Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T08:37:09.362Z Has data issue: false hasContentIssue false

2 - Biodiversity and Global Change

From Creator to Victim

Published online by Cambridge University Press:  19 August 2019

Partha Dasgupta
Affiliation:
University of Cambridge
Peter Raven
Affiliation:
Missouri Botanical Garden
Anna McIvor
Affiliation:
University of Cambridge
Get access

Summary

We owe our very existence to the activities of past and present life forms, which have created a world that we could inhabit (Lenton and Watson, 2011). This is true not just in the evolutionary sense that we are descended from earlier life forms, but in the Earth system sense that the atmosphere would be unbreathable and the climate intolerable were it not for the accumulated actions of other members of the biosphere, past and present (Lenton and Watson, 2011). This fundamental role of biodiversity in maintaining our life-support system is strangely under-recognised by utilitarian arguments for preserving ‘nature’. We are part of biodiversity and have been born out of this world, only to be transforming it now in ways that are bad for us and bad for much of the rest of life.

Type
Chapter
Information
Biological Extinction
New Perspectives
, pp. 34 - 79
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., Mcdowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A. & Cobb, N. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259: 660684.CrossRefGoogle Scholar
Allen, J. F. & Martin, W. 2007. Evolutionary biology: Out of thin air. Nature, 445: 610612.Google Scholar
Andreae, M. O. & Crutzen, P. J. 1997. Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry. Science: 276, 10521058.CrossRefGoogle Scholar
Archer, D. 2005. Fate of fossil fuel CO2 in geologic time. Journal of Geophysical Research: Oceans, 110(C9): C09S05.CrossRefGoogle Scholar
Archer, D., Buffett, B. & Brovkin, V. 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences USA, 106: 2059620601.CrossRefGoogle ScholarPubMed
Archer, D. & Ganopolski, A. 2005. A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochemistry Geophysics Geosystems, 6: doi:10.1029/2004GC000891.CrossRefGoogle Scholar
Archibald, S., Staver, A. C. & Levin, S. A. 2012. Evolution of human-driven fire regimes in Africa. Proceedings of the National Academy of Sciences, 109: 847852.CrossRefGoogle ScholarPubMed
Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. 2004. Assessing the causes of Late Pleistocene extinctions on the continents. Science, 306: 7075.CrossRefGoogle ScholarPubMed
Bekker, A. & Holland, H. D. 2012. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth and Planetary Science Letters, 317–318:295304.Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15: 365377.CrossRefGoogle ScholarPubMed
Berner, R. A. 1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276: 544546.Google Scholar
Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. 2007. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. Journal of Archaeological Science, 34: 335343.Google Scholar
Boyden, S. V. 1992. Biohistory: The Interplay Between Human Society and the Biosphere, Past and Present. Carnforth, UK: Parthenon Publishing Group.Google Scholar
Boyle, R. A., Dahl, T. W., Dale, A. W., Shields-Zhou, G. A., Zhu, M., Brasier, M. D., Canfield, D. E. & Lenton, T. M. 2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nature Geoscience, 7: 671676.CrossRefGoogle Scholar
Boyle, R. A., Williams, H. T. P. & Lenton, T. M. 2012. Natural selection for costly nutrient recycling in simulated microbial metacommunities. Journal of Theoretical Biology, 312: 112.Google Scholar
Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., van Kranendonk, M. J., Lindsay, J. F., Steele, A. & Grassineau, N. V. 2002. Questioning the evidence for Earth’s oldest fossils. Nature, 416: 7681.CrossRefGoogle ScholarPubMed
Brasier, M. D., Mcloughlin, N., Green, O. & Wacey, D. 2006. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society of London Series B – Biological Sciences, 361.Google Scholar
Brasseur, G. P. & Chatfield, R. B. 1991. The fate of biogenic trace gases in the atmosphere. In Sharkey, T. D., Holland, E. A. & Mooney, H. A. (Eds), Trace Gas Emission from Plants: 127. San Diego, CA: Academic.Google Scholar
Brown, K. S., Marean, C. W., Herries, A. I. R., Jacobs, Z., Tribolo, C., Braun, D., Roberts, D. L., Meyer, M. C. & Bernatchez, J. 2009. Fire As an Engineering Tool of Early Modern Humans. Science, 325: 859862.Google Scholar
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26: 386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2005. Probable Proterozoic fungi. Paleobiology, 31: 165182.Google Scholar
Cai, Y., Judd, K. L., Lenton, T. M., Lontzek, T. S. & Narita, D. 2015. Environmental tipping points significantly affect the cost−benefit assessment of climate policies. Proceedings of the National Academy of Sciences, 112: 46064611.Google Scholar
Canfield, D. E., Rosing, M. T. & Bjerrum, C. 2006. Early anaerobic metabolisms. Philosophical Transactions of the Royal Society B: Biological Sciences, 361: 18191836.Google Scholar
Catling, D. C., McKay, C. P. & Zahnle, K. J. 2001. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science, 293: 839843.CrossRefGoogle ScholarPubMed
Claire, M. W., Catling, D. C. & Zahnle, K. J. 2006. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology, 4: 239269.Google Scholar
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408: 184187.CrossRefGoogle Scholar
Crucifix, M. 2012. Oscillators and relaxation phenomena in Pleistocene climate theory. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370: 11401165.Google Scholar
Daines, S. J., Clark, J. R. & Lenton, T. M. 2014. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecology Letters, 17: 414425.Google Scholar
Daines, S. J. & Lenton, T. M. 2016. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth and Planetary Science Letters, 434: 4251.Google Scholar
Daines, S. J., Mills, B. & Lenton, T. M. 2017. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nature Communications, 8: 14379.CrossRefGoogle ScholarPubMed
Devaraju, N., Bala, G. & Modak, A. 2015. Effects of large-scale deforestation on precipitation in the monsoon regions: Remote versus local effects. Proceedings of the National Academy of Sciences, 112: 32573262.CrossRefGoogle ScholarPubMed
Diamond, J. & Bellwood, P. 2003. Farmers and their languages: The first expansions. Science, 300: 597603.Google Scholar
Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., O’Neil, J. & Little, C. T. S. 2017. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543: 6064.Google Scholar
Donnadieu, Y., Godderis, Y., Ramstein, G., Nedelec, A. & Meert, J. 2004. A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428: 303306.CrossRefGoogle ScholarPubMed
Downey, S. S., Haas, W. R. & Shennan, S. J. 2016. European Neolithic societies showed early warning signals of population collapse. Proceedings of the National Academy of Sciences, 113: 97519756.Google Scholar
Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Klein Goldewijk, K. & Verburg, P. H. 2013. Used planet: A global history. Proceedings of the National Academy of Sciences, 110: 79787985.Google Scholar
Farquhar, J., Bao, H. & Thiemens, M. 2000. Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science, 289: 756758.CrossRefGoogle ScholarPubMed
Foster, G. L., Royer, D. L. & Lunt, D. J. 2017. Future climate forcing potentially without precedent in the last 420 million years. Nature Communications, 8: 14845.Google Scholar
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., Martinelli, L. A., Seitzinger, S. P. & Sutton, M. A. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320: 889892.Google Scholar
Gingerich, P. D. 2006. Environment and evolution through the Paleocene-Eocene thermal maximum. Trends in Ecology & Evolution, 21: 246253.Google Scholar
Goldblatt, C., Lenton, T. M. & Watson, A. J. 2006. Bistability of atmospheric oxygen and the great oxidation. Nature, 443: 683686.Google Scholar
Guinotte, J. M., Orr, J., Cairns, S., Freiwald, A., Morgan, L. & George, R. 2006. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Frontiers in Ecology and the Environment, 4: 141146.Google Scholar
Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W. & Fischer-Kowalski, M. 2007. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences, 104: 1294212947.Google Scholar
Han, T. M. & Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science, 257.Google Scholar
Handoh, I. C. & Lenton, T. M. 2003. Periodic mid-Cretaceous Oceanic Anoxic Events linked by oscillations of the phosphorus and oxygen biogeochemical cycles. Global Biogeochemical Cycles, 17: 1092.Google Scholar
Harnik, P. G., Lotze, H. K., Anderson, S. C., Finkel, Z. V., Finnegan, S., Lindberg, D. R., Liow, L. H., Lockwood, R., McClain, C. R., McGuire, J. L., O’Dea, A., Pandolfi, J. M., Simpson, C. & Tittensor, D. P. 2012. Extinctions in ancient and modern seas. Trends in Ecology & Evolution, 27: 608617.CrossRefGoogle ScholarPubMed
Harte, J., Ostling, A., Green, J. L. & Kinzig, A. 2004. Biodiversity conservation: Climate change and extinction risk. Nature, 430.Google Scholar
Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. 2011. Global resilience of tropical forest and savanna to critical transitions. Science, 334: 232235.Google Scholar
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., GOMEZ, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A. & Hatziolos, M. E. 2007. Coral reefs under rapid climate change and ocean acidification. Science, 318: 17371742.Google Scholar
Hoel, M. & Sterner, T. 2007. Discounting and relative prices. Climatic Change, 84: 265280.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. 1998. A Neoproterozoic snowball Earth. Science, 281: 13421346.CrossRefGoogle ScholarPubMed
Hoffmann, A. A. & Sgro, C. M. 2011. Climate change and evolutionary adaptation. Nature, 470: 479485.Google Scholar
Holland, H. D. 1978. The Chemistry of the Atmosphere and Oceans. New York: Wiley.Google Scholar
Jacobsen, T. & Adams, R. M. 1958. Salt and silt in ancient Mesopotamian agriculture: Progressive changes in soil salinity and sedimentation contributed to the breakup of past civilizations. Science, 128: 12511258.Google Scholar
Jones, C., Lowe, J., Liddicoat, S. & Betts, R. 2009. Committed ecosystem change due to climate change. Nature Geoscience, 2: 484487.Google Scholar
Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., Gerber, S. & Hasselmann, K. 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emissions scenarios. Global Biogeochemical Cycles, 15: 891907.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., Stenni, B., Stocker, T. F., Tison, J. L., Werner, M. & Wolff, E. W. 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839): 793796.Google Scholar
Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C. & Klein Goldewijk, K. 2011. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21: 775791.Google Scholar
Kharecha, P., Kasting, J. & Siefert, J. 2005. A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology, 3: 5376.Google Scholar
Kidder, D. L. & Worsley, T. R. 2012. A human-induced hothouse climate? GSA Today, 22: 411.Google Scholar
Knoll, A. H. & Barghoorn, E. S. 1977. Archean microfossils showing cell division from the Swaziland system of South Africa. Science, 198: 396398.Google Scholar
Kurz, W. A., Dymond, C. C., Stinson, G., Rampley, G. J., Neilson, E. T., Carroll, A. L., Ebata, T. Safranyik, L. 2008a. Mountain pine beetle and forest carbon feedback to climate change. Nature, 452: 987990.Google Scholar
Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. 2008b. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences, 105: 15511555.Google Scholar
Lenton, T. M. 2000. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus, 52B: 11591188.Google Scholar
Lenton, T. M. 2016. Earth System Science: A Very Short Introduction. Oxford: Oxford University Press.Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields, G. A. & Butterfield, N. J. 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience, 7: 257265.Google Scholar
Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. 2012. First plants cooled the Ordovician. Nature Geoscience, 5: 8689.Google Scholar
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Saltzman, M. R. & Porada, P. 2016a. Earliest land plants created modern levels of atmospheric oxygen. Proceedings of the National Academy of Sciences, 113: 97049709.Google Scholar
Lenton, T. M. & Daines, S. J. 2016. Matworld: The biogeochemical effects of early life on land. New Phytologist, doi:10.1111/nph.14338.CrossRefGoogle Scholar
Lenton, T. M. & Daines, S. J. 2017. Biogeochemical transformations in the history of the ocean. Annual Review of Marine Science, 9: 3158.Google Scholar
Lenton, T. M., Held, H., Kriegler, E., Hall, J., Lucht, W., Rahmstorf, S. & Schellnhuber, H. J. 2008. Tipping Elements in the Earth’s Climate System. PNAS, 105: 17861793.CrossRefGoogle ScholarPubMed
Lenton, T. M., Pichler, P. P. & Weisz, H. 2016b. Revolutions in energy input and material cycling in Earth history and human history. Earth System Dynamics, 7: 353370.Google Scholar
Lenton, T. M., Schellnhuber, H. J. & Szathmáry, E. 2004. Climbing the co-evolution ladder. Nature, 431: 913.Google Scholar
Lenton, T. M. & Von Bloh, W. 2001. Biotic feedback extends the life span of the biosphere. Geophysical Research Letters, 28: 17151718.Google Scholar
Lenton, T. M. & Watson, A. J. 2000. Redfield revisited: 2. What regulates the oxygen content of the atmosphere? Global Biogeochemical Cycles, 14: 249268.Google Scholar
Lenton, T. M. & Watson, A. J. 2004. Biotic enhancement of weathering, atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophysical Research Letters, 31: L05202.Google Scholar
Lenton, T. M. & Watson, A. J. 2011. Revolutions That Made the Earth. Oxford, Oxford University Press.Google Scholar
Love, G. D., Grosjean, E., Stalvies, C., Fike, D. A., Grotzinger, J. P., Bradley, A. S. Kelly, A. E., Bhatia, M., Meredith, W., Snape, C. E., Bowring, S. A., Condon, D. J. & Summons, R. E. 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 457: 718721.Google Scholar
Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U. & Cramer, W. 2006. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance and Management, 1: 6.CrossRefGoogle ScholarPubMed
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J. & Dowsett, H. J. 2010. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 3: 6064.Google Scholar
Luthi, D., Le Floch, M.,Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K. & Stocker, T. F. 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379382.Google Scholar
Lucht, W., Schaphoff, S., Erbrecht, T., Heyder, U. & Cramer, W. 2006. Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance and Management, 1: 6.Google Scholar
Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J. & Dowsett, H. J. 2010. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 3: 6064.Google Scholar
Lynch, A. H., Abramson, D., Görgen, K., Beringer, J. & Uotila, P. 2007. Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment. Geophysical Research Letters, 34: L20801.Google Scholar
Mackenzie, F. T., Ver, L. M., Sabine, C., Lane, M. & Lerman, A. 1993. C, N, P, S global biogeochemical cycles and modelling of global change. In Wollast, R., Mackenzie, F. T. & Chou, L. (Eds.), Interactions of C, N, P and S Biogeochemical Cycles and Global Change: 161. Berlin: Springer.Google Scholar
Magill, C. R., Ashley, G. M. & Freeman, K. H. 2013. Ecosystem variability and early human habitats in Eastern Africa. Proceedings of the National Academy of Sciences, 110: 11671174.Google Scholar
Marland, G., Andres, R. J. & Boden, T. A. 2008. Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751–2005. In Trends: A Compendium of Data on Global Change. Oak Ridge National Laboratory, Oak Ridge, TN: Carbon Dioxide Information Analysis Center.Google Scholar
Matthews, E., Amann, C., Bringezu, S., Fischer-Kowalski, M., Huttler, W., Kleijn, R., Moriguchi, Y., Ottke, C., Rondenburg, E., Rogich, D., Schandl, H., Schutz, H., van der Voet, E. & Weisz, H. 2000. The Weight of Nations. Material Outflows from Industrial Economies. Washington, DC: World Resources Institute.Google Scholar
McWethy, D. B., Whitlock, C., Wilmshurst, J. M., McGlone, M. S., Fromont, M., Li, X., Dieffenbacher-Krall, A., Hobbs, W. O., Fritz, S. C. & Cook, E. R. 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences, 107: 2134321348.Google Scholar
Miller, G., Mangan, J., Pollard, D., Thompson, S., Felzer, B. & Magee, J. 2005. Sensitivity of the Australian Monsoon to insolation and vegetation: Implications for human impact on continental moisture balance. Geology, 33: 6568.CrossRefGoogle Scholar
Mills, B., Daines, S. J. & Lenton, T. M. 2014. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochemistry, Geophysics, Geosystems, 15: 48664884.Google Scholar
Mitchell, L., Brook, E., Lee, J. E., Buizert, C. & Sowers, T. 2013. Constraints on the Late Holocene anthropogenic contribution to the atmospheric methane budget. Science, 342: 964966.Google Scholar
Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D. & Barnola, J.-M. 2001. Atmospheric CO2 concentrations over the Last Glacial Termination. Science, 291(5501): 112114.Google Scholar
Nathan, R. 2006. Long-distance dispersal of plants. Science, 313: 786788.Google Scholar
Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. 2011. Neotropical human-landscape interactions, fire, and atmospheric CO2 during European conquest. The Holocene, 21: 853864.Google Scholar
Noffke, N., Christian, D., Wacey, D. & Hazen, R. M. 2013. Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology, 13: 11031124.Google Scholar
Nutman, A. P., Bennett, V. C., Friend, C. R. L., van Kranendonk, M. J. & Chivas, A. R. 2016. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537: 535538.CrossRefGoogle ScholarPubMed
Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. 2014. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nature Geoscience, 7: 2528.Google Scholar
Oliver, T. H. & Morecroft, M. D. 2014. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 5: 317335.Google Scholar
Pagani, M., Caldeira, K., Berner, R. & Beerling, D. J. 2009. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature, 460: 8588.CrossRefGoogle ScholarPubMed
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proceedings of the National Academy of Sciences, 108: 1362413629.Google Scholar
Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637669.Google Scholar
Parmesan, C. & Yohe, G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421: 3742.Google Scholar
Pausas, J. G. & Keeley, J. E. 2009. A burning story: The role of fire in the history of life. BioScience, 59: 593601.Google Scholar
Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429.Google Scholar
Pope Francis, , 2015. Laudato Si’: On Care for Our Common Home [Encyclical]. Vatican City, Italy: Vatican Press. http://w2.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.htmlGoogle Scholar
Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature, 455: 11011104.Google Scholar
Raymo, M. E. & Ruddiman, W. F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117122.CrossRefGoogle Scholar
Roebroeks, W. & Villa, P. 2011. On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences, 108: 52095214.Google Scholar
Rosing, M. T. 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283: 674676.Google Scholar
Ruddiman, W. F. 2003. The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61: 261293.Google Scholar
Ruddiman, W. F. 2007. The early anthropogenic hypothesis: Challenges and responses. Reviews of Geophysics, 45: RG4001.CrossRefGoogle Scholar
Ruddiman, W. F. 2013. The Anthropocene. Annual Review of Earth and Planetary Sciences, 41: 4568.Google Scholar
Sala, O. E., Chapin, F. S. I., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R., Lodge, D. M., Mooney, H. A., Oesterheld, M. Ì. N., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M. & Wall, D. H. 2000. Global biodiversity scenarios for the year 2100. Science, 287: 17701774.Google Scholar
Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. 2014. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B: Biological Sciences, 281.Google Scholar
Schopf, J. W. 1993. Microfossils of the Early Archean apex chert: New evidence of the antiquity of life. Science, 260: 640646.CrossRefGoogle ScholarPubMed
Schopf, J. W. 2006. Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B, 361: 869885.Google Scholar
Schwartzman, D. W. & Volk, T. 1989. Biotic enhancement of weathering and the habitability of Earth. Nature, 340: 457460.Google Scholar
Siegenthaler, U., Stocker, T. F., Monnin, E., Luthi, D., Schwander, J., Stauffer, B., Raynaud, D., Barnola, J.-M., Fischer, H., Masson-Delmotte, V. & Jouzel, J. 2005. Stable carbon cycle–climate relationship during the Late Pleistocene. Science, 310(5752): 13131317.Google Scholar
Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S. & Beerling, D. J. 2011. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature, 470: 8285.Google Scholar
Staver, A. C., Archibald, S. & Levin, S. A. 2011. The global extent and determinants of savanna and forest as alternative biome states. Science, 334: 230232.Google Scholar
Sterner, T. & Persson, U. M. 2008. An even sterner review: Introducing relative prices into the discounting debate. Review of Environmental Economics and Policy, 2: 6176.Google Scholar
Stocker, B. D., Strassmann, K. & Joos, F. 2011. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences, 8: 6988.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., De Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L. & Williams, S. E. 2004. Extinction risk from climate change. Nature, 427: 145148.Google Scholar
Toseland, A., Daines, S., Clark, J. R., Kirkham, A., Strauss, J., Uhlig, C., Lenton, T. M., Valentin, K., Pearson, G., Moulton, V. & Mock, T. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change, 3: 979984.Google Scholar
Ueno, Y., Yamada, K., Yoshida, N., Maruyama, S. & Isozaki, Y. 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature, 440: 516519.Google Scholar
van Cappellen, P. & Ingall, E. D. 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography, 9: 677692.Google Scholar
van Cappellen, P. & Ingall, E. D. 1996. Redox stabilisation of the atmosphere and oceans by phosphorus-limited marine productivity. Science, 271: 493496.CrossRefGoogle ScholarPubMed
Vanwonterghem, I., Evans, P. N., Parks, D. H., Jensen, P. D., Woodcroft, B. J., Hugenholtz, P. & Tyson, G. W. 2016. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiology, 1: 16170.Google Scholar
Veron, J. E. N., Hoegh-Guldberg, O., Lenton, T. M., Lough, J. M., Obura, D. O., Pearce-Kelly, P., Sheppard, C. R. C., Spalding, M., Stafford-Smith, M. G. & Rogers, A. D. 2009. The coral reef crisis: The critical importance of <350ppm CO2. Marine Pollution Bulletin, 58: 14281437.Google Scholar
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., Cearreta, A., Edgeworth, M., Ellis, E. C., Ellis, M., Jeandel, C., Leinfelder, R., Mcneill, J. R., Richter, D. D., Steffen, W., Syvitski, J., Vidas, D., Wagreich, M., Williams, M., Zhisheng, A., Grinevald, J., Odada, E., Oreskes, N. & Wolfe, A. P. 2016. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351.Google Scholar
Watson, A. J., Lenton, T. M. & Mills, B. J. W. 2017. Ocean de-oxygenation, the global phosphorus cycle, and the possibility of human-caused large-scale ocean anoxia. Philosophical Transactions of the Royal Society A, 375: 20160318.Google Scholar
Williams, H. T. P. & Lenton, T. M. 2007. The Flask model: Emergence of nutrient-recycling microbial ecosystems and their disruption by environment-altering ‘rebel’ organisms. Oikos, 116: 10871105.Google Scholar
Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D. & Conklin-Brittain, N. L. 1999. The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40: 567590.Google Scholar
Zhang, D. D., Brecke, P., Lee, H. F., He, Y.-Q. & Zhang, J. 2007. Global climate change, war, and population decline in recent human history. Proceedings of the National Academy of Sciences USA, 104: 1921419219.Google Scholar
Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang, J. & An, Y. 2011. The causality analysis of climate change and large-scale human crisis. Proceedings of the National Academy of Sciences, 108: 1729617301.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×