Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-29T09:59:18.302Z Has data issue: false hasContentIssue false

10 - Disrupted Circadian Rhythms and Metabolic Function

Published online by Cambridge University Press:  07 October 2023

Laura K. Fonken
Affiliation:
University of Texas, Austin
Randy J. Nelson
Affiliation:
West Virginia University
Get access

Summary

Energy intake, utilization, and storage are critical to an animal’s health and fitness. The circadian clock organizes a variety of behavioral, physiological, and molecular processes to anticipate and optimize metabolic function. From behaviors such as the timing of feeding, to molecular interactions with the Clock gene, humans and other animals have evolved to coordinate metabolic processes to a 24-hour day. Thus, when circadian rhythms are disrupted or misaligned, an animal’s ability to anticipate and optimize metabolic processes is compromised. As discussed in this chapter, disruptions to circadian rhythmicity can result in adverse effects on body mass regulation and glucose homeostasis. Because these effects often present in parallel, this chapter organizes its discussion into two sections highlighting work from both clinical and preclinical animal studies. This approach allows one to appreciate the importance of circadian rhythmicity to metabolic wellbeing while introducing mechanistic explanations for how circadian disruption impacts body mass and glucose regulation.

Type
Chapter
Information
Biological Implications of Circadian Disruption
A Modern Health Challenge
, pp. 223 - 237
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Naimi, S., Hampton, S. M., Richard, P., Tzung, C., & Morgan, L. M. (2004). Postprandial metabolic profiles following meals and snacks eaten during simulated night and day shift work. Chronobiol Int, 21(6), 937947.Google Scholar
Albreiki, M. S., Middleton, B., & Hampton, S. M. (2017). A single night light exposure acutely alters hormonal and metabolic responses in healthy participants. Endocr Connect, 6(2), 100110.Google Scholar
Almoosawi, S., Prynne, C. J., Hardy, R., & Stephen, A. M. (2013). Time-of-day and nutrient composition of eating occasions: Prospective association with the metabolic syndrome in the 1946 British birth cohort. Int J Obes (Lond), 37(5), 725731.Google Scholar
Antunes, L. C., Levandovski, R., Dantas, G., Caumo, W., & Hidalgo, M. P. (2010). Obesity and shift work: Chronobiological aspects. Nutr Res Rev, 23(1), 155168.Google Scholar
Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., & Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring), 17(11), 21002102.Google Scholar
Arble, D. M., Ramsey, K. M., Bass, J., & Turek, F. W. (2010). Circadian disruption and metabolic disease: Findings from animal models. Best Pract Res Clin Endocrinol Metab, 24(5), 785800.Google Scholar
Arble, D. M., Sandoval, D. A., Turek, F. W., Woods, S. C., & Seeley, R. J. (2015). Metabolic effects of bariatric surgery in mouse models of circadian disruption. Int J Obes (Lond), 39(8), 13101318.Google Scholar
de Assis, M. A., Nahas, M. V., Bellisle, F., & Kupek, E. (2003). Meals, snacks and food choices in Brazilian shift workers with high energy expenditure. J Hum Nutr Diet, 16(4), 283289.Google Scholar
Bandin, C., Scheer, F. A., Luque, A. J., Avila-Gandia, V., Zamora, S., Madrid, J. A., Gómez-Abellán, P., & Garaulet, M. (2015). Meal timing affects glucose tolerance, substrate oxidation and circadian-related variables: A randomized, crossover trial. Int J Obes (Lond), 39(5), 828833.Google Scholar
Baron, K. G., Reid, K. J., Kern, A. S., & Zee, P. C. (2011). Role of sleep timing in caloric intake and BMI. Obesity (Silver Spring), 19(7), 13741381.Google Scholar
Bonnell, E. K., Huggins, C. E., Huggins, C. T., McCaffrey, T. A., Palermo, C., & Bonham, M. P. (2017). Influences on dietary choices during day versus night shift in shift workers: A mixed methods study. Nutrients, 9(3), 193.Google Scholar
Borniger, J. C., Maurya, S. K., Periasamy, M., & Nelson, R. J. (2014). Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int, 31(8), 917925.Google Scholar
Casiraghi, L. P., Alzamendi, A., Giovambattista, A., Chiesa, J. J., & Golombek, D. A. (2016). Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice. Physiol Rep, 4(8), e12743.Google Scholar
Chaix, A., Lin, T., Le, H. D., Chang, M. W., & Panda, S. (2019). Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab, 29(2), 303319 e304.CrossRefGoogle ScholarPubMed
Chang, A. M., Aeschbach, D., Duffy, J. F., & Czeisler, C. A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci USA, 112(4), 12321237.Google Scholar
Chang, W. P., & Jen, H. J. (2020). BMI differences between different genders working fixed day shifts and rotating shifts: A literature review and meta-analysis. Chronobiol Int, 37(12), 17541765.Google Scholar
Christie, S., Vincent, A. D., Li, H., Frisby, C. L., Kentish, S. J., O’Rielly, R., Wittert, G. A., & Page, A. J. (2018). A rotating light cycle promotes weight gain and hepatic lipid storage in mice. Am J Physiol Gastrointest Liver Physiol, 315(6), G932G942.Google Scholar
Covassin, N., Singh, P., & Somers, V. K. (2016). Keeping up with the clock: Circadian disruption and obesity risk. Hypertension, 68(5), 10811090.Google Scholar
Escobar, C., Espitia-Bautista, E., Guzman-Ruiz, M. A., Guerrero-Vargas, N. N., Hernandez-Navarrete, M. A., Angeles-Castellanos, M., Morales-Pérez, B., & Buijs, R. M. (2020). Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Sci Rep, 10(1), 6243.Google Scholar
Fonken, L. K., Aubrecht, T. G., Melendez-Fernandez, O. H., Weil, Z. M., & Nelson, R. J. (2013). Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms, 28(4), 262271.Google Scholar
Fonken, L. K., Workman, J. L., Walton, J. C., Weil, Z. M., Morris, J. S., Haim, A., & Nelson, R. J. (2010). Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA, 107(43), 1866418669.Google Scholar
Gamble, K. L., Motsinger-Reif, A. A., Hida, A., Borsetti, H. M., Servick, S. V., Ciarleglio, C. M., Robbins, S., Hicks, J., Carver, K., Hamilton, N., Wells, N., Summar, M. L., McMahon, D. G., & Johnson, C. H. (2011). Shift work in nurses: Contribution of phenotypes and genotypes to adaptation. PLoS One, 6(4), e18395.Google Scholar
Gan, Y., Yang, C., Tong, X., Sun, H., Cong, Y., Yin, X., Li, L., Cao, S., Dong, X., Gong, Y., Shi, O., Deng, J., Bi, H., & Lu, Z. (2015). Shift work and diabetes mellitus: A meta-analysis of observational studies. Occup Environ Med, 72(1), 7278.Google Scholar
Garaulet, M., Corbalan-Tutau, M. D., Madrid, J. A., Baraza, J. C., Parnell, L. D., Lee, Y. C., & Ordovas, J. M. (2010). PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. J Am Diet Assoc, 110(6), 917921.Google Scholar
Garaulet, M., Qian, J., Florez, J. C., Arendt, J., Saxena, R., & Scheer, F. (2020). Melatonin effects on glucose metabolism: Time to unlock the controversy. Trends Endocrinol Metab, 31(3), 192204.Google Scholar
Gonnissen, H. K., Rutters, F., Mazuy, C., Martens, E. A., Adam, T. C., & Westerterp-Plantenga, M. S. (2012). Effect of a phase advance and phase delay of the 24-h cycle on energy metabolism, appetite, and related hormones. Am J Clin Nutr, 96(4), 689697.CrossRefGoogle ScholarPubMed
Harfmann, B. D., Schroder, E. A., Kachman, M. T., Hodge, B. A., Zhang, X., & Esser, K. A. (2016). Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle, 6, 12.Google Scholar
Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E. A., Gill, S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J. A., Ellisman, M. H., & Panda, S. (2012). Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab, 15(6), 848860.Google Scholar
Kelly, K. P., McGuinness, O. P., Buchowski, M., Hughey, J. J., Chen, H., Powers, J., Page, T., & Johnson, C. H. (2020). Eating breakfast and avoiding late-evening snacking sustains lipid oxidation. PLoS Biol, 18(2), e3000622.Google Scholar
Ketchum, E. S., & Morton, J. M. (2007). Disappointing weight loss among shift workers after laparoscopic gastric bypass surgery. Obes Surg, 17(5), 581584.Google Scholar
Koo, Y. S., Song, J. Y., Joo, E. Y., Lee, H. J., Lee, E., Lee, S. K., & Jung, K. Y. (2016). Outdoor artificial light at night, obesity, and sleep health: Cross-sectional analysis in the KoGES study. Chronobiol Int, 33(3), 301314.Google Scholar
Koopman, A. D. M., Rauh, S. P., van’t Riet, E., Groeneveld, L., van der Heijden, A. A., Elders, P. J., Dekker, J. M., Nijpels, G., Beulens, J. W., & Rutters, F. (2017). The association between social jetlag, the metabolic syndrome, and type 2 diabetes mellitus in the general population: The new Hoorn study. J Biol Rhythms, 32(4), 359368.Google Scholar
Kopp, R., Billecke, N., Legradi, J., den Broeder, M., Parekh, S. H., & Legler, J. (2016). Bringing obesity to light: Rev-erbalpha, a central player in light-induced adipogenesis in the zebrafish? Int J Obes (Lond), 40(5), 824832.Google Scholar
Manenschijn, L., van Kruysbergen, R. G., de Jong, F. H., Koper, J. W., & van Rossum, E. F. (2011). Shift work at young age is associated with elevated long-term cortisol levels and body mass index. J Clin Endocrinol Metab, 96(11), E1862E1865.Google Scholar
Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X., Takahashi, J. S., & Bass, J. (2010). Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 466(7306), 627631.CrossRefGoogle ScholarPubMed
McFadden, E., Jones, M. E., Schoemaker, M. J., Ashworth, A., & Swerdlow, A. J. (2014). The relationship between obesity and exposure to light at night: Cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am J Epidemiol, 180(3), 245250.Google Scholar
McHill, A. W., Melanson, E. L., Higgins, J., Connick, E., Moehlman, T. M., Stothard, E. R., & Wright, K. P. Jr. (2014). Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proc Natl Acad Sci USA, 111(48), 1730217307.Google Scholar
Monteleone, P., Tortorella, A., Docimo, L., Maldonato, M. N., Canestrelli, B., De Luca, L., & Maj, M. (2008). Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: Association with higher body mass index. Neurosci Lett, 435(1), 3033.Google Scholar
Moon, S., Kang, J., Kim, S. H., Chung, H. S., Kim, Y. J., Yu, J. M., Cho, S. T., Oh, C. M., & Kim, T. (2020). Beneficial effects of time-restricted eating on metabolic diseases: A systemic review and meta-analysis. Nutrients, 12(5), 1267.Google Scholar
Moran-Ramos, S., Baez-Ruiz, A., Buijs, R. M., & Escobar, C. (2016). When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev, 29(2), 180193.Google Scholar
Nagai, N., Ayaki, M., Yanagawa, T., Hattori, A., Negishi, K., Mori, T., Nakamura, T. J., & Tsubota, K. (2019). Suppression of blue light at night ameliorates metabolic abnormalities by controlling circadian rhythms. Invest Ophthalmol Vis Sci, 60(12), 37863793.Google Scholar
Nelson, R. J., & Chbeir, S. (2018). Dark matters: Effects of light at night on metabolism. Proc Nutr Soc, 77(3), 223229.Google Scholar
Obayashi, K., Saeki, K., Iwamoto, J., Okamoto, N., Tomioka, K., Nezu, S., Ikada, Y., & Kurumatani, N. (2013). Exposure to light at night, nocturnal urinary melatonin excretion, and obesity/dyslipidemia in the elderly: A cross-sectional analysis of the HEIJO-KYO study. J Clin Endocrinol Metab, 98(1), 337344.Google Scholar
Opperhuizen, A. L., Stenvers, D. J., Jansen, R. D., Foppen, E., Fliers, E., & Kalsbeek, A. (2017). Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats. Diabetologia, 60(7), 13331343.Google Scholar
Park, Y. M., White, A. J., Jackson, C. L., Weinberg, C. R., & Sandler, D. P. (2019). Association of exposure to artificial light at night while sleeping with risk of obesity in women. JAMA Intern Med, 179(8), 10611071.CrossRefGoogle ScholarPubMed
Petrenko, V., Gandasi, N. R., Sage, D., Tengholm, A., Barg, S., & Dibner, C. (2020). In pancreatic islets from type 2 diabetes patients, the dampened circadian oscillators lead to reduced insulin and glucagon exocytosis. Proc Natl Acad Sci USA, 117(5), 24842495.Google Scholar
Pinto, T. F., Silva, F. G., Bruin, V. M., & Bruin, P. F. (2016). Night eating syndrome: How to treat it? Rev Assoc Med Bras (1992), 62(7), 701707.Google Scholar
Proper, K. I., van de Langenberg, D., Rodenburg, W., Vermeulen, R. C. H., van der Beek, A. J., van Steeg, H., & van Kerkhof, L. W. M. (2016). The relationship between shift work and metabolic risk factors: A systematic review of longitudinal studies. Am J Prev Med, 50(5), e147e157.CrossRefGoogle ScholarPubMed
Regmi, P., Chaudhary, R., Page, A. J., Hutchison, A. T., Vincent, A. D., Liu, B., & Heilbronn, L. (2021). Early or delayed time-restricted feeding prevents metabolic impact of obesity in mice. J Endocrinol, 248(1), 7586.Google Scholar
Rumanova, V. S., Okuliarova, M., Molcan, L., Sutovska, H., & Zeman, M. (2019). Consequences of low-intensity light at night on cardiovascular and metabolic parameters in spontaneously hypertensive rats (1). Can J Physiol Pharmacol, 97(9), 863871.Google Scholar
Russart, K. L. G., Chbeir, S. A., Nelson, R. J., & Magalang, U. J. (2019). Light at night exacerbates metabolic dysfunction in a polygenic mouse model of type 2 diabetes mellitus. Life Sci, 231, 116574.CrossRefGoogle Scholar
Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA, 106(11), 44534458.Google Scholar
Shaw, E., Leung, G. K. W., Jong, J., Coates, A. M., Davis, R., Blair, M., Huggins, C. E., Dorrian, J., Banks, S., Kellow, N. J., & Bonham, M. P. (2019). The impact of time of day on energy expenditure: Implications for long-term energy balance. Nutrients, 11(10), 2383.Google Scholar
Shostak, A., Meyer-Kovac, J., & Oster, H. (2013). Circadian regulation of lipid mobilization in white adipose tissues. Diabetes, 62(7), 21952203.Google Scholar
Singh, R. B., Cornelissen, G., Mojto, V., Fatima, G., Wichansawakun, S., Singh, M., Kartikey, K., Sharma, J. P., Torshin, V. I., Chibisov, S., Kharlitskaya, E., & Al-Bawareed, O. A. (2020). Effects of circadian restricted feeding on parameters of metabolic syndrome among healthy subjects. Chronobiol Int, 37(3), 395402.Google Scholar
Steckler, R., Tamir, S., & Gutman, R. (2021). Mice held at an environmental photic cycle oscillating at their tau-like period length do not show the high-fat diet-induced obesity that develops under the 24-hour photic cycle. Chronobiol Int, 38(4), 598612.Google Scholar
Thomas, A. P., Hoang, J., Vongbunyong, K., Nguyen, A., Rakshit, K., & Matveyenko, A. V. (2016). Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology, 157(12), 47204731.Google Scholar
Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S., & Bass, J. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 308(5724), 10431045.Google Scholar
Versteeg, R. I., Stenvers, D. J., Visintainer, D., Linnenbank, A., Tanck, M. W., Zwanenburg, G., Smilde, A. K., Fliers, E., Kalsbeek, A., Serlie, M. J., la Fleur, S. E., & Bisschop, P. H. (2017). Acute effects of morning light on plasma glucose and triglycerides in healthy men and men with type 2 diabetes. J Biol Rhythms, 32(2), 130142.Google Scholar
Waterhouse, J., Buckley, P., Edwards, B., & Reilly, T. (2003). Measurement of, and some reasons for, differences in eating habits between night and day workers. Chronobiol Int, 20(6), 10751092.Google Scholar
Wefers, J., van Moorsel, D., Hansen, J., Connell, N. J., Havekes, B., Hoeks, J., van Marken Lichtenbelt, W. D., Duez, H., Phielix, E., Kalsbeek, A., Boekschoten, M. V., Hooiveld, G. J., Hesselink, M. K. C., Kersten, S., Staels, B., Scheer, F. A. J. L., & Schrauwen, P. (2018). Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proc Natl Acad Sci USA, 115(30), 77897794.Google Scholar
Yu, F., Wang, Z., Zhang, T., Chen, X., Xu, H., Wang, F., Guo, L., Chen, M., Liu, K., & Wu, B. (2021). Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun, 12(1), 5323.Google Scholar
Zitting, K. M., Vetrivelan, R., Yuan, R. K., Vujovic, N., Wang, W., Bandaru, S. S., Quan, S. F., Klerman, E. B., Scheer, F. A. J. L., Buxton, O. M., Williams, J. S., Duffy, J. F., Saper, C. B., & Czeisler, C. A. (2022). Chronic circadian disruption on a high-fat diet impairs glucose tolerance. Metabolism, 130, 155158.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×