Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T00:50:48.532Z Has data issue: false hasContentIssue false

8 - Impacts of fishing and climate change explored using trophic models

Published online by Cambridge University Press:  08 January 2010

Dave Checkley
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego
Jürgen Alheit
Affiliation:
Baltic Sea Research Institute, University of Rostock, Germany
Yoshioki Oozeki
Affiliation:
National Research Institute of Fisheries Science, Japan
Claude Roy
Affiliation:
Centre IRD de Bretagne, France
Get access

Summary

Summary

Small pelagic fish are termed “wasp-waist” species as they dominate mid trophic levels and comprise relatively few species but attain large abundances that can vary drastically in size. They have been found to exert top-down control on their prey species and bottom-up control on their predators and, in this way, appear to induce unsuspected ecosystem dynamics. Largely based on model results, this chapter explores these effects and associated dynamics, not only illustrating the importance of small pelagic fish in structuring marine ecosystems, but also revealing the consistency of the role of small pelagic fish across various upwelling systems in which they play key roles. The Northern and Southern Benguela, Southern Humboldt, South Catalan Sea and North and Central Adriatic Sea ecosystems are compared in terms of the importance and role of small pelagic fish using information gained from landings and ecological models. Trophic level of the catch, the Fishing-in-Balance (FiB) index and the ratio of pelagic:demersal fish are calculated from reported landings. Sums of all flows to detritus are compared across modelled ecosystems. Models of the Southern Benguela, Southern Humboldt and South Catalan Sea are used to perform two simulations: (1) closure of fisheries on small pelagic fish and (2) collapse of small pelagic fish stocks, to further explore the roles of small pelagic fish in the dynamics of these ecosystems.

Tracking pelagic:demersal fish catch and biomass ratios over time is a means of detecting collapses in the small pelagic fish stocks, and comparing these ratios across ecosystems highlights the greater importance of small pelagic fish in the Humboldt compared to other ecosystems.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×