Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-18T20:01:53.057Z Has data issue: false hasContentIssue false

7 - Role of Oxytocin and Vasopressin V1a Receptor Variation on Personality, Social Behavior, Social Cognition, and the Brain in Nonhuman Primates, with a Specific Emphasis on Chimpanzees

from Part II - Neural Mechanisms

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Primates engage in a variety of complex social behaviors. Broadly speaking, these social behaviors can range from agonistic to affiliative depending on the context of a given interaction and a variety of other factors such as the sex, age, familiarity, and rank of individuals. Social interactions of any kind – whether cooperative or “prosocial,” as they is often termed, or conflict- and aggression-based, often termed “antisocial” – are based on the individual’s personality and cognitive traits and are manifest in their communication and behaviors directed toward others. (Chapter 5 discusses the problems associated with this terminology.) In other words, similar to humans, within different primate groups there are individual differences in the frequency of behaviors that reflect the range of social behaviors that are expressed during social interactions.  Understanding how or why this cluster of traits varies among individuals is therefore important for understanding social interactions.  It is now clear that one source of individual variation in both competitive and cooperative behavior is genes. Two of the most widely studied are genes that regulate the receptor distribution of oxytocin (OXTR) and vasopressin (AVPRA, AVPR1B and AVPR2). (See Box 7.1 for an overview of terminology and concepts associated with genetic variation.)

Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 134 - 160
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R., and Gallup, G. G., Jr. (2015) Mirror self-recognition: A review and critique of attempts to promote and engineer self-recognition in primates. Primates, 56: 317326.CrossRefGoogle ScholarPubMed
Anestis, S. F., Webster, T. H., Kamilar, J. M., Fontenot, M. B., Watts, D. P., and Bradley, B. J. (2014) AVPR1A variation in chimpanzees (Pan troglodytes): Population differences and association with behavioral style. International Journal of Primatology, 35(1): 305324.Google Scholar
Avinum, R., Israel, S., Shalev, I., Gritsenko, I., Bornstein, G., Ebstein, R. P., and Knafo, A. (2011) AVPR1A variant associated with preschoolers’ lower altruistic behavior. PLoS ONE, 6(9): E25274.Google Scholar
Bachner-Melman, R., Dina, C., Zohar, A. H. et al. (2005) AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1(3): e42.CrossRefGoogle ScholarPubMed
Baker, K. C., and Aureli, F. (1997) Behavioural indicators of anxiety: An empirical test in chimpanzees. Behaviour, 134: 10311050.Google Scholar
Baldwin, D. A. (1995) Understanding the link between joint attention and language. In Moore, C., and Dunham, P. J., eds., Joint Attention: Its Origins and Role in Development. Hillsdale, NJ: Erlbaum, pp. 131158.Google Scholar
Bauernfeind, A. A., Sousa, A. M. M., Avashti, T. et al. (2013) A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution, 64: 263279.Google Scholar
Bauman, M. D., Murai, T., Hogrefe, C. E., and Platt, M. L. (2018) Opportunities and challenges for intranasal oxytocin treatment studies in nonhuman primates. American Journal of Primatology, 80(10): e22913.Google Scholar
Bauman, M. D., and Schumann, C. M. (2018) Advances in nonhuman primate models of autism: Integrating neuroscience and behavior. Experimental Neurology, 299(Pt A): 252265.Google Scholar
Bottema-Beutel, K. (2016) Associations between joint attention and language in autism spectrum disorder and typical development: A systematic review and meta-regression analysis. Autism Research, 10: 10211035.Google Scholar
Brosnan, S. F., Talbot, C. F., Essler, J. L., Leverett, K., Felemming, T. P. G., Heyler, C., and Zak, P. J. (2015) Oxytocin reduces food sharing in capuchin monkeys by modulating social distance. Behaviour (152): 941961.CrossRefGoogle Scholar
Caldwell, H. K. (2017) Oxytocin and vasopressin: Powerful regulators of social behavior. Neuroscientist, 23(5): 517528.Google Scholar
Carpenter, M., Nagell, K., Tomasello, M., Butterworth, G., and Moore, C. (1998) Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monographs of the Society for Research in Child Development, 63(4).Google Scholar
Cavanaugh, J., Mustoe, A., Womack, S. L., and French, J. A. (2018) Oxytocin modulates mate-guarding behavior in marmoset monkeys. Hormones and Behavior, 106: 150161.Google Scholar
Charman, T., Baron-Cohen, S., Swettenham, J., Baird, G., Cox, A., and Drew, A. (2000) Testing joint attention, imitation and play as infancy precursors to language and theory of mind. Cognitive Development, 15: 481498.Google Scholar
Dawson, G., Munson, J., Estes, A. et al. (2002) Neurocognitive function and joint attention ability in young children with autism spectrum disorder versus developmental delay. Child Development, 73(2): 345358.CrossRefGoogle ScholarPubMed
Dawson, G., Toth, K., Abbott, R., Osterling, J., Munson, J., Estes, A., and Liaw, J. (2004) Early social attention impairments in autism: Social orienting, joint attention and attention to distress. Developmental Psychology, 40(2): 271283.Google Scholar
de Vries, G. J. (2008) Sex differences in vasopressin and oxytocin innervation of the brain. Progress in Brain Research, 170: 1727.Google Scholar
Donaldson, Z. R., Bai, Y., Kondrashov, F. A., Stoinski, T. L., Hammock, E. A. D., and Young, L. J. (2008) Evolution of a behavior-linked microsatellite-containing element of the 5′ flanking region of the primate AVPR1A gene. BMC Evolutionary Biology, 8: 180188.Google Scholar
Donaldson, Z. R., and Young, L. J. (2008) Oxytocin, vasopressin and the neurogenetics of sociality. Science, 322: 900904.Google Scholar
Ebert, A., and Brune, M. (2017) Oxytocin and social cognition. In Hurlemann, R., and Grinevich, V., eds., Behavioral Pharmacology of Neuropeptides: Oxytocin. Switzerland: Springer, pp. 375388.Google Scholar
Ebstein, R. P., Knafo, A., Mankuta, D., Chew, S. H., and Lai, P. S. (2012) The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones and Behavior, 61(3): 359379.CrossRefGoogle ScholarPubMed
Eckardt, W., Steklis, H. D. Steklis, N. G., Fletcher, A. W., Stoinski, T. S., and Weiss, A. (2015) Personality dimensions and their behavioral correlates in wild Virunga mountain gorillas (Gorilla beringei beringei). Journal of Comparative Psychology, 129(1): 2641.Google Scholar
Evans, S. L., Dal Monte, O., Noble, P., and Averbeck, B. B. (2014) Intranasal oxytocin effects on social cognition: A critique. Brain Research, 1580: 6977.Google Scholar
Feczko, E. J., Bliss-Moreau, E., Walum, H., Pruett, J. R. Jr., and Parr, L. A. (2016) The Macaque Social Responsiveness Scale (mSRS): A rapid screening tool for assessing variability in the social responsiveness of Rhesus monkeys (Macaca mulatta). PLoS ONE, 11(1): e0145956.Google Scholar
Francis, S. M., Kim, S. J., Kistner-Griffin, E., Guter, S., Cook, E. H., and Jacob, S. (2016) ASD and genetic associations with receptors for oxytocin and vasopressin-AVPR1A, AVPR1B, and OXTR. Frontiers in Neuroscience, 10: 516.Google Scholar
Freeman, H. D., Brosnan, S. F., Hopper, L. M., Lambeth, S. P., Schapiro, S. J., and Gosling, S. D. (2013) Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top‐down/bottom‐up design. American Journal of Primatology, 75: 10421053.CrossRefGoogle ScholarPubMed
Freeman, H. D., and Gosling, S. D. (2010) Personality in nonhuman primates: a review and evaluation of past research. American Journal of Primatology, 72(8): 653671.Google Scholar
Freeman, S. M., Inoue, K., Smith, A. L., Goodman, M. M., and Young, L. J. (2014a) The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology, 45: 128141.Google Scholar
Freeman, S. M., Walum, H., Inoue, K., Smith, A. L., Goodman, M. M., Bales, K. L., and Young, L. J. (2014b) Neuroanatomical distribution of oxytocin and vasopressin 1a receptors in the socially monogamous coppery titi monkey (Callicebus cupreus). Neuroscience, 273: 1223.Google Scholar
French, J. A., Taylor, J. H., Mustoe, A. C., and Cavanaugh, J. (2016) Neuropeptide diversity and the regulation of social behavior in New World primates. Frontiers in Neuroendocrinology, 42: 1839.Google Scholar
Goodson, J. L., and Bass, A. H. (2001) Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Research Reviews, 35: 246265.Google Scholar
Guastella, A. J., Einfeld, S. L., Gray, K. M., Rinehart, N. J., Tonge, B. J., Lambert, T. J., and Hickie, I. B. (2010a) Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biological Psychiatry, 67(7): 692694.Google Scholar
Guastella, A. J., Kenyon, A. R., Alvares, G. A., Carson, D. S., and Hickie, I. B. (2010b) Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biological Psychiatry, 67(12): 12201222.Google Scholar
Hammock, E. A., and Young, L. J. (2005) Microsatellite instability generates diversity in brain and sociobehavioral traits. Science, 308: 16301634.Google Scholar
Hammock, E. A., and Young, L. J. (2006) Oxytocin, vasopressin and pair bonding: Implications for autism. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 361(1476): 21872198.CrossRefGoogle ScholarPubMed
Hare, B., and Yamamoto, S. (2017) Bonobos: Unique in Mind, Brain and Behavior. Oxford: Oxford University Press.Google Scholar
Hopkins, W. D., Donaldson, Z. R., and Young, L. Y. (2012) A polymorphic indel containing the RS3 microsatellitein the 5′ flanking region of the vasopressin V1a receptor gene is associated with chimpanzee (Pan troglodytes) personality. Genes, Brain and Behavior, 11: 552558.Google Scholar
Hopkins, W. D., Keebaugh, A. C., Reamer, L. A., Schaeffer, J., Schapiro, S. J., and Young, L. J. (2014) Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Scientific Reports 4(3774): 17.Google Scholar
Hopkins, W. D., Latzman, R. D., Mareno, M. C., Schapiro, S. J., Gomez-Robles, A., and Sherwood, C. C. (2018) Heritability of gray matter structural covariation and tool use skills in Chimpanzees (Pan troglodytes): A source-based morphometry and quantitative genetic analysis. Cerebral Cortex, 29: 37023711.Google Scholar
Hopkins, W. D., Reamer, L., Mareno, M. C., and Schapiro, S. J. (2015) Genetic basis for motor skill and hand preference for tool use in chimpanzees (Pan troglodytes). Proceedings of the Royal Society London B Biological Sciences, 282: 1800.Google Scholar
Hopkins, W. D., Russell, J. L., Freeman, H., Reynolds, E. A. M., Griffis, C., and Leavens, D. A. (2006) Lateralized scratching in chimpanzees (Pan troglodytes): Evidence of a functional asymmetry in arousal. Emotion, 6(4): 553559.Google Scholar
Hopkins, W. D., Stimpson, C. D., and Sherwood, C. C. (2017) Social cognition and brain organization in chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). In Hare, B., and Yamamoto, S. eds., Bonobos: Unique Mind, Brain and Behavior. Oxford: Oxford University Press, pp. 199213.Google Scholar
Hostetter, A. B., Cantero, M., and Hopkins, W. D. (2001) Differential use of vocal and gestural communication by chimpanzees (Pan troglodytes) in response to the attentional status of a human (Homo sapiens). Journal of Comparative Psychology, 115(4): 337343.Google Scholar
Hostetter, A. B., Russell, J. L., Freeman, H., and Hopkins, W. D. (2007) Now you see me, now you don’t: Evidence that chimpanzees understand the role of the eyes in attention. Animal Cognition, 10: 5562.Google Scholar
Inoue-Murayama, M., Yokoyama, C., Yamanashi, Y., and Weiss, A. (2018) Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes. Science Reports, 8(1): 10255.Google Scholar
Issa, H. A., Staes, N., Diggs-Galligan, S. et al. (2018) Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits. Brain Structure and Function, 224: 239251.Google Scholar
Jiang, Y., and Platt, M. L. (2018) Oxytocin and vasopressin flatten dominance hierarchy and enhance behavioral synchrony in part via anterior cingulate cortex. Science Reports, 8(1): 8201.Google Scholar
Kim, H. S., Young, L. J., Gonen, D. et al. (2002) Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Molecular Psychiatry, 7: 503507.Google Scholar
King, J. E., and Figueredo, A. J. (1997) The five-factor model plus dominance in chimpanzee personality. Journal of Research in Personality, 31(2), 257271, DOI: https://doi.org/10.1006/jrpe.1997.2179.Google Scholar
Kramer, M. D., Patrick, C. J., Krueger, R. F., and Gasperi, M. (2012) Delineating physiologic defensive reactivity in the domain of self-report: Phenotypic and etiologic structure of dispositional fear. Psychological Medicine, 42(6): 13051320.Google Scholar
Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D., and Kramer, M. D. (2007) Linking antisocial behavior, substance use, and personality: An integrative quantitative model of the adult externalizing spectrum. Journal of Abnormal Psychology, 116(4): 645666.Google Scholar
Latzman, R. D., Drislane, L. E., Hecht, L. K. et al. (2016) A chimpanzee model of triarchic psychopathy constructs: development and initial validation. Clinical Psychological Science, 4(1): 5066.Google Scholar
Latzman, R. D., Green, L. M., and Fernandes, M. A. (2017) The importance of chimpanzee personality research to understanding processes associated with human mental health. International Journal of Comparative Psychology, 30: 34268.Google Scholar
Latzman, R. D., Hopkins, W. D., Keebaugh, A. C., and Young, L. J. (2014) Personality in chimpanzees (Pan troglodytes): Exploring the hierarchical structure and associations with the vasopressin V1A receptor gene. PLoS ONE, 9(4): e95741.Google Scholar
Latzman, R. D., Patrick, C. J., Freeman, H. D., Schapiro, S. J., and Hopkins, W. D. (2017) Etiology of triarchic psychopathy dimensions in Chimpanzees (Pan troglodytes). Clinical Psychological Science, 5(2): 341354.Google Scholar
Latzman, R. D., Schapiro, S. J., and Hopkins, W. D. (2017) Triarchic psychopathy dimensions in Chimpanzees (Pan troglodytes): Investigating associations with genetic variation in the vasopressin receptor 1A gene. Frontiers in Neuroscience, 11: 407.CrossRefGoogle ScholarPubMed
Latzman, R. D., Young, L. J., and Hopkins, W. D. (2016) Displacement behaviors in chimpanzees (Pan troglodytes): A neurogenomics investigation of the RDoC Negative Valence Systems domain. Psychophysiology, 53: 355363.Google Scholar
Leavens, D. A., Aureli, F., and Hopkins, W. D. (1997) Scratching and cognitive stress: Performance and reinforcement effects on hand use, scratch type, and afferent cutaneous pathways during computer cognitive testing by a chimpanzee (Pan troglodytes). American Journal of Primatology, 42: 126127.Google Scholar
Leavens, D. A., and Hopkins, W. D. (1998) Intentional communication by chimpanzee (Pan troglodytes): A cross-sectional study of the use of referential gestures. Developmental Psychology, 34: 813822.Google Scholar
Leavens, D. A., Hopkins, W. D., and Bard, K. A. (1996) Indexical and referential pointing in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 110(4): 346353.Google Scholar
Leavens, D. A., Hopkins, W. D., and Thomas, R. (2004) Referential communication by chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 118: 4857.Google Scholar
Leavens, D. A., Reamer, L. A., Mareno, M. C., Russell, J. L., Wilson, D. C., Schapiro, S. J., and Hopkins, W. D. (2015) Distal communication by chimpanzees (Pan troglodytes): Evidence for common ground? Child Development, 86(5): 16231638.Google Scholar
Leng, G., and Ludwig, M. (2016) Intranasal oxytocin: Myths and delusions. Biological Psychiatry, 79(3): 243250.Google Scholar
Lilienfeld, S. O., and Latzman, R. D. (2018) Personality disorders: Current scientific status and ongoing controversies. In Butcher, J. N., ed., APA Handbook of Psychopathology: Psychopathology: Understanding, Assessing, and Treating Adult Mental Disorders. Washington, DC: American Psychological Association, pp. 557606.Google Scholar
Lilienfeld, S. O., Watts, A. L., Francis Smith, S., Berg, J. M., and Latzman, R. D. (2015) Psychopathy deconstructed and reconstructed: Identifying and assembling the personality building blocks of Cleckley’s Chimera. Journal of Personality, 83(6): 593610.Google Scholar
LoParo, D., and Waldman, I. D. (2015) The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Molecular Psychiatry, 20: 640646.CrossRefGoogle ScholarPubMed
Madlon-Kay, S., Montague, M. J., Brent, L. J. N. et al. (2018) Weak effects of common genetic variation in oxytocin and vasopressin receptor genes on rhesus macaque social behavior. American Journal of Primatology, 80(10): e22873.Google Scholar
Madrid, J. E., Oztan, O., Sclafani, V. et al. (2017) Preference for novel faces in male infant monkeys predicts cerebrospinal fluid oxytocin concentrations later in life. Science Reports, 7(1): 12935.Google Scholar
Mahovetz, L. M., Young, L. J., and Hopkins, W. D. (2016) The influence of AVPR1A genotype on individual differences in behaviors during a mirror self-recognition task in chimpanzees (Pan troglodytes). Genes Brain and Behavior, 15(5): 445452.Google Scholar
Marrus, N., Faughn, C., Shuman, J., Petersen, S. E., Constantino, J. N., Povinelli, D. J., and Pruett, J. R., Jr. (2011) Initial description of a quantitative, cross-species (chimpanzee-human) social responsiveness measure. Journal of the American Academy of Child and Adolescent Psychiatry, 50(5): 508518.Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., and Heinrichs, M. (2011) Oxytocin and vasopressin in the human brain: Social neuropepetides for translational medicine. Nature Neuroscience Reviews, 12: 524538.Google Scholar
Morales, M., Mundy, P., Delgado, C. E. F., Yale, M., Messinger, D., Neal, R., and Schwartz, H. K. (2000) Responding to joint attention across the 6- through 24-month age period and early language acquisition. Journal of Applied Developmental Psychology, 21(3): 283298.Google Scholar
Mundy, P. (2018) A review of joint attention and social-cognitive brain systems in typical development and autism spectrum disorder. European Journal of Neuroscience, 47(6): 497514.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., Van Hecke, A. V., and Parlade, M. V. (2007) Individual differences and the development of joint attention in infancy. Child Development, 78(3): 938954.Google Scholar
Mundy, P., Card, J., and Fox, N. (2000) EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36: 325338.Google Scholar
Mundy, P., Delgado, P., Block, J., Venezia, M., Hogan, A., and Siebert, J. (2003) A Manual for the Abridged Early Social Communication Scales (ESCS). Coral Gables, FL: University of Miami Press.Google Scholar
Murray, L. (2011) Predicting primate behavior from personality ratings. In Weiss, A., King, J. E., and Murray, L., eds., Personality and Temperament in Nonhuman Primates. New York: Springer, pp. 129166.CrossRefGoogle Scholar
Palumbo, I. M., and Latzman, R. D. (2019) Translational value of nonhuman primate models of antagonism. In Lyman, D. R., and Miller, J. D., eds., The Handbook of Antagonism. San Diego, CA: Elsevier, pp. 113126.Google Scholar
Parker, K. J., Garner, J. P., Oztan, O. et al. (2018) Arginine vasopressin in cerebrospinal fluid is a marker of sociality in nonhuman primates. Science Translational Medicine, 10: 439.Google Scholar
Parr, L. A., Mitchell, T., and Hecht, E. (2018) Intranasal oxytocin in rhesus monkeys alters brain networks that detect social salience and reward. American Journal of Primatology, 80(10): e22915.Google Scholar
Parr, L. A., Modi, M., Siebert, E., and Young, L. J. (2013) Intranasal oxytocin selectively attenuates rhesus monkeys’ attention to negative facial expressions. Psychoneuroendocrinology, 38(9): 17481756.Google Scholar
Patrick, C. J., Fowles, D. C., and Krueger, R. F. (2009) Triarchic conceptualization of psychopathy: Developmental origins of disinhibition, boldness, and meanness. Developmental Psychopathology, 21(3): 913938.Google Scholar
Pavani, S., Maestripieri, D., Schino, G., Giovanni Turillazzi, P., and Scucchi, S. (1991) Factors influencing scratching behaviour in long-tailed macaques (Macaca fascicularis). Folia Primatologica, 57: 3438.Google Scholar
Presmanes, A. G., Walden, T. A., Stone, W. L., and Yoder, P. J. (2007) Effects of different attentional cues on responding to joint attention in younger siblings of children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37: 133144.Google Scholar
Rilling, J. K., Scholz, J., Preuss, T. M., Glasser, M. F., Errangi, B. K., and Behrens, T. E. (2012) Differences between chimpanzees and bonobos in neural systems supporting social cognition. Social, Cognitive and Affective Neuroscience, 7(4): 369379.Google Scholar
Rogers, C. N., Ross, A. P., Sahu, S. P. et al. (2018) Oxytocin- and arginine vasopressin-containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. American Journal of Primatology, 80: e22875.Google Scholar
Rosso, L., Keller, L., Kaessmann, H., and Hammond, R. L. (2008) Mating systems and avpr1a promoter variation in primates. Biology Letters, 4: 375378.Google Scholar
Samuni, L., Preis, A., Mundry, R., Deschner, T., Crockford, C., and Wittig, R. M. (2017) Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proceedings of the National Academy of Science USA, 114(2): 268273.Google Scholar
Schaefer, S. A., and Steklis, H. D. (2014) Personality and subjective well-being in captive male western lowland gorillas living in bachelor groups. American Journal of Primatology, 76(9): 879889.Google Scholar
Schino, G., Peretta, G., Taglioni, A. M., Monaco, V., and Troisi, A. (1996) Primate displacement activities as an ethopharmacological model of anxiety. Anxiety, 2: 186191.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Schino, G., Troisi, A., Perretta, G., and Monaco, V. (1991) Measuring anxiety in nonhuman primates: Effect of lorazepam on macaque scratching. Pharmacology, Biochemistry and Behavior, 38: 889891.Google Scholar
Skuse, D. H., Lori, A., Cubelis, J. F. et al. (2014) Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills. Proceedings of the National Academy of Science USA, 111(5): 19871992.CrossRefGoogle ScholarPubMed
Staes, N., Bradley, B. J., Hopkins, W. D., and Sherwood, C. C. (2018) Genetic signatures of socio-communicative abilities in primates. Current Opinion in Behavioral Sciences, 21: 3338.Google Scholar
Staes, N., Koski, S. E., Helsen, P., Fransen, E., Eens, M., and Stevens, J. M. (2015) Chimpanzee sociability is associated with vasopressin (Avpr1a) but not oxytocin receptor gene (OXTR) variation. Hormones and Behavior, 75: 8490.Google Scholar
Staes, N., Stevens, J. M. G., Helsen, P., Hillyer, M., Korody, M., and Eens, M. (2014) Oxytocin and vasopressin receptor gene variation as a proximate base for Inter- and intraspecific behavioral differences in bonobos and chimpanzees. PLoS ONE, 9(11): e113364.Google Scholar
Staes, N., Weiss, A., Helsen, P., Korody, M., Eens, M., and Stevens, J. M. (2016) Bonobo personality traits are heritable and associated with vasopressin receptor gene 1a variation. Science Reports, 6: 38193.Google Scholar
Stimpson, C. D., Hopkins, W. D., Taglialatela, J., Barger, N., Hof, P. R., and Sherwood, C. C. (2016) Differential serotonergic innervation of the amygdala in bonobos and chimpanzees. Social, Cognitive and Affective Neuroscience, 11(3): 413422.Google Scholar
Tabak, B. A., Teed, A. R., Castle, E. et al. (2019) Null results of oxytocin and vasopressin administration across a range of social cognitive and behavioral paradigms: Evidence from a randomized controlled trial. Psychoneuroendocrinology, 107: 124132.Google Scholar
Taylor, J. H., and French, J. A. (2015) Oxytocin and vasopressin enhance responsiveness to infant stimuli in adult marmosets. Hormones and Behavior, 75: 154159.CrossRefGoogle ScholarPubMed
Terranova, J. I., Song, Z., Larkin, T. E., 2nd, Hardcastle, N., Norvelle, A., Riaz, A., and Albers, H. E. (2016) Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proceedings of the National Academy of Science USA, 113(46): 1323313238.Google Scholar
Tomasello, M., and Carpenter, M. (2007) Shared intentionality. Developmental Science, 10(1): 121125.Google Scholar
Troisi, A., Schino, G., D’Antoni, M., Pandolfi, N., Aureli, F., and D’Amato, F. R. (1991) Scratching as a behavioral index of anxiety in macaque mothers. Behavioral and Neural Biology, 56: 307313.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S. et al. (2015) Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67: 6065.Google Scholar
Uzefovsky, F., Shalev, I., Israel, S., Knafo, A., and Ebstein, R. P. (2012) Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology, 37(4): 576580.Google Scholar
Walum, H., Westberg, L., Henningsson, S. et al. (2008) Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair bonding behavior in humans. Proceedings of the National Academy of Sciences USA, 105(37): 1415314156.Google Scholar
Warneken, F., Chen, F., and Tomasello, M. (2006) Cooperative activities in young children and chimpanzees. Child Development, 77(3): 640663.Google Scholar
Warneken, F., and Tomasello, M. (2009) The roots of human altruism. British Journal of Psychology, 100(Pt 3): 455471.Google Scholar
Weiss, A., King, J. E., and Hopkins, W. D. (2007) A cross-setting study of chimpanzee (Pan troglodytes) personality structure and development: Zoological parks and Yerkes National Primate Research Center. American Journal of Primatology, 69: 12641277.CrossRefGoogle ScholarPubMed
Weiss, A., King, J. E., and Murray, L. (2011) Personality and Temperament in Nonhuman Primates. New York: Springer.Google Scholar
Weiss, A., King, J. E., and Perkins, L. (2006) Personality and subjective well-being in orangutans (Pongo pygmaeus and Pongo abelii). Journal of Personality and Social Psychology, 90(3): 501511.Google Scholar
Weiss, A., Staes, N., Pereboom, J. J., Inoue-Murayama, M., Stevens, J. M., and Eens, M. (2015) Personality in Bonobos. Psychological Science, 26(9): 14301439.Google Scholar
Wilczynski, W., Quispe, M., Munoz, M. I., and Penna, M. (2017) Arginine vasotocin, the social neuropeptide of amphibians and reptiles. Frontiers in Endocrinology, 8: 186.Google Scholar
Wilson, V. A. D., Inoue-Murayama, M., and Weiss, A. (2018) A comparison of personality in the common and Bolivian squirrel monkey (Saimiri sciureus and Saimiri boliviensis). Journal of Comparative Psychology, 132(1): 2439.Google Scholar
Yirmiya, N., Rosenberg, C., Levi, S. et al. (2006) Association between the arginine vasopressin 1a receptor (AVPR1a) gene and autism in a family-based study: Mediation by socialization skills. Molecular Psychiatry, 11(5): 488494.Google Scholar
Zhang, R., Zhang, H. F., Han, J. S., and Han, S. P. (2017) Genes related to oxytocin and arginine-vasopressin pathways: Associations with autism spectrum disorders. Neuroscience Bulletin, 33(2): 238246.Google Scholar
Ziegler, T. E., and Crockford, C. (2017) Neuroendocrine control in social relationships in non-human primates: Field based evidence. Hormones and Behavior, 91: 107121.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×