-sequence mass loss, ApJ., 395, 654674.Google Scholar
Swindle, T. D., and Jones, J. H. (1997) The xenon isotopic composition of the primordial Martian atmosphere: contributions from solar and fission components, J. Geophys. Res., 102, 16711678.Google Scholar
Swindle, T. D., Caffee, M. W., and Hohenberg, C. M. (1986) Xenon and other noble gases in shergottites, Geochim. Cosmochim. Acta, 50, 10011015.Google Scholar
Terasaki, H. Frost, D. J., Rubie, D. V., and Langenhorst, F. (2005) The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation, Earth and Planet. Sci., Lett., 232, 379392.Google Scholar
Thiemens, M. H. (2006) History and applications of mass-independent isotope effects, Ann. Rev. Earth and Planet. Sci., 34, 217262.Google Scholar
Thomas, P. C., James, P. B., Calvin, W. M., et al. (2009) Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes, Icarus, 203, 352375.Google Scholar
Tian, F., Kasting, J. F., Solomon, S. C. (2009) Thermal escape of carbon from the early Martian atmosphere, Geophys. Res. Lett., 36, doi:10.1029/2006GL036513.Google Scholar
Tian, F., Claire, M. W., Haqq-Misra, , et al. (2010) Photochemical and climate consequences of sulfur outgassing on early Mars, Earth Planet. Sci. Lett., 295, 412418.Google Scholar
Toner, J. D., Catling, D. C., and Light, B. (2013) Experimental formation and persistence of metastable aqueous salt solutions on Mars, in Present-day Habitability of Mars Conference, UCLA.Google Scholar
Toon, O. B., Pollack, J. B., and Sagan, C. (1977) Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus, 30, 664696.Google Scholar
Turk-Chièze, S., Piau, L., and Couvidat, S. (2011) The solar energetic balance revisited by young solar analogs, helioseismology, and neutrinos, ApJ, 731 :L29, doi:10.1088/2041-8205/731/2/L29.Google Scholar
Urata, R. A., and Toon, O. B. (2013) Simulations of the Martian hydrologic cycle with a general circulation model: implications for the ancient Martian climate, Icarus, 226, doi/10.1016/j.icarus.2013.05.014Google Scholar
Villanueva, G. L., Mumma, M. J., Novak, R. E., et al. (2008) Mapping the D/H of water on Mars using high-resolution spectroscopy, 3rd International Workshop on Mars Atmosphere: Modeling and Observations, Williamsburg, VA, 9101.Google Scholar
Villanueva, G. L., Mumma, M. J., Novak, R. E., et al. (2015) Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs, Science, 348, 218221, doi:10.1126/science.aaa3630Google Scholar
Vogel, N., Heber, V. S., Baur, H., et al. (2011) Argon, krypton, and xenon in the bulk solar wind as collected by the Genesis mission, Geochim. Cosmochim. Acta, 75, 30573071.Google Scholar
Wadhwa, M. (2008) Redox conditions on small bodies, the Moon, and Mars, Rev. Mineral. and Geochem., 68, 493510, doi:10.2138/rmg.2008.68.1Google Scholar
Wallis, M. K. (1989) C, N, O isotope fractionation on Mars: implications for crustal H2O and SNC meteorites, Earth Planet. Sci. Lett., 93, 321324.Google Scholar
Wang, A., Korotev, R. L., Jolliff, B. L., et al. (2006) Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit Rover in Gusev Crater, Mars, J. Geophys., Res., 111, doi:10.1029/2005JE002516.Google Scholar
Wänke, H., and Dreibus, G. (1994) Chemistry and accretion history of Mars, Phil. Trans. R. Soc. Lond., A. 349, 285293.Google Scholar
Watson, L. L., Hutcheon, I. D., Epstein, S., and Stolper, E. M. (1994) Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites, Science, 265, 8690.Google Scholar
Webster, C. R., Mahaffy, P. R., Glesch, G. J., et al. (2013) Isotope ratios of H, C and O in CO2 and H2O of the Martian atmosphere, Science, 341, 260263, doi:10.1126/science.1237961.Google Scholar
Weitz, C. M., Anderson, R. C., Bell III, J. F., et al. (2006) Soil grain analyses at Meridiani Planum, Mars, J. Geophys. Res., 111, doi:10.1029/2005JE002541.Google Scholar
Werner, S. C. (2008) The early Martian evolution – constraints from basin formation ages, Icarus, 194, 4560.Google Scholar
Werner, S. C., and Tanaka, K. I. (2011) Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars, Icarus, 215, 603607, doi:10.1016/j.icarus.2011.07.024.Google Scholar
Wetzel, D. T., Rutherford, M. J., Jacobsen, S. D., Hauri, E. H., and Saal, A. E. (2013) Degassing of reduced carbon from planetary basalts, Proc. Natl. Acad. Sci., 20, 80108013, doi:10.1073/pnas.1219266110.Google Scholar
Whitmire, D. P., Doyle, L. R., and Reynolds, R. T. (1995) A slightly more massive young Sun as an explanation for warm temperatures on early Mars, J. Geophys. Res., 100, 54575464.Google Scholar
Wiens, R. C. (1988) Noble gases released by vacuum crushing of EETA 79001 glass, Earth Planet. Sci. Lett., 91, 5565.Google Scholar
Wiens, R. C., Becker, R. H., and Pepin, R. O. (1986) The case for Martian origin of the shergottites, II. Trapped and indigenous gas components in EETA 79001 glass, Earth Plan. Sci. Lett., 77, 149158.Google Scholar
Willson, L. A., Bowen, G. H., and Struck-Marcell, C. (1987) Mass loss on the main sequence, Comments on Modern Physics, Part C – Comments on Astrophysics, 12, 1734.Google Scholar
Wiseman, S. M., Arvidson, R. E., Andrews-Hanna, J. C., et al. (2008) Phyllosilicate and sulfate-hematite deposits within Miyamoto Crater in southern Sinus Meridiani, Mars, Geophy. Res. Lett., 35, doi:10.1029/2008GL035363.Google Scholar
Wolf, E. T., and Toon, O. B. (2010) A fractal aggregate model of early Earth organic hazes: UV shielding with minimal antigreenhouse cooling, in Amer. Geophys. Meeting, abstract P11A-1317, San Francisco, CA.Google Scholar
Wong, A.-S., Atreya, S. K., and Encrenaz, T. (2004) Correction to “Chemical markers of possible hot spots on Mars”, J. Geophys. Res., 109, doi:10.1029/2003JE002210.Google Scholar
Wong, M., Atreya, S. K., Mahaffy, P. N., et al. (2013) Isotopes of nitrogen on Mars: atmospheric measurements by Curiosity’s mass spectrometer, Geophys. Res. Lett., 40, 60336037.Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., and Linsky, J. L. (2002) Measured mass-loss rates of solar-like stars as a function of age and activity, ApJ., 574, 412425.Google Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., et al. (2005) New mass-loss measurements from astropheric Lyman-alpha absorption, ApJ., 628, doi:10.1086/432716.Google Scholar
Wordsworth, R., and Pierrehumbert, R. (2013) Hydrogen–nitrogen greenhouse warming in Earth’s early atmosphere, Science, 339, 6467, doi:10.1126/science.1225759.Google Scholar
Wordsworth, R., Forget, F., and Eymet, V. (2010) Infrared collision-induced and far-line absorption in dense CO2 atmospheres, Icarus, 210, 992997.Google Scholar
Wordsworth, R., Forget, F., Millour, E., et al. (2013) Global modeling of the early Martian climate under a denser CO2 atmosphere: water cycle and ice evolution, Icarus, 222, 119, doi:10106/j.icarus.2012.09.036.Google Scholar
Wray, J. J., Noe Dobrea, E. Z., Arvidson, R. W., et al. (2009a) Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars, Geophy. Res. Lett., 36, doi:10.1029/2009GL040734.Google Scholar
Wray, J. J., Murchie, S. L., Squyres, S. W., et al. (2009b) Diverse aqueous environments on ancient Mars revealed in the southern highlands, Geology, 37, 10431046.Google Scholar
Yen, A. S., Gellert, R., Schröder, C., et al. (2005) An integrated view of the chemistry and mineralogy of Martian soils, Nature, 436, 4954.Google Scholar
Yung, Y. L., and Kass, D. M. (1998) Deuteronomy?: a puzzle of deuterium and oxygen on Mars, Science, 280, 15451546.Google Scholar
Yung, Y. L., Wen, J.-S., Pinto, J. P., et al. (1988) HDO in the Martian atmosphere: implications for the abundance of crustal water, Icarus, 76, 146159.Google Scholar
Yung, Y. L., Nair, H., and Gerstell, M. F. (1997) CO2 greenhouse in the early Martian atmosphere: SO2 inhibits condensation, Icarus, 130, 222224, doi:10.1006/icar.1997.5808.Google Scholar
Zahnle, K. J. (1993) Xenological constraints on the impact erosion of the early Martian atmosphere, J. Geophys. Res., 98, 1089910913.Google Scholar
Zahnle, K. J., and Walker, J. C. G. (1982) The evolution of solar ultraviolet luminosity, Rev. Geophys. Space Phys., 20, 280292.Google Scholar
Zahnle, K. J., Kasting, J. F., and Pollack, J. B. (1990) Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape, Icarus, 84, 502527.Google Scholar
Zahnle, K., Haberle, R. M., Catling, D. C., and Kasting, J. F. (2008) Photochemical instability of the ancient Martian atmosphere, J. Geophys. Res., 113, doi:10.1029/2008JE003160.Google Scholar
Zent, A. P., and Quinn, R. C. (1995) Simultaneous adsorption of CO2 and H2O under Mars-like conditions and application to the evolution of the Martian climate, J. Geophys. Res., 100, 53415249.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×