Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-16T02:01:34.227Z Has data issue: false hasContentIssue false

10 - Foundations of mathematics

from 3 - Logic, mathematics, and judgement

Published online by Cambridge University Press:  28 March 2008

Michael Hallett
Affiliation:
McGill University
Thomas Baldwin
Affiliation:
University of York
Get access

Summary

INTRODUCTION

It is uncontroversial to say that the period in question saw more important changes in the philosophy of mathematics than any previous period of similar length in the history of philosophy. Above all, it is in this period that the study of the foundations of mathematics became partly a mathematical investigation itself. So rich a period is it, that this survey article is only the merest sketch; inevitably, some subjects and figures will be inadequately treated (the most notable omission being discussion of Peano and the Italian schools of geometry and logic). Of prime importance in understanding the period are the changes in mathematics itself that the nineteenth century brought, for much foundational work is a reaction to these, resulting either in an expansion of the philosophical horizon to incorporate and systematise these changes, or in articulated opposition. What, in broad outline, were the changes?

First, traditional subjects were treated in entirely new ways. This applies to arithmetic, the theory of real and complex numbers and functions, algebra, and geometry. (a) Some central concepts were characterised differently, or properly characterised for the first time, for example, from analysis, those of continuity (Weierstrass, Cantor, Dedekind) and integrability (Jordan, Lebesgue, Young), from geometry, that of congruence (Pasch, Hilbert), and geometry itself was recast as a purely synthetic theory (von Staudt, Pasch, Hilbert). (b) Theories were treated in entirely new ways, for example, as axiomatic systems (Pasch, Peano and the Italian School, Hilbert), as structures (Dedekind, Hilbert), or with entirely different primitives (Riemann, Cantor, Frege, Russell).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernays, P. (1922). ‘Die Bedeutung Hilberts für die Philosophie der Mathematik’, Die Naturwissenschaften 2. Trans. 1998 Mancosu, P.Hilbert’s Significance for the Philosophy of Mathematics’, in Mancosu, (ed.) 1998.Google Scholar
Bernays, P. (1967). ‘Hilbert, David (1862–1943)’ in Edwards, P. (ed.), 1967, The Encyclopedia of Philosophy, London: Macmillan, vol. III.Google Scholar
Bolzano, B. (1851). Dr. Bernard Bolzano’s Paradoxien des Unendlichen, herausgegeben aus dem schriftlichen Nachlasse des Verfassers von Dr. Fr. Prihonsky, Leipzig: Reclam. Trans. 1950 Steele, D. A., Paradoxes of the Infinite, London: Routledge.Google Scholar
Bonola, R. (1912). Non–Euclidean Geometry: A Critical and Historical Study of its Development, Chicago: Open Court. Repr. 1955, New York: Dover Publications Inc.Google Scholar
Boolos, G. (1998). Logic, Logic and Logic, Cambridge, MA: Harvard University Press.Google Scholar
Borel, E. (1908). Leçons Sur la Théorie des Fonctions [Lectures on the Theory of Functions], Paris: Gauthier-Villars.Google Scholar
Borel, E. et al. (1905). ‘Cinq Lettres Sur la Théorie des Ensembles’, Bulletin de la Société Mathématique de France 33. Trans. 1982 Moore, G., ‘Five Letters on Set Theory’, in Moore, 1982 or Ewald, (ed.) 1996, vol. II, 1077–86.Google Scholar
Brouwer, L. E. J. (1908). ‘De onbetrouwbaarheid der logische principes’, Tijdschrift voor wijsbegeerte 2. Trans. 1975 Heyting, A., ‘The Unreliability of the Logical Principles’, in Brouwer, L. E. J. (ed. Heyting, A.), Collected Works. Volume 1. Amsterdam, Oxford: North-Holland Publishing Co. (1975).Google Scholar
Cantor, G. (1872). ‘Über die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen’ (‘On the Expansion of a Proposition from the Theory of the Trigonometric Series’), Mathematische Annalen 5. Repr. in Cantor, 1932.CrossRefGoogle Scholar
Cantor, G. (1874). ‘Uber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen’ (‘On a Property of the Set of All Real Algebraic Numbers’), Journal für reine und angewandte Mathematik 77. Repr. in Cantor, 1932.Google Scholar
Cantor, G. (1878). ‘Ein Beitrag zur Mannigfaltigkeitslehre’ (‘A Contribution to the Theory of Manifolds’), Journal für reine und angewandte Mathematik 84. Repr. in Cantor, 1932.Google Scholar
Cantor, G. (1883a). ‘Über unendliche lineare Punctmannigfaltigkeiten, 5’ (‘On infinite linear manifolds of points’), Mathematische Annalen 21. Repr. in Cantor, 1932.Google Scholar
Cantor, G. (1883b). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Ein mathematisch–philosophischer Versuch in der Lehre des Unendlichen. Leipzig: Commisonsverlag von B. G. Teubner. Trans. 1996 Ewald, W., ‘Foundations of a General Theory of Manifolds: a Mathematico-Philosophical Investigation into the Theory of the Infinite’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Cantor, G. (1932). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts (Collected Memoirs on Mathematical and Philosophical Subjects), ed. Zermelo, E., Berlin: Springer.Google Scholar
Cohen, P. J. (1963–4). ‘The Independence of the Continuum Hypothesis’, Proceedings of the National Academy of Science, USA, 50, 51.Google Scholar
Dedekind, R. (1854). ‘Über die Einführung neuer Funktionen in der Mathematik: Habilitationsvortrag, gehalten im Hause des Prof. Hoeck, in Gegenwart von Hoeck, Gauß, Weber, Waitz, 30 Juni 1854’ in Dedekind, 1932, item LX. Trans. 1996 Ewald, W., ‘On the Introduction of New Functions into Mathematics’, in Ewald, (ed.) 1996, vol. II.Google Scholar
Dedekind, R. (1872). Stetigkeit und irrationale Zahlen, Braunschweig: Vieweg und Sohn. (Latest reprint, 1965.) Repr. in Dedekind, 1932. Trans. 1996 Ewald, W., ‘Continuity and Irrational Numbers’, in Ewald, (ed.) 1996, vol. II.Google Scholar
Dedekind, R. (1888). Was sind und was sollen die Zahlen?, Braunschweig: Vieweg und Sohn. (Latest reprint, 1969.) Repr. in Dedekind, 1932. Trans. 1996 Ewald, W. (with the original German title) in Ewald, (ed.) 1996, vol. II.Google Scholar
Dedekind, R. (1932). Gesammelte mathematische Werke, Band 3 [Collected Mathematical Works, vol. III], edited by Fricke, R., Noether, E., and Ore, Öystein, Braunschweig: Friedrich Vieweg and Son.Google Scholar
Dummett, M. (1977). Elements of Intuitionism, Oxford: Clarendon Press.Google Scholar
Dummett, M. (1988 [1993]). Ursprünge der analytischen Philosophie, Frankfurt: Suhrkamp. English Version: The Origins of Analytic Philosophy, London: Duckworth; Cambridge, MA: Harvard University Press 1994.Google Scholar
Dummett, M. (1991). Frege: Philosophy of Mathematics, London: Duckworth.Google Scholar
Ewald, W. (ed.) (1996). From Kant to Hilbert: A Source Book in the Foundations of Mathematics, vols. I and II, Oxford: Clarendon Press.Google Scholar
Frege, G. (1879 [1967]). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens, Halle an die Saale: Verlag von Louis Nebert. Trans. 1967 Bauer-Mengelberg, S., ‘Begriffsschrift, a Formula Language, Modeled on that of Arithmetic, for Pure Thought’, in Heijenoort, .Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik, Breslau: Wilhelm Koebner. Trans. 1950, 1953 Austin, J. L., The Foundations of Arithmetic, Oxford: Blackwell, 2nd edn, 1953.Google Scholar
Frege, G. (1892). ‘Über Sinn und Bedeutung’, Zeitschrift für Philosophie und philosophische Kritik 100. Trans. 1966 Black, M.On Sense and Reference [Meaning]’, in Frege, 1984.Google Scholar
Frege, G. (1893). Grundgesetze der Arithmetik, Band 1, Jena: Hermann Pohle.Google Scholar
Frege, G. (1903). Grundgesetze der Arithmetik, Band 2. Jena: Hermann Pohle.Google Scholar
Frege, G. (1976). Nachgelassene Schriften: Zweiter Band, Wissenschaftlicher Briefwechsel, ed. Hermes, H., Kambartel, F., and Kaulbach, F., Hamburg: Felix Meiner. Partially translated as Frege, 1980.Google Scholar
Frege, G. (1980). Philosophical and Mathematical Correspondence. Oxford: Basil Blackwell. Partial trans. by Kaal, H. of Frege, 1976.Google Scholar
Frege, G. (1984). Collected Papers on Mathematics, Logic and Philosophy, ed. McGuiness, B., Oxford: Blackwell.Google Scholar
Freudenthal, H. (1957). ‘Zur Geschichte der Grundlagen der Geometrie: zugleich eine Besprechung der 8. Auflage von Hilberts Grundlagen der Geometrie [On the History of the Foundations of Geometry, at the same time a review of the 8th Edition of Hilbert’s Foundations of Geometry]’, Nieuw Archief voor Wiskunde 5.Google Scholar
Gödel, K. (1931). ‘Über formal unentscheidbare Sätze der Principia Mathematica und Verwandter Systeme, I’, Monatshefte für Mathematik und Physik 38. Repr. in Gödel, 1986. Trans. Heijenoort, J.On Formally Undecidable Propositions of Principia Mathematica and Related Systems I’ in Gödel, 1986.Google Scholar
Gödel, K. (1944). ‘Russell’s Mathematical Logic’ in Schillp, P. (ed.), The Philosophy of Bertrand Russell, Evanston, IL: Open Court, 1944. Reprinted in Gödel, 1990.Google Scholar
Gödel, K. (1990). Collected Works, vol. II, ed. Feferman, S., Oxford: Clarendon Press.Google Scholar
Goldfarb, W. (1988). ‘Poincaré Against the Logicists’ in Aspray, W. and Kitcher, P. (eds.), History and Philosophy of Modern Mathematics. Minnesota Studies in the Philosophy of Science, vol. 11, Minneapolis: University of Minnesota Press.Google Scholar
Goldfarb, W. (1989). ‘Russell’s Reasons for Ramification’ in Savage, C. W. and Anderson, C. A. (eds.), Rereading Russell. Minnesota Studies in the Philosophy of Science, vol. 12, Minneapolis: University of Minnesota Press.Google Scholar
Gray, J. J. (1998). ‘The Foundations of Geometry and the History of Geometry’, Mathematical Intelligencer 20.CrossRefGoogle Scholar
Hallett, M. (1984). Cantorian Set Theory and Limitation of Size, Oxford: Clarendon Press.Google Scholar
Hawkins, T. (1970). Lebesgue’s Theory of Integration, New York: Blaisdell.Google Scholar
Heck, R. ed. (1997). Language, Thought and Logic: Essays in Honour of Michael Dummett, New York: Oxford University Press.Google Scholar
Heijenoort, Jean (ed.) (1967). From Frege to Gödel: A Source Book in Mathematical Logic, Cambridge, MA: Harvard University Press.Google Scholar
Helmholtz, H. von (1870). ‘Über den Ursprung und die Bedeutung geometrischen Axiome’ in Helmholtz, 1903, vol. II. Trans. Ewald, W., ‘On the Origin and Significance of Geometrical Axioms’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Helmholtz, H. von (1878). ‘Über den Ursprung und die Bedeutung geometrischen Axiome (II)’ in Helmholtz, H., Wissenschaftliche Abhandlungen von Hermann Helmholtz. Drei Bände, 1882–95 Leipzig: J. A. Barth, vol. II. Trans Ewald, W., ‘On the Origin and Significance of Geometrical Axioms (II)’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Helmholtz, H. von (1903). Vorträge und Reden, 5th edn, 2 vols., Braunschweig: Friedrich Vieweg und Sohn.Google Scholar
Hilbert, D. (1899). ‘Grundlagen der Geometrie [Foundations of Geometry]’ in Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen, 1899. Leipzig: Teubner.Google Scholar
Hilbert, D. (1900a). ‘Über den Zahlbegriff’, Jahresbericht der deutschen Mathematiker-Vereinigung 8. Trans. 1996 Ewald, W., ‘On the Concept of Number’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Hilbert, D. (1900b). ‘Mathematische Probleme’, Nachrichten von der königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1900. Trans. 1902 Newson, M. W., ‘Mathematical Problems’, in Bulletin of the American Mathematical Society (2) 8, and repr. in Browder, F. (ed.), Mathematical Developments Arising from Hilbert Problems. Proceedings of Symposia in Pure Mathematics, Volume 28, Parts 1 and 2, 1976, Providence, RI: American Mathematical Society. Partial reprint in Ewald, (ed.) 1996, vol. II.Google Scholar
Hilbert, D. (1918). ‘Axiomatisches Denken’, Mathematische Annalen 78. Trans. 1996 Ewald, W., ‘Axiomatic Thought’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Klein, F. (1895). ‘Über die Arithmetisierung der Mathematik’, Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, gesellschäftliche Mitteilungen 1895 (2), Part 2. Trans. 1996 Ewald, W., ‘The Arithmetising of Mathematics’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Kronecker, L. (1887). ‘Über den Zahlbegriff’, in Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet, Leipzig: Fues, also Journal für die reine und angewandte Mathematik 101. Trans. 1996 Ewald, W., ‘On the Concept of Number’ in Ewald, (ed.) 1996, vol. II.Google Scholar
Mancosu, P. (ed.) (1998). From Brouwer to Hilbert: The Debate on the Foundations of Mathematics in the 1920s. New York: Oxford University Press.Google Scholar
Minkowski, H. (1905). ‘Peter Gustav Lejeune Dirichlet und seine Bedeutung für die heutige Mathematik [Peter Gustav Lejeune Dirichlet and his Significance for Modern Mathematics]’, Jahresbericht der deutschen Mathematiker-Vereinigung 14. Reprinted in Minkowski, H. (ed. Hilbert, D.), Gesammelte Abhandlungen [Collected Papers], vols. I and II, Leipzig: B. G. Teubner, 1911, vol. II.Google Scholar
Moore, G. H. (1982). Zermelo’s Axiom of Choice: Its Origins, Development and Influence. New York, Heidelberg, Berlin: Springer Verlag.CrossRefGoogle Scholar
Nagel, E. (1939). ‘The Formation of Modern Conceptions of Formal Logic in the Development of Geometry’, Osiris 7.CrossRefGoogle Scholar
Pasch, M. (1882). Vorlesungen über neuere Geometrie [Lectures on Recent Geometry], Leipzig: Teubner.Google Scholar
Poincaré, H. (1891). ‘Les Géometries non-Euclidiennes [Non-Euclidean Geometries]’, Revue générale des sciences pures et appliquées 2. Repr. with small alterations in Poincaré, 1902 (English trans.).Google Scholar
Poincaré, H. (1902). La Science et l'hypothèse, Paris: Ernest Flammarion. (Latest repr., 1968.) Trans. 1905 , W. J. G., Science and Hypothesis, London: Walter Scott Publishing Co. Repr. New York: Dover, 1952.Google Scholar
Poincaré, H. (1909). ‘Le logique de l'infini [The Logic of the Infinite]’, Revue de métaphysique et de morale 17. Repr. in Poincaré, 1913.Google Scholar
Poincaré, H. (1913). Dernières Pensées. Paris: Ernest Flammarion. Trans. Bolduc, J., Mathematics and Science: Last Essays, New York: Dover.Google Scholar
Quine, W. V. O. (1963). Set Theory and Its Logic, Cambridge, MA: Harvard University Press.Google Scholar
Ramsey, F. P. (1926). ‘The Foundations of Mathematics’, Proceedings of the London Mathematical Society 25 (second series). Reprinted 1978 in Ramsey, F. (ed. Mellor, H.), Foundations: Essays in Philosophy, Logic, Mathematics and Economics, London: Routledge.Google Scholar
Richard, J. (1905). ‘Les principes de mathématiques et le problème des ensembles’, Revue générale des sciences pures et appliquées 16. Trans. 1967 Heijenoort, J., ‘The Principles of Mathematics and the Problem of Sets’ in Heijenoort, (ed.), 1967.Google Scholar
Russell, B. A. W. (1897). An Essay on the Foundations of Geometry, Cambridge: Cambridge University Press. Repr. 1937, New York: Dover Publications Inc.Google Scholar
Russell, B. A. W. (1900). A Critical Exposition of the Philosophy of Leibniz, London: George Allen and Unwin. 2nd edn, 1937.Google Scholar
Russell, B. A. W. (1903). The Principles of Mathematics, vol. I, Cambridge: Cambridge University Press. 2nd edn (with a new introduction), Russell, B. A. W. 1937.Google Scholar
Russell, B. A. W. (1906). ‘On Some Difficulties in the Theory of Transfinite Numbers and Order Types’, Proceedings of the London Mathematical Society 4 (second series). Repr. 1973 in Russell, B. (ed. Lackey, D.), Essays in Analysis. London: George Allen and Unwin.Google Scholar
Russell, B. A. W. (1908). ‘Mathematical Logic as Based on the Theory of Types’, American Journal of Mathematics 30. Repr. (among other places) in Heijenoort, (ed.) 1967.CrossRefGoogle Scholar
Russell, B. A. W. (1919). Introduction to Mathematical Philosophy, London: George Allen and Unwin.Google Scholar
Russell, B. A. W. (1937). The Principles of Mathematics. 2nd edn, London: George Allen and Unwin.Google Scholar
Stillwell, J. (1996). Sources of Hyperbolic Geometry, Providence, RI: American Mathematical Society.CrossRefGoogle Scholar
Tarski, A. (1933). Pojȩcie prawdy w jȩzykach nauk dedukcyjnych, Prace Towarzystwa Nawkowego Warsawrkiego, Wydzial III Nawk Matematyczno-Fizyczych 34. Trans. Woodger, J. H. (ed.), ‘The Concept of Truth in Formalized Languages’ in Tarski, A., Logic, Semantics, Metamathematics. Papers from 1923 to 1938, Oxford: Clarendon Press. 2nd edn 1983, ed. Corcoran, J., Indianapolis, IN: Hackett.Google Scholar
Torretti, R. (1978). Philosophy of Geometry from Riemann to Poincaré, Dordrecht: Reidel.CrossRefGoogle Scholar
Weyl, H. (1910). ‘Über die Definition der mathematischen Grundbegriffe [On the Definition of the Fundamental Mathematical Concepts]’, Mathematisch-naturwissenschaftliche Blätter 7. Repr. 1968 Weyl, H. (ed. Chandrasekharan, K.) Gesammelte Abhandlungen [Collected Papers], vols. I–VI, Berlin, Heidelberg, New York: Springer Verlag, vol. I.Google Scholar
Weyl, H. (1917). Das Kontinuum: kritische Untersuchungen über die Grundlagen der Analysis, Leipzig: Veit. Trans. 1987 Pollard, S. and Bole, T., The Continuum: A Critical Examination of the Foundations of Analysis, Kirksville, MT: The Thomas Jefferson University Press, 1987. Repr. 1994, New York: Dover Publications Inc.Google Scholar
Whitehead, A.N. and Russell, B. A. W. (1910–13). Principia Mathematica, Cambridge: Cambridge University Press. 2nd edn 1927, Cambridge: Cambridge University Press.Google Scholar
Wright, C. (1997). ‘On the Philosophical Significance of Frege’s Theorem’ in Heck, (ed.) 1997.Google Scholar
Zermelo, E. (1908a). ‘Neuer Beweis für die Möglichkeit einer Wohlordnung’, Mathematische Annalen 65. Trans. 1967 Bauer-Mengelberg, S., ‘A New Proof of the Possibility of a Well-Ordering’, in Heijenoort, (ed.) 1967.Google Scholar
Zermelo, E. (1908b). ‘Untersuchungen über die Grundlagen der Mengenlehre, I’, Mathematische Annalen 65. Trans. Bauer-Mengelberg, S., ‘Investigations in the Foundations of Set Theory, I’ in Heijenoort, (ed.) 1967.CrossRefGoogle Scholar
Zermelo, E. (1930). ‘Über Grenzzahlen und Mengenbereiche: Neue Untersuchungen über die Grundlagen der Mengenlehre’, Fundamenta mathematicae, 16. Trans. 1996 Hallett, M., ‘%On Boundary Numbers and Domains of Sets: New Investigations in the Foundations of Set Theory’, in Ewald, (ed.) 1996, vol. II.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×