Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T18:03:27.704Z Has data issue: false hasContentIssue false

Part III - Species Comparisons

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 165 - 233
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alberts, S. C. (2019) Social influences on survival and reproduction: Insights from a long-term study of wild baboons. Journal of Animal Ecology, 88: 4766.Google Scholar
Angulo, E., Luque, G. M., Gregory, S. D., Wenzel, J. W., Bessa-Gomes, C., Berec, L., and Courchamp, F. (2018) Allee effects in social species. Journal of Animal Ecology, 87: 4758.Google Scholar
Angulo, E., Rasmussen, G. S. A., MacDonald, D. W., and Courchamp, F. (2009) Do social groups prevent Allee effect related extinctions? The case of wild dogs. Frontiers in Zoology, 10: 11.Google Scholar
Baglione, V., Canestrari, D., Marcos, J. M. 2006. Experimentally increased food resources in the natal territory promote offspring philopatry and helping in cooperatively breeding carrion crows. Proceedings of the Royal Society London B Biological Science, 273: 15291535.CrossRefGoogle ScholarPubMed
Batchelor, T. P., and Briffa, M. (2011) Fight tactics in wood ants: Individuals in smaller groups fight harder but die faster. Proceedings of the Royal Society London B Biological Science, 278: 32423250.Google Scholar
Beauchamp, G. (2009) How does food density influence vigilance in birds and mammals? Animal Behaviour, 78(2): 223231.CrossRefGoogle Scholar
Beauchamp, G. (2014) Do avian cooperative breeders live longer? Proceedings of the Royal Society London B Biological Science, 281: 20140844.CrossRefGoogle ScholarPubMed
Canestrari, D., Marcos, J. M., and Baglione, V. (2008) Reproductive success increases with group size in cooperative carrion crows Corvus corone corone. Animal Behaviour, 75: 403416.CrossRefGoogle Scholar
Christensen, C., and Radford, A. N. (2018) Dear enemies or nasty neighbours? Causes and consequences of variation in the response of group-living species to territorial intrusions. Behavioral Ecology, 29: 10041013.Google Scholar
Choi, J. K., and Bowles, S. (2007) The coevolution of parochial altruism and war. Science, 318: 636640.Google Scholar
Clutton-Brock, T. H. (2016) Mammal Societies. West Sussex: John Wiley & Sons, Inc.Google Scholar
Clutton-Brock, T. H., Brotherton, P. N. M., Russell, A. F. et al. (2001) Cooperation, control and concession in meerkat groups. Science, 291: 478481.Google Scholar
Clutton-Brock, T. H., Hodge, S. J., Flower, T. P., Spong, G. F., and Young, A. J. (2010) Adaptive suppression of subordinate reproduction in cooperative mammals. American Naturalist, 176: 664673.Google Scholar
Cockburn, A. (2006) Prevalence of different modes of parental care in birds. Proceedings of the Royal Society London B Biological Science, 273: 13751383.CrossRefGoogle ScholarPubMed
Cooney, R., and Bennett, N. C. (2000) Inbreeding avoidance and reproductive skew in a cooperative mammal. Proceedings of the Royal Society London B Biological Science, 267: 801806.Google Scholar
Courchamp, F., Rasmussen, G. S. A., and MacDonald, D. W. (2002) Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus. Behavioral Ecology, 13: 2027.Google Scholar
Covas, R., and Doutrelant, C. (2018) The sexual and social benefits of cooperation in animals. Trends in Ecology and Evolution, 34: 112120.Google Scholar
Crofoot, M. C. (2013) The cost of defeat: Capuchin groups travel further, faster and later after losing conflicts with neighbors. American Journal of Physical Anthropology, 152(1): 7985, DOI: https://doi.org/10.1002/ajpa.22330.CrossRefGoogle ScholarPubMed
Davies, N. B. (2000) Cuckoos, Cowbirds and Other Cheats. London: T and AD Poyser Ltd.Google Scholar
Dickinson, J. L., Ferree, E. D., Stern, C. A., Swift, R., and Zuckerberg, B. (2014) Delayed dispersal in western bluebirds: Teasing apart the importance of resources and parents. Behavioral Ecology, 25: 843851.Google Scholar
Drummond, H. (2006) Dominance in vertebrate broods and litters. Quarterly Review of Biology, 81: 332.CrossRefGoogle ScholarPubMed
Ekman, J., Eggers, S., and Griesser, M. (2002) Fighting to stay: The role of sibling rivalry for delayed dispersal. Animal Behaviour, 64: 453459.Google Scholar
Ekman, J., and Griesser, M. (2002) Why offspring delay dispersal: Experimental evidence for a role of parental tolerance. Proceedings of the Royal Society London B Biological Science, 269: 17091713.Google Scholar
Elgar, M. A. (1989) Predator vigilance and group size in mammals and birds – A critical review of the evidence. Biology Review, 64: 1333.CrossRefGoogle Scholar
Emlen, S. T. (1988) The role of kinship in helping decisions among white-fronted bee-eaters. Behavioral Ecology and Sociobiology, 23: 305315.Google Scholar
Esteban, J., and Ray, D. (2001) Collective action and the group size paradox. American Political Science Review, 95: 663672.CrossRefGoogle Scholar
Gavrilets, S. (2015) The collective action problem in heterogeneous groups. Philosophical Transactions of the Royal Society of London B, 370: 20150016.Google Scholar
Golabek, K. A., Ridley, A. R., and Radford, A. N. (2012) Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Animal Behaviour, 83: 613619.CrossRefGoogle Scholar
Goldstein, J. M., Woolfenden, G. E., and Hailman, J. P. (1998) A same-sex stepparent shortens a prebreeder’s duration on the natal territory: Tests of two hypotheses in Florida scrub-jays. Behavioral Ecology and Sociobiology, 44: 1522.Google Scholar
Griesser, M., Nystrand, M., and Ekman, J. (2006) Reduced mortality selects for family cohesion in a social species. Proceedings of the Royal Society London B Biological Science, 273: 18811886.Google Scholar
Groenewoud, F., Kingma, S. A., Hammers, M., Dugdale, H. L., Burke, T., Richardson, D. S., and Komdeur, J. (2018) Subordinate females in the cooperatively breeding Seychelles warbler obtain direct benefits by joining unrelated groups. Journal of Animal Ecology, 87: 12511263.Google Scholar
Hamilton, W. D. (1964) The genetical evolution of social behavior I. Journal of Theoretical Biology, 7: 116.Google Scholar
Hillegas, M. A., Waterman, J. M., and Roth, J. D. (2008) The influence of sex and sociality on parasite loads in an African ground squirrel. Behavioral Ecology, 19: 10061011.Google Scholar
Hollén, L. I., Bell, M. B.V., and Radford, A. N. (2008) Cooperative sentinel calling? Foragers gain increased biomass intake. Current Biology, 18: 576579, DOI: https://doi.org/10.1016/j.cub.2008.02.078.CrossRefGoogle ScholarPubMed
Humphries, D. (2013) The mechanisms and function of social recognition in the cooperatively breeding southern pied babler, Turdoides bicolor. PhD thesis, University of Western Australia.Google Scholar
Keynan, O., and Ridley, A. R. (2016) Component, group and demographic Allee effects in a cooperatively breeding bird species, the Arabian babbler (Turdoides squamiceps). Oecologia, 182: 153161.Google Scholar
Koenig, W. D., and Dickinson, J. L. (2016) Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution and Behaviour. Cambridge: Cambridge University Press.Google Scholar
Kokko, H., and Ekman, J. (2002) Delayed dispersal as a route of breeding: Territorial inheritance, safe havens, and ecological constraints. American Naturalist, 160: 468484.Google Scholar
Kokko, H., and Johnstone, R. (1999) Social queuing in animal societies: A dynamic model of reproductive skew. Proceedings of the Royal Society London B Biological Science, 266: 571578.CrossRefGoogle Scholar
Komdeur, J. (1992) Importance of habitat saturation and territory quality for the evolution of cooperative breeding in the Seychelles Warbler. Nature, 358: 493495.CrossRefGoogle Scholar
Lundy, K. J., Parker, P. G., and Zahavi, A. (1998) Reproduction by subordinates in cooperatively breeding Arabian babblers is uncommon but predictable. Behavioral Ecology and Sociobiology, 43: 173180.Google Scholar
Macedo, R. H., and DuVal, E. H. (2018) Friend or foe? The dynamics of social life. Animal Behaviour, 143: 139143.Google Scholar
Majolo, B., de Bortoli, V. A., and Lehmann, J. (2016) The effect of intergroup competition on intragroup affiliation in primates. Animal Behaviour, 114: 1319.Google Scholar
Mirville, M. O. (2018) The causes and consequences of intergroup interactions in mountain gorillas (Gorillia beringei beringei). PhD thesis, University of Western Australia.Google Scholar
Mirville, M. O., Ridley, A. R., Samedi, J. P. M., Vecellio, V., Ndagijimana, F., Stoinski, T. S., and Grueter, C. C. (2018) Factors influencing individual participation during intergroup interactions in mountain gorillas. Animal Behaviour, 144: 7586.Google Scholar
Moehlman, P. D. (1979) Jackal helpers and pup survival. Nature, 277: 382383.Google Scholar
Morales, J., and Velando, A. (2013) Signals in family groups. Animal Behaviour, 86: 1116.Google Scholar
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C., Raihani, N. J., du Plessis, M. A., and Ridley, A. R. (2011) Monogamous dominant pairs monopolize reproduction in the cooperatively breeding pied babbler. Behavioral Ecology, 22: 559565.Google Scholar
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C., and Ridley, A. R. (2012) Inbreeding avoidance mechanisms: Dispersal dynamics in cooperatively breeding southern pied babblers. Journal of Animal Ecology, 81: 876883.Google Scholar
Nelson-Flower, M. J., Hockey, P. A. R., O’Ryan, C. et al. (2013) Costly reproductive competition between females in a monogamous cooperatively breeding bird. Proceedings of the Royal Society London B Biological Science, 280: 20180728.Google Scholar
Nelson-Flower, M. J., and Ridley, A. R. (2015) Male–male competition is not costly to dominant males in a cooperatively breeding bird. Behavioral Ecology and Sociobiology, 69: 19972004.CrossRefGoogle Scholar
Nelson-Flower, M. J., and Ridley, A. R. (2016) Nepotism and subordinate tenure in a cooperative breeder. Biology Letters, 12: 20160365.Google Scholar
Nelson‐Flower, M. J., Flower, T. P., and Ridley, A. R. (2018b) Sex differences in the drivers of reproductive skew in a cooperative breeder. Molecular Ecology 27: 24352446.Google Scholar
Nelson-Flower, M. J., Wiley, E. M., Flower, T. P., and Ridley, A. R. (2018a) Individual dispersal delays in a cooperative breeder: Ecological constraints, the benefits of philopatry and the social queue for dominance. Journal of Animal Ecology, 87: 12271238.Google Scholar
Nunn, C. L. (2000) Collective benefits, free-riders, and male extra-group conflict. In Kappeler, P. M., ed., Primate Males: Causes and Consequences of Variation in Group Composition. Cambridge: Cambridge University Press, pp. 192204.Google Scholar
Olson, M. (1965) The Logic of Collective Action. Cambridge, MA: Harvard University Press.Google Scholar
Packer, C., and Pusey, A. (1983) Adaptations of female lions to infanticide by incoming males. American Naturalist, 121: 716728.CrossRefGoogle Scholar
Peña, J., and Nöldeke, G. (2018) Group size effects in social evolution. Journal of Theoretical Biology, 457: 211220.CrossRefGoogle ScholarPubMed
Radford, A. N. (2008) Duration and outcome of intergroup conflict influences intragroup affiliative behaviour. Proceedings of the Royal Society London B Biological Science, 275: 27872791.CrossRefGoogle ScholarPubMed
Raihani, N. J., Nelson-Flower, M. J., Golabek, K. A., and Ridley, A. R. (2010) Routes to breeding in cooperatively breeding pied babblers Turdoides bicolor. Journal of Avian Biology, 41: 681686.Google Scholar
Raihani, N. J. and Ridley, A. R. (2007) Adult vocalizations during provisioning: Offspring response and postfledging benefits in wild pied babblers. Animal Behaviour, 74(5): 13031309, DOI: https://doi.org/10.1016/j.anbehav.2007.02.025.Google Scholar
Reeve, H. K., Emlen, S. T., and Keller, L. (1998) Reproductive sharing in animal societies: Reproductive incentives or incomplete control by dominant breeders. Behavioral Ecology, 9: 267278.Google Scholar
Ridley, A. R. (2012) Invading together: The benefits of coalition dispersal in a cooperative bird. Behavioral Ecology and Sociobiology, 66: 7783.Google Scholar
Ridley, A. R. (2016) Southern pied babblers: The dynamics of conflict and cooperation in a group-living society. In Koenig, W. D., and Dickinson, J. L., eds., Cooperative Breeding in Vertebrates: Studies in Ecology, Evolution and Behaviour. Cambridge: Cambridge University Press, pp. 115132.Google Scholar
Ridley, A. R., Nelson-Flower, M. J., and Thompson, A. M. (2013) Is sentinel behavior safe? An experimental investigation. Animal Behaviour, 85: 137142.Google Scholar
Ridley, A. R., and Raihani, N. J. (2007a) Facultative response to a kleptoparasite by the cooperatively breeding pied babbler. Behavioral Ecology, 18: 324330.Google Scholar
Ridley, A. R., and Raihani, N. J. (2007b) Variable postfledging care in a cooperative bird: Causes and consequences. Behavioral Ecology, 18: 9941000.Google Scholar
Ridley, A. R., Raihani, N. J., and Nelson-Flower, M. J. (2008) The cost of being alone: The fate of floaters in a population of cooperatively breeding pied babblers Turdoides bicolor. Journal of Avian Biology, 39: 389392.Google Scholar
Ridley, A. R., and van den Huevel, I. M. (2012) Is there a difference in reproductive performance between cooperative and non-cooperative species? A southern African comparison. Behaviour, 149: 821848.Google Scholar
Ridley, A. R., and Thompson, A. M. (2012) Heterospecific egg destruction by wattled starlings and the impact on pied babbler reproductive success. Ostrich, 82: 201205.Google Scholar
Riehl, C. (2013) Evolutionary routes to non-kin cooperative breeding in birds. Proceedings of the Royal Society London B Biological Science, 280: 20131445.Google Scholar
Rusch, H. (2014) The evolutionary interplay of intergroup conflict and altruism in humans: A review of parochial altruism theory and prospects for its extension. Proceedings of the Royal Society London B Biological Science, 281: 20141539.CrossRefGoogle ScholarPubMed
van Schaik, C. P., and Janson, C. H. (2000) Infanticide by Males and Its Implications. Cambridge: Cambridge University Press.Google Scholar
Shen, S. F., Akçay, E., and Rubenstein, D. R. (2014) Group size and social conflict in complex societies. American Naturalist, 183: 301310.Google Scholar
Shen, S. F., Emlen, S. T., Koenig, W. D., and Rubenstein, D. R. (2017) The ecology of cooperative breeding behaviour. Ecology Letters, 20: 708720.Google Scholar
Skutch, A. F. (1935) Helpers at the nest. Auk, 52: 257273.Google Scholar
Strong, M. J., Sherman, B. L., and Riehl, C. (2017) Home field advantage, not group size, predicts outcome of intergroup conflicts in a social bird. Animal Behaviour, 143: 205213.Google Scholar
Thompson, A. M., Raihani, N. J., Hockey, P. A. R., Britton, A., Finch, F. M., and Ridley, A. R. (2013) The influence of fledgling location on adult provisioning: A test of the blackmail hypothesis. Proceedings of the Royal Society London B Biological Science, 280: 20130558.Google Scholar
Thompson, F. J., Marshall, H. H., Vitikainen, E. I. K., and Cant, M. A. (2017) Causes and consequences of intergroup conflict in cooperative banded mongooses. Animal Behaviour, 126: 3140.Google Scholar
Vehrencamp, S. L. (1983) A model for the evolution of despotic versus egalitarian societies. Animal Behaviour, 31: 667682.Google Scholar
Wiley, E. M., and Ridley, A. R. (2018) The benefits of pair bond tenure in the cooperatively breeding pied babbler (Turdoides bicolor). Ecology and Evolution, 8: 71787185.CrossRefGoogle ScholarPubMed
Willems, E. P., Hellriegel, B., and van Schaik, C. P. (2013) The collective action problem in primate territory economics. Proceedings of the Royal Society London B Biological Science, 280: 20130081.Google Scholar
Wittig, R. M., Crockford, C., Lehmann, J., Whitten, P. L., Seyfarth, R. M., and Cheney, D. L. (2008) Focused grooming networks and stress alleviation in wild female baboons. Hormones and Behavior, 54: 170177.Google Scholar

References

Aanen, D. K., Eggleton, P., Rouland-Lefèvre, C., Guldberg-Frøslev, T., Rosendahl, S., and Boomsma, J. J. (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences USA, 99(23): 1488714892.CrossRefGoogle ScholarPubMed
Axen, A. H., Leimar, O., and Hoffman, V. (1996) Signalling in a mutualistic interaction. Animal Behaviour, 52: 321333.Google Scholar
Barbu, L., Guinand, C., Alvarez, N., Bergmüller, R., and Bshary, R. (2011) Cleaning wrasse species vary with respect to dependency on the mutualism and behavioural adaptations in interactions. Animal Behaviour, 82: 10671074.Google Scholar
Binning, S. A., Rey, O., Wismer, S., Triki, Z., Glauser, G., Soares, M. C., and Bshary, R. (2017) Reputation management promotes strategic adjustment of service quality in cleaner wrasse. Scientific Reports, 7(1): 8425.Google Scholar
Boesch, C. (1994) Cooperative hunting in wild chimpanzees. Animal Behaviour, 48: 653667.Google Scholar
Borgeaud, C., and Bshary, R. (2015) Wild vervet monkeys trade tolerance and specific coalitionary support for grooming in experimentally induced conflicts. Current Biology, 25: 30113016.Google Scholar
Bossan, B., Koehncke, A., and Hammerstein, P. (2011) A new model and method for understanding Wolbachia-induced cytoplasmic incompatibility. PLoS ONE, 6(5): e19757.CrossRefGoogle ScholarPubMed
Brandenburg, A., Kuhlemeier, C., and Bshary, R. (2012) Hawkmoth pollinators decrease seed set of a low nectar Petunia axillaris line through reduced probing time. Current Biology, 22:16351639.Google Scholar
Brock, D. A., Douglas, T. E., Queller, D. C., and Strassmann, J. E. (2011) Primitive agriculture in a social amoeba. Nature, 469(7330): 393396.Google Scholar
Bronstein, J. L. (1994) Conditional outcomes in mutualistic interactions. Trends in Ecology and Evolution, 9(6): 214217.Google Scholar
Bronstein, J. L. (2001) Mutualisms. In Fox, C., Fairbairn, D., and Roff, D., eds., Evolutionary Ecology: Perspectives and Synthesis. Oxford University Press, pp. 315330.Google Scholar
Bronstein, J. L., ed. (2015) Mutualism. Oxford: Oxford University Press.Google Scholar
Brosnan, S. F., Salwiczek, L., and Bshary, R. (2010) The interplay of cognition and cooperation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 26992710.Google Scholar
Brown, C. (2015) Fish intelligence, sentience and ethics. Animal Cognition, 18: 117.Google Scholar
Bshary, R. (2001) The cleaner fish market. In Noë, R., Van Hooff, J. A. R. A. M., and Hammerstein, P., eds., Economics in Nature: Social Dilemmas, Mate Choice and Biological Markets. Cambridge: Cambridge University Press, pp. 146172.Google Scholar
Bshary, R. (2002) Biting cleaner fish use altruism to deceive image-scoring client reef fish. Proceedings of the Royal Society London B Biological Sciences, 269: 20872093.Google Scholar
Bshary, R., and Bergmüller, R. (2008) Distinguishing four fundamental approaches to the evolution of helping. Journal of Evolutionary Biology, 21: 405420.Google Scholar
Bshary, R., and Bronstein, J. L. (2004) Game structures in mutualisms: What can the evidence tell us about the kind of models we need? Advances in the Study of Behaviour, 34: 59101.Google Scholar
Bshary, R., and Bronstein, J. S. (2011) A general scheme to predict partner control mechanisms in pairwise cooperative interactions between unrelated individuals. Ethology, 117: 271283.Google Scholar
Bshary, R., and D’Souza, A. (2005) Indirect reciprocity in interactions between cleaner fish and client reef fish. In McGregor, P., ed., Communication Networks. Cambridge: Cambridge University Press, pp. 521539.Google Scholar
Bshary, R., Gingins, S., and Vail, A. L. (2014) Social cognition in fishes. Trends in Cognitive Sciences, 8(9): 465471.Google Scholar
Bshary, R., and Grutter, A. S. (2002a) Asymmetric cheating opportunities and partner control in a cleaner fish mutualism. Animal Behaviour, 63: 547555.Google Scholar
Bshary, R., and Grutter, A. S. (2002b) Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecology Letters, 5(1): 130136.Google Scholar
Bshary, R., and Grutter, A. S. (2005) Punishment and partner switching cause cooperative behaviour in a cleaning mutualism. Biology Letters, 1(4): 396399.Google Scholar
Bshary, R., and Grutter, A. S. (2006) Image scoring and cooperation in a cleaner fish mutualism. Nature, 441: 975978.Google Scholar
Bshary, R., Grutter, A. S., Willener, A. S. T., and Leimar, O. (2008) Pairs of cooperating cleaner fish provide better service quality than singletons. Nature, 455(7215): 964966.Google Scholar
Bshary, R., and Noë, R. (1997) Red colobus and diana monkeys provide mutual protection against predators. Animal Behaviour, 54: 14611474.CrossRefGoogle ScholarPubMed
Bshary, R., and Schäffer, D. (2002) Choosy reef fish select cleaner fish that provide high-quality service. Animal Behaviour, 63: 557564.Google Scholar
Bshary, R., Wickler, W., and Fricke, H. (2002) Fish cognition: A primate’s eye view. Animal Cognition, 5(1): 113.Google Scholar
Bshary, R., and Würth, M. (2001) Cleaner fish Labroides dimidiatus manipulate client reef fish by providing tactile stimulation. Proceedings of the Royal Society of London B Biological Science, 268: 14951501.CrossRefGoogle ScholarPubMed
Bshary, R., Zuberbühler, K., and van Schaik, C. P. (2016) Why mutual helping in most natural systems is neither conflict-free nor based on maximal conflict. Philosophical Transactions of the Royal Society B, 371: 20150091.Google Scholar
Cheney, D. L., Moscovice, L. R., Heesen, M., Mundry, R., and Seyfarth, R. M. (2010) Contingent cooperation between wild female baboons. Proceedings of the National Academy of Sciences USA, 107(21): 95629566.Google Scholar
Clutton-Brock, T. H., O’Riain, M. J., Brotherton, P. N. M., Gaynor, D., Kansky, R., Griffin, A. S., and Manser, M. (1999) Selfish sentinels in cooperative mammals. Science, 284: 16401644.Google Scholar
Connor, R. C. (1986) Pseudo-reciprocity: Investing in altruism. Animal Behaviour, 34: 15621566.Google Scholar
Côté, I. M. (2000) Evolution and ecology of cleaning symbioses in the sea. Oceanography and Marine Biology Annual Review, 38: 311355.Google Scholar
Curio, E. (1978) The adaptive significance of avian mobbing. I. Teleonomic hypotheses and predictions. Zeitschrift fur Tierpsychology, 48: 175183.Google Scholar
Currie, C. R., and Stuart, A. E. (2001) Weeding and grooming of pathogens in agriculture by ants. Proceedings of the Royal Society of London B Biological Science, 268: 10331039.Google Scholar
Currie, C. R., Wong, B., Stuart, A. E. et al. (2003) Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science, 299(5605): 386388.Google Scholar
De Vos, A., and O’Riain, M. J. (2009) Sharks shape the geometry of a selfish seal herd: Experimental evidence from seal decoys. Biology Letters, 6(1): 4850.Google Scholar
Diamond, J. (2002) Evolution, consequences and future of plant and animal domestication. Nature, 418: 700707.Google Scholar
Ellers, J., Toby, K. E., Currie, C. R., McDonald, B. R., and Visser, B. (2012) Ecological interactions drive evolutionary loss of traits. Ecology Letters, 15: 10711082.Google Scholar
Eshel, I., and Shaked, A. (2002) Partnership. Journal of Theoretical Biology, 208: 457474.Google Scholar
Field, T., Hernandez-Reif, M., and Diego, M. (2005) Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115: 13971413.Google Scholar
FitzGibbon, C. D. (1990) Mixed-species grouping in Thomson’s and Grant’s gazelles: The antipredator benefits. Animal Behaviour, 39: 11161126.Google Scholar
Flower, T. (2011) Fork-tailed drongos use deceptive mimicked alarm calls to steal food. Proceedings of the Royal Society of London B: Biological Sciences, 278: 15481555.Google Scholar
Gray, M. W., and Doolittle, W. F. (1982) Has the endosymbiont hypothesis been proven?. Microbiological Reviews, 46(1): 142.Google Scholar
Grutter, A. S. (1995) Relationship between cleaning rates and ectoparasite loads in coral reef fishes. Marine Ecology Progress Series, 118: 5158.Google Scholar
Grutter, A. S., and Bshary, R. (2003) Cleaner wrasse prefer client mucus: Support for partner control mechanisms in cleaning interactions. Proceedings of the Royal Society of London B Biological Science, 270: S242S244.CrossRefGoogle ScholarPubMed
Guimarães, P. R., Jr., Pires, M. M., Jordano, P., Bascompte, J., and Thompson, J. N. (2017) Indirect effects drive coevolution in mutualistic networks. Nature, 550(7677): 511.Google Scholar
Hamilton, W. D. (1964a) The genetical evolution of social behaviour. I Journal of Theoretical Biology, 7(1): 116.Google Scholar
Hamilton, W. D. (1964b) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1): 1752.Google Scholar
Hammerstein, P., and Noë, R. (2016) Biological trade and markets. Philosophical Transactions of the Royal Society B, 371(1687): 20150101.Google Scholar
Hata, H., and Kato, M. (2006) A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biology Letters, 2: 593596.Google Scholar
Hauser, M. D. (1997) Minding the behaviour of deception. In Byrne, R. W., and Whiten, A., eds., Machiavellian Intelligence II: Extensions and Evaluations. Cambridge: Cambridge University Press, pp. 112143.Google Scholar
Herre, E. A., Knowlton, N., Mueller, U. G., and Rehner, S. A. (1999) The evolution of mutualisms: Exploring the paths between conflict and cooperation. Trends in Ecology and Evolution, 14: 4953.Google Scholar
Huertas, V., and Bellwood, D. R. (2018) Feeding innovations and the first coral-feeding fishes. Coral Reefs, 37(3): 649658.Google Scholar
Hulcr, J., and Cognato, A. I. (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution, 64: 32053212.Google Scholar
Janzen, D. H. (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution, 20: 249275.Google Scholar
Johnstone, R. A., and Bshary, R. (2008) Mutualism, market effects and partner control. Journal of Evolutionary Biology, 21(3): 879888.Google Scholar
Jones, E. I., Afkhami, M. E., Akçay, E. et al. (2015) Cheaters must prosper: Reconciling theoretical and empirical perspectives on cheating in mutualism. Ecology Letters, 18(11): 12701284.Google Scholar
Kenward, R. E. (1978) Hawks and doves: Factors affecting success and selection in goshawk attacks on woodpigeons. Journal of Animal Ecology, 47: 449460.Google Scholar
Kiers, E. T., Duhamel, M., Beesetty, Y. et al. (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044): 880882.Google Scholar
Kiers, E. T., Rousseau, R. A., West, S. A., and Denison, R. F. (2003) Host sanctions and the legume–rhizobium mutualism. Nature, 425: 7881.Google Scholar
Kohda, M., Takashi, H., Takeyama, T., Awata, S., Tanaka, H., Asai, J., and Jordan, A. (2018) Cleaner wrasse pass the mark test. What are the implications for consciousness and self-awareness testing in animals? BioRxiv, 397067.Google Scholar
Kokko, H., Johnstone, R. A., and Clutton-Brock, T. H. (2001) The evolution of cooperative breeding through group augmentation. Proceedings of the Royal Society of London B Biological Science, 268: 187196.Google Scholar
Kolodny, O., Lotem, A., and Edelman, S. (2015) Learning a generative probabilistic grammar of experience: A process-level model of language acquisition. Cognitive Science, 39(2): 227267.Google Scholar
Landeau, L., and Terborgh, J. (1986) Oddity and the “confusion effect” in predation. Animal Behaviour, 34: 13721380.Google Scholar
Lehmann, L., and Keller, L. (2006) The evolution of cooperation and altruism – A general framework and a classification of models. Journal of Evolutionary Biology, 19: 13651376.Google Scholar
Lehmann, L., and Rousset, F. (2010) How life history and demography promote or inhibit the evolution of helping behaviours. Philosophical Transactions of the Royal Society of London B, 365(1553): 25992617.Google Scholar
Leimar, O., and Connor, R. C. (2003) By-product benefits, reciprocity, and pseudoreciprocity in mutualism. In Hammerstein, P., ed., Genetic and Cultural Evolution of Cooperation. Cambridge, MA: MIT Press, pp. 203222.Google Scholar
Lieberman, D., Tooby, J., and Cosmides, L. (2007) The architecture of human kin detection. Nature, 445(7129): 727.Google Scholar
Machado, C. A., Robbins, N., Gilbert, M. T. P., and Herre, E. A. (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proceedings of the National Academy of Sciences USA, 102(Suppl 1): 65586565.Google Scholar
McGregor, P. K. (1993) Signalling in territorial systems: A context for individual identification, ranging and eavesdropping. Philosophical Transactions of the Royal Society London B, 340(1292): 237244.Google Scholar
Melis, A. P., Hare, B., and Tomasello, M. (2006) Chimpanzees recruit the best collaborators. Science, 311(5765): 12971300.Google Scholar
Müller, C. B., and Krauss, J. (2005) Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8: 450456.Google Scholar
Nelsen, M. P., Ree, R. H., and Moreau, C. S. (2018) Ant–plant interactions evolved through increasing interdependence. Proceedings of the National Academy of Sciences USA, 115 (48): 1225312258.CrossRefGoogle ScholarPubMed
Noë, R. (1990) A veto game played by baboons: A challenge to the use of the Prisoner’s Dilemma as a paradigm for reciprocity and cooperation. Animal Behaviour, 39(1): 7890.Google Scholar
Noë, R., and Hammerstein, P. (1994) Biological markets: Supply and demand determine the effect of partner choice in cooperation, mutualism and mating. Behavioral Ecology and Sociobiology, 35(1): 111.Google Scholar
Noë, R., and Hammerstein, P. (1995) Biological markets. Trends in Ecology and Evolution, 10: 336339.Google Scholar
Noë, R., and Kiers, E. T. (2018) Mycorrhizal markets, firms, and co-ops. Trends in Ecology and Evolution, 33(10): 777789.Google Scholar
Noë, R., van Schaik, C. P., and van Hooff, J. A. R. A. M. (1991) The market effect: An explanation for pay-off asymmetries among collaborating animals. Ethology, 87: 97118.Google Scholar
Olesen, J. M., Bascompte, J., Dupont, Y. L., and Jordano, P. (2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences USA, 104(50): 1989119896.Google Scholar
Palmer, T. M., Stanton, M. L., and Young, T. P. (2003) Competition and coexistence: Exploring mechanisms that restrict and maintain diversity within mutualist guilds. The American Naturalist, 162(S4): S63S79.Google Scholar
Pepperberg, I. M., and Hartsfield, L. A. (2014) Can grey parrots (Psittacus erithacus) succeed on a “complex” foraging task failed by nonhuman primates (Pan troglodytes, Pongo abelii, Sapajus paella) but solved by wrasse fish (Labroides dimidiatus)? Journal of Comparative Psychology, 128(3): 298306.Google Scholar
Pierce, N. E., Braby, M. F., Heath, A., Lohman, D. J., Mathew, J., Rand, D. B., and Travassos, M. A. (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera) Annual Review of Entomology, 47: 733771.Google Scholar
Pinto, A., Oates, J., Grutter, A., and Bshary, R. (2011) Cleaner wrasses Labroides dimidiatus are more cooperative in the presence of an audience. Current Biology, 21(13): 11401144.Google Scholar
Pion, M., Spangenberg, J. E., Simon, A. et al. (2013) Bacterial farming by the fungus Morchella crassipes. Proceedings of the Royal Society of London B: Biological Sciences, 280(1773): 20132242.Google Scholar
Quiñones, A., Lotem, A., Leimar, O., and Bshary, R (2020) Reinforcement learning theory reveals the cognitive requirements for solving the cleaner fish market task. American Naturalist, 195(4): 664677.Google Scholar
Raihani, N. J., Grutter, A. S., and Bshary, R. (2010) Punishers benefit from third-party punishment in fish. Science, 327(5962): 171171.Google Scholar
Raihani, N. J., Thornton, A., and Bshary, R. (2012) Punishment and cooperation in nature. Trends in Ecology and Evolution, 27(5): 288295.Google Scholar
Roberts, G. (2005) Cooperation through interdependence. Animal Behaviour, 70(4): 901908.Google Scholar
Robertson, D. R. (1973) Field observations on the reproductive behaviour of a pomacentrid fish, Acanthochromis polyacanthus. Zeitschrift Für Tierpsychologie, 32(3): 319324.Google Scholar
Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. (2004) The evolution of cooperation. Quarterly Review of Biology, 79(2): 135160.Google Scholar
Salwiczek, L. H., and Bshary, R. (2011) Cleaner wrasses keep track of the ‘when’ and ‘what’ in a foraging task 1. Ethology, 117(11): 939948.Google Scholar
Salwiczek, L. H., Prétôt, L., Demarta, L. et al. (2012) Adult cleaner wrasse outperform capuchin monkeys, chimpanzees and orang-utans in a complex foraging task derived from cleaner – client reef fish cooperation. PLoS ONE, 7(11): e49068.Google Scholar
Schino, G., and Aureli, F. (2008) Grooming reciprocation among female primates: A meta-analysis. Biology Letters, 4: 911.Google Scholar
Seyfarth, R. M. (1977) A model of social grooming among adult female monkeys. Journal of Theoretical Biology, 65(4): 671698.Google Scholar
Silk, J. B., Alberts, S. C., and Altmann, J. (2003) Social bonds of female baboons enhance infant survival. Science, 302: 12311234.Google Scholar
Soares, M. C., Cardoso, S. C., Nicolet, K. J., Côté, I. M., and Bshary, R. (2013) Indo-Pacific parrotfish exert partner choice in interactions with cleanerfish but Caribbean parrotfish do not. Animal Behaviour, 86: 611615.Google Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., Oliveira, R. F., and Bshary, R. (2010) Caribbean cleaning gobies prefer client ectoparasites over mucus. Ethology, 116: 12441248.Google Scholar
Soares, M. C., Côté, I. M., Cardoso, S. C., and Bshary, R. (2008) The cleaning goby mutualism: A system without punishment, partner switching or tactile stimulation: Choice options and partner control. Journal of Zoology, 276(3): 306312.Google Scholar
Soares, M. S., Oliveira, R. F., Ros, A. F. H., Grutter, A. S., and Bshary, R. (2011) Tactile stimulation lowers stress in fish. Nature Communications, 2: 534.Google Scholar
Spottiswoode, C. N., Begg, K. S., and Begg, C. M. (2016) Reciprocal signaling in honeyguide-human mutualism. Science, 353(6297): 387389.Google Scholar
Stander, P. E. (1992) Foraging dynamics of lions in a semi-arid environment. Canadian Journal of Zoology, 70: 821.Google Scholar
Taborsky, M. (1984) Broodcare helpers in the cichlid fish Lamprologus brichardi: Their costs and benefits. Animal Behaviour, 32(4): 12361252.Google Scholar
Tebbich, S., Bshary, R., and Grutter, A. S. (2002) Cleaner fish Labroides dimidiatus recognise familiar clients. Animal Cognition, 5(3): 139145.Google Scholar
Tomasello, M., Melis, A. P., Tennie, C., Wyman, E., Herrmann, E. (2012) Two key steps in the evolution of human cooperation: The interdependence hypothesis. Current Anthropology, 53(6), 000000.Google Scholar
Triki, Z., Wismer, S., Levorato, E., and Bshary, R. (2018) A decrease in the abundance and strategic sophistication of cleaner fish after environmental perturbations. Global Change Biology, 24: 481489.CrossRefGoogle ScholarPubMed
Triki, Z., Wismer, S., Rey, O., Binning, S. A., Levorato, E., and Bshary, R. (2019) Biological market effects predict cleaner fish strategic sophistication. Behavioral Ecology, online https://doi. org/10.1093/beheco/arz111.Google Scholar
Vail, A. L., Manica, A., and Bshary, R. (2013) Referential gestures in fish collaborative hunting. Nature Communications, 4: 1765.Google Scholar
Vail, A. L., Manica, A., and Bshary, R. (2014) Fish choose appropriately when and with whom to collaborate. Current Biology, 24: R791R793.Google Scholar
Vaughan, D. B., Grutter, A. S., Costello, M. J., and Hutson, K. S. (2017) Cleaner fishes and shrimp diversity and a re‐evaluation of cleaning symbioses. Fish and Fisheries, 18(4): 698716.Google Scholar
Vázquez, D. P., Blüthgen, N., Cagnolo, L., and Chacoff, N. P. (2009) Uniting pattern and process in plant–animal mutualistic networks: A review. Annals of Botany, 103: 14451457.Google Scholar
Wainwright, P. C., Bellwood, D. R., Westneat, M. W., Grubich, J. R., and Hoey, A. S. (2004) A functional morphospace for the skull of labrid fishes: Patterns of diversity in a complex biomechanical system. Biological Journal of the Linnean Society, 82(1): 125.Google Scholar
Weeks, P. (2000) Red-billed oxpeckers: Vampires or tickbirds? Behavioral Ecology, 11: 154160.Google Scholar
Werren, J. H. (1997) Biology of Wolbachia. Annual Review of Entomology, 42: 587609.Google Scholar
West, S. A., Pen, I., and Griffin, A. S. (2002) Cooperation and competition between relatives. Science, 296: 7275.Google Scholar
Wismer, S., Grutter, A., and Bshary, R. (2016) Generalized rule application in bluestreak cleaner wrasse (Labroides dimidiatus): Using predator species as social tools to reduce punishment. Animal Cognition, 19(4): 769778.Google Scholar
Wismer, S., Pinto, A. I., Vail, A. L., Grutter, A. S., and Bshary, R. (2014) Variation in cleaner wrasse cooperation and cognition: Influence of the developmental environment? Ethology, 120(6): 519531.Google Scholar
Wubs, M., Bshary, R., and Lehmann, L. (2018) A reinforcement learning model for grooming up the hierarchy in primates. Animal Behaviour, 138: 165185.Google Scholar
Zappes, C. A., Andriolo, A., Simões-Lopes, P. C., and Di Beneditto, A. P. M. (2011) “Human?dolphin (Tursiops truncatus Montagu, 1821) cooperative fishery” and its influence on cast net fishing activities in Barra de Imbé/Tramandaí, Southern Brazil. Ocean and Coastal Management, 54(5): 427432.Google Scholar
Zentall, T. R., Case, J. P., and Berry, J. R. (2017) Rats’ acquisition of the ephemeral reward task. Animal Cognition, 20(3): 419425.Google Scholar
Zentall, T. R., Case, J. P., and Luong, J. (2016) Pigeon’s (Columba livia) paradoxical preference for the suboptimal alternative in a complex foraging task. Journal of Comparative Psychology, 130(2): 138144.Google Scholar

References

Alaux, C., Sinha, S., Hasadsri, L. et al. (2009) Honey bee aggression supports a link between gene regulation and behavioral evolution. Proceedings of the National Academy of Science USA, 106(36): 1540015405.Google Scholar
Amdam, G. V., Csondes, A., Fondrk, M. K., and Page, R. E., Jr. (2006) Complex social behaviour derived from maternal reproductive traits. Nature, 439(7072): 7678.Google Scholar
Amsalem, E., Grozinger, C. M., Padilla, M., and Hefetz, A. (2015) The physiological and genomic bases of bumble bee social behaviour. Advances in Insect Physiology: Genomics, Physiology and Behavior of Social Insects, 48 : 3794.Google Scholar
Amsalem, E., and Hefetz, A. (2010) The appeasement effect of sterility signaling in dominance contests among Bombus terrestris workers. Behavioral Ecology and Sociobiology, 64(10): 16851694.Google Scholar
Amsalem, E., and Hefetz, A. (2011) The effect of group size on the interplay between dominance and reproduction in Bombus terrestris. PLoS ONE, 6(3): e18238.Google Scholar
Andersson, M. (1984) The evolution of eusociality. Annual Review of Ecology and Systematics, 15(1): 165189.Google Scholar
Asahina, K. (2017) Neuromodulation and strategic action choice in Drosophila aggression. Annual Review of Neuroscience, 40: 5175.Google Scholar
Barron, A. B., and Robinson, G. E. (2008) The utility of behavioral models and modules in molecular analyses of social behavior. Genes Brain and Behavior, 7(3): 257265.Google Scholar
Bee, M. A. (2003) Experience-based plasticity of acoustically evoked aggression in a territorial frog. Journal of Comparative Physiology A, 189(6): 485496.Google Scholar
Bloch, G., and Grozinger, C. M. (2011) Social molecular pathways and the evolution of bee societies. Philosophical Transactions of the Royal Society B Biological Science, 366(1574): 21552170.Google Scholar
Bourke, A. F. G. (2011) Principles of Social Evolution. Oxford: Oxford University Press.Google Scholar
Breed, M. D. (1983) Nestmate recognition in honey bees. Animal Behaviour, 31: 8691.Google Scholar
Breed, M. D., Guzman-Novoa, E., and Hunt, G. J. (2004) Defensive behavior of honey bees: Organization, genetics, and comparisons with other bees. Annual Review of Entomology, 49: 271298.Google Scholar
Breed, M. D., Robinson, G. E., and Page, R. E. (1990) Division of labor during honey bee colony defense. Behavioral Ecology and Sociobiology, 27: 395401.Google Scholar
Brunton, D. H. (1990) The effects of nesting stage, sex, and type of predator on parental defense by Killdeer (Charadrius-Vociferus) – Testing models of avian parental defense. Behavioral Ecology and Sociobiology, 26(3): 181190.Google Scholar
Bruschini, C., Cervo, R., and Turillazzi, S. (2006) Evidence of alarm pheromones in the venom of Polistes dominulus workers (Hymenoptera: Vespidae). Physiological Entomology, 31(3): 286293.Google Scholar
Cant, M. A. (2011) The role of threats in animal cooperation. Proceedings of the Royal Society B Biological Science, 278: 170178.Google Scholar
Cardinal, S., Straka, J., and Danforth, B. N. (2010) Comprehensive phylogeny of apid bees reveals evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences USA, 107(37): 1620716211.Google Scholar
Carey, J. R. (2001) Demographic mechanisms for the evolution of long life in social insects. Experimental Gerontology, 36: 713722.Google Scholar
Chandrasekaran, S., Rittschof, C. C., Djukovic, D., Gu, H., Raftery, D., Price, N. D., and Robinson, G. E. (2015) Aggression is associated with aerobic glycolysis in the honey bee brain. Genes Brain and Behavior, 14(2): 158166.Google Scholar
Chapman, R. F. (2012) The Insects: Structure and Function. Cambridge, UK: Cambridge University Press.Google Scholar
Couvillon, M. J., Robinson, E. J. H., Atkinson, B., Child, L., Dent, K. R., and Ratnieks, F. L. W. (2008) En garde: Rapid shifts in honeybee, Apis mellifera, guarding behaviour are triggered by onslaught of conspecific intruders. Animal Behaviour, 76(5): 16531658.Google Scholar
Crespi, B. J. (1994) Three conditions for the evolution of eusociality: Are they sufficient? Insectes Sociaux, 41: 395400.Google Scholar
De Fine Licht, H. H., Boomsma, J. J., and Tunlid, A. (2014) Symbiotic adaptations in the fungal cultivar of leaf-cutting ants. Nature Communications, 5: 5675.Google Scholar
Doke, M. A., Frazier, M., and Grozinger, C. M. (2015) Overwintering honey bees: Biology and management. Current Opinion in Insect Science, 10: 185193.Google Scholar
Fahrbach, S. E., Farris, S. M., Sullivan, J. P., and Robinson, G. E. (2003) Limits on volume changes in the mushroom bodies of the honey bee brain. Journal of Neurobiology, 57(2): 141151.Google Scholar
Farris, S. M., Robinson, G. E., and Fahrbach, S. E. (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. The Journal of Neuroscience, 21(16): 63956404.Google Scholar
Fawcett, T. W., and Johnstone, R. A. (2010) Learning your own strength: Winner and loser effects should change with age and experience. Proceedings of the Royal Society B Biological Science, 277(1686): 14271434.Google Scholar
Fjerdingstad, E. J., and Crozier, R. H. (2006) The evolution of worker caste diversity in social insects. The American Naturalist, 167(3): 390400.Google Scholar
Galbraith, D. A., Wang, Y., Amdam, G. V., Page, R. E., and Grozinger, C. M. (2015) Reproductive physiology mediates honey bee (Apis mellifera) worker responses to social cues. Behavioral Ecology and Sociobiology, 69(9): 15111518.Google Scholar
Giray, T., Giovanetti, M., and West-Eberhard, M. J. (2005) Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes canadensis. Proceedings of the National Academy of Science USA, 102(9): 33303335.Google Scholar
Giray, T., Guzman-Novoa, E., Aron, C. W., Zelinsky, B., Fahrbach, S. E., and Robinson, G. E. (2000) Genetic variation in worker temporal polyethism and colony defensiveness in the honey bee Apis mellifera. Behavioral Ecology, 11(1): 4455.Google Scholar
Groom, M. J. (1992) Sand-colored Nighthawks parasitize the antipredator behavior of three nesting bird species. Ecology, 73(3): 785793.Google Scholar
Gruter, C., Menezes, C., Imperatriz-Fonseca, V. L., and Ratnieks, F. L. W. (2012) A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. Proceedings of the National Academy of Sciences USA, 109(4): 11821186.CrossRefGoogle Scholar
Hartfelder, K. (2000) Insect juvenile hormone: From “status quo” to high society. Brazilian Journal of Medical and Biological Research, 33: 157177.Google Scholar
Hirschenhauser, K., and Oliveira, R. F. (2006) Social modulation of androgens in male vertebrates: Meta-analyses of the challenge hypothesis. Animal Behaviour, 71(2): 265277.Google Scholar
Hölldobler, B. (1981) Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 9: 301314.Google Scholar
Hölldobler, B., and Wilson, E. O. (1994) War and Foreign Policy. Journey to the Ants. Cambridge, MA: Harvard University Press, p. 70.Google Scholar
Huang, Z., and Robinson, G. E. (1992) Honeybee colony integration: Worker–worker interactions mediate hormonally regulated plasticity in division of labor. Proceedings of the National Academy of Sciences USA, 89: 1172611729.Google Scholar
Huang, Z. Y., Robinson, G. E., and Borst, D. W. (1994) Physiological correlates of division of labor among similarly aged honey bees. Journal of Comparative Physiology A, 174(6): 731739.Google Scholar
Hunt, G. J., Guzmán-Novoa, E., Uribe-Rubio, J. L., and Prieto-Merlos, D. (2003) Genotype–environment interactions in honeybee guarding behaviour. Animal Behaviour, 66(3): 459467.Google Scholar
Hunt, J. H., Kensinger, B. J., Kossuth, J. A., Henshaw, M. T., Norberg, K., Wolschin, F., and Amdam, G. V. (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proceedings of the National Academy of Science USA, 104(35): 1402014025.Google Scholar
Ishikawa, Y., and Miura, T. (2012) Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Animal Behaviour, 83(3): 737745.Google Scholar
Jandt, J. M., Suryanarayanan, S., Hermanson, J. C., Jeanne, R. L., and Toth, A. L. (2017) Maternal and nourishment factors interact to influence offspring developmental trajectories in social wasps. Proceedings of the Royal Society London B Biological Science, 284(1857): 19.Google Scholar
Jandt, J. M., and Toth, A. L. (2015) Physiological and genomic mechanisms of social organization in wasps (Family: Vespidae). Advances in Insect Physiology: Genomics, Physiology and Behavior of Social Insects, 48: 95130.Google Scholar
Kapheim, K. M. (2017) Nutritional, endocrine, and social influences on reproductive physiology at the origins of social behavior. Current Opinion in Insect Science, 22: 6270.Google Scholar
Kastberger, G., Thenius, R., Stabentheiner, A., and Hepburn, R. (2008) Aggressive and docile colony defence patterns in Apis mellifera: A retreater–releaser concept. Journal of Insect Behavior, 22(1): 6585.Google Scholar
Keller, L., and Chapuiset, M. (1999) Cooperation among selfish individuals in insect societies. BioScience, 49(11): 899909.Google Scholar
Keller, L., and Nonacs, P. (1993) The role of queen pheromones in social insects: Queen control or queen signal? Animal Behavior, 45(4): 787794.Google Scholar
Khila, A., and Abouheif, E. (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. Proceedings of the National Academy of Science USA, 105(46): 1788417889.Google Scholar
Kocher, S. D., Ayroles, J. F., Stone, E. A., and Grozinger, C. M. (2010) Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS ONE, 5(2): e9116.Google Scholar
Kocher, S. D., and Grozinger, C. M. (2011) Cooperation, conflict, and the evolution of queen pheromones. Journal of Chemical Ecology, 37(11): 12631275.Google Scholar
Lawson, S. P., Helmreich, S. L., and Rehan, S. M. (2017) Effects of nutritional deprivation on development and behavior in the subsocial bee Ceratina calcarata (Hymenoptera: Xylocopinae). Journal of Experimental Biology, 220(Pt 23): 44564462.Google Scholar
Li-Byarlay, H., Rittschof, C. C., Massey, J. H., Pittendrigh, B. R., and Robinson, G. E. (2014) Socially responsive effects of brain oxidative metabolism on aggression. Proceedings of the National Academy of Science USA, 111(34): 1253312537.Google Scholar
Machado, G. (2002) Maternal care, defensive behavior, and sociality in neotropical Goniosoma harvestmen (Arachnida, Opiliones). Insectes Sociaux, 49: 388393.Google Scholar
Maleszka, R. (2018) Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Communications Biology, 1: 8.Google Scholar
Mao, W., Schuler, M. A., and Berenbaum, M. R. (2015) A dietary phytochemical alters caste-associated gene expression in honey bees. Science Advances, 1(7): e1500795.Google Scholar
Mathiron, A. G. E., Earley, R. L., and Goubault, M. (2019) Juvenile hormone manipulation affects female reproductive status and aggressiveness in a non-social parasitoid wasp. General and Comparative Endocrinology, 274: 8086.Google Scholar
Mcdonald, P., and Topoff, H. H. (1985) Social regulation of behavioral development in the ant, Novomessor albisetosus (Mayr). Journal of Comparative Psychology, 99(1): 314.Google Scholar
Moczek, A. P. (2010) Phenotypic plasticity and diversity in insects. Philosophical Transactions of the Royal Society London B Biological Science, 365(1540): 593603.Google Scholar
Moritz, R. F., Lattorff, H. M., and Crewe, R. M. (2004) Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Proceedings of the Royal Society London B Biological Science, 271 (Suppl 3): S98S100.Google Scholar
Muscedere, M. L., Traniello, J. F. A., and Gronenberg, W. (2011) Coming of age in an ant colony: Cephalic muscle maturation accompanies behavioral development in Pheidole dentata. Naturwissenschaften, 98(9): 783793.Google Scholar
Naeger, N. L., Peso, M., Even, N., Barron, A. B., and Robinson, G. E. (2013) Altruistic behavior by egg-laying worker honeybees. Current Biology, 23(16): 15741578.Google Scholar
Nakahira, T., and Kudo, S.-I. (2008) Maternal care in the burrower bug Adomerus triguttulus: Defensive behavior. Journal of Insect Behavior, 21(4): 306316.Google Scholar
Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010) The evolution of eusociality. Nature, 466(7310): 10571062.Google Scholar
O’Dowd, D. J., and Hay, M. E. (1980) Mutualism between harvester ants and a desert ephemeral: Seed escape from rodents. Ecology, 61(3): 531540.Google Scholar
Page, R. E., and Erickson, E. H. (1988) Reproduction by worker honey bees (Apis mellifera L.). Behavioral Ecology and Sociobiology, 23: 117126.Google Scholar
Passera, L., Roncin, E., Kaufman, B. A., and Keller, L. (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature, 379: 630631.Google Scholar
Plowright, R. C., and Jay, S. C. (1966) Rearing bumble bee colonies in captivity. Journal of Apicultural Research, 5(3): 155165.Google Scholar
Rajakumar, R., San Mauro, D., Dijkstra, M. B. et al. (2012) Ancestral developmental potential facilitates parallel evolution in ants. Science, 335: 7982.Google Scholar
Ratnieks, F. L., Foster, K. R., and Wenseleers, T. (2006) Conflict resolution in insect societies. Annual Review of Entomology, 51: 581608.Google Scholar
Ratnieks, F. L., and Wenseleers, T. (2008) Altruism in insect societies and beyond: Voluntary or enforced? Trends in Ecology and Evolution, 23(1): 4552.Google Scholar
Rehan, S. M., and Toth, A. L. (2015) Climbing the social ladder: The molecular evolution of sociality. Trends in Ecology and Evolution, 30(7): 426433.Google Scholar
Rittschof, C. C., Bukhari, S. A., Sloofman, L. G. et al. (2014) Neuromolecular responses to social challenge: Common mechanisms across mouse, stickleback fish, and honey bee. Proceedings of the National Academy of Science USA, 111(50): 1792917934.Google Scholar
Rittschof, C. C., Coombs, C. B., Frazier, M., Grozinger, C. M., and Robinson, G. E. (2015) Early-life experience affects honey bee aggression and resilience to immune challenge. Science Reports, 5: 15572.Google Scholar
Rittschof, C. C., and Robinson, G. E. (2016) Behavioral genetic toolkits: Toward the evolutionary origins of complex phenotypes. Current Topics in Developmental Biology, 119: 157204.Google Scholar
Rittschof, C. C., Vekaria, H. J., Palmer, J. H., and Sullivan, P. G. (2018) Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera. Journal of Experimental Biology, 221(Pt 8): jeb176917, DOI: 10.1242/jeb.176917.Google Scholar
Rittschof, C. C., Vekaria, H. J., Palmer, J. H., and Sullivan, P. G. (2019) Biogenic amines and activity levels alter the neural energetic response to aggressive social cues in the honey bee Apis mellifera. Journal of Neuroscience Research, 97: 9911003.Google Scholar
Robinson, G. E. (1987) Modulation of alarm pheromone perception in the honey bee: Evidence for division of labor based on hormonally regulated response thresholds. Journal of Comparative Physiology A, 160: 613619.Google Scholar
Robinson, G. E. (1992) Regulation of division of labor in insect societies. Annual Review of Entomology, 37: 637665.Google Scholar
Robinson, G. E., Fernald, R. D., and Clayton, D. F. (2008) Genes and social behavior. Science, 322(5903): 896900.Google Scholar
Robinson, G. E., Winston, M. L., Huang, Z., and Pankiw, T. (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. Journal of Insect Physiology, 44(7–8): 685692.Google Scholar
Rubenstein, D. R., and Hofmann, H. A. (2015) Editorial overview: The integrative study of animal behavior. Current Opinion in Behavioral Sciences, 6: vviii.Google Scholar
Sakagami, S. F. (1958) The false queen: Fourth adjustive response in dequeened honeybee colonies. Behaviour, 13: 280296.Google Scholar
Scott, M. P. (1998) The ecology and behavior of burying beetles. Annual Review of Entomology, 43: 595618.Google Scholar
Seeley, T. D. (2012) Progress in understanding how the waggle dance improves the foraging efficiency of honey bee colonies. In Galizia, C., Eisenhardt, D., Giurfa, M., eds., Honeybee Neurobiology and Behavior. Dordrecht: Springer, pp. 7787.Google Scholar
Seid, M. A., and Traniello, J. F. A. (2006) Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): A new perspective on temporal polyethism and behavioral plasticity in ants. Behavioral Ecology and Sociobiology, 60(5): 631644.Google Scholar
Shorter, J. R., and Tibbetts, E. A. (2008) The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Sociaux, 56(1): 713.Google Scholar
Sibbald, E. D., and Plowright, C. M. S. (2012) On the relationship between aggression and reproduction in pairs of orphaned worker bumblebees (Bombus impatiens). Insectes Sociaux, 60(1): 2330.CrossRefGoogle Scholar
Smith, C., Toth, A., Suarez, A. et al. (2008) Genetic and genomic analyses of the division of labour in insect societies. Nature Reviews Genetics, 9: 735748, DOI: https://doi.org/10.1038/nrg2429.Google Scholar
Skukla, S., Pareek, V., and Gadagkar, R. (2014) Ovarian development in a primitively eusocial wasp: Social interactions affect behaviorally dominant and subordinate wasps in opposite directions relative to solitary females Behavioral Processes, 106: 22026.Google Scholar
Strassmann, J. E. (1981) Parasitoids, predators, and group size in the paper wasp Polistes exclamans. Ecology, 62(5): 12251233.Google Scholar
Strassmann, J. E., Queller, D. C., and Hughes, C. R. (1988) Predation and the evolution of sociality in the paper wasp Polistes bellicosus. Ecology, 69(5): 14971505.Google Scholar
Suryanarayanan, S., Hermanson, J. C., and Jeanne, R. L. (2011) A mechanical signal biases caste development in a social wasp. Current Biology, 21(3): 231235.Google Scholar
Szathmary, E., and Smith, J. M. (1995) The major evolutionary transitions. Nature, 374(6519): 227232.Google Scholar
Tallamy, D. W., and Brown, W. P. (1999) Semelparity and the evolution of maternal care in insects. Animal Behaviour, 57: 727730.Google Scholar
Thorne, B. L., Breisch, N. L., and Muscedere, M. L. (2003) Evolution of eusociality and the soldier caste in termites: Influence of intraspecific competition and accelerated inheritance. Proceedings of the National Academy of Sciences USA, 100(22): 1280812813.Google Scholar
Tibbetts, E. A., and Crocker, K. C. (2014) The challenge hypothesis across taxa: Social modulation of hormone titres in vertebrates and insects. Animal Behaviour, 92: 281290.Google Scholar
Tibbetts, E. A., and Lindsay, R. (2008) Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biology Letters, 4(3): 237239.Google Scholar
Tibbetts, E. A., and Sheehan, M. J. (2012) The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior. Hormones and Behavior, 61(4): 559564.Google Scholar
Toth, A. L., and Robinson, G. E. (2005) Worker nutrition and division of labour in honeybees. Animal Behaviour, 69(2): 427435.Google Scholar
Toth, A. L., Tooker, J. F., Radhakrishnan, S., Minard, R., Henshaw, M. T., and Grozinger, C. M. (2014) Shared genes related to aggression, rather than chemical communication, are associated with reproductive dominance in paper wasps (Polistes metricus) BMC Genomics, 15: 75.Google Scholar
Toth, A. L., Varala, K., Newman, T. C. et al. (2007) Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science, 318(5849): 441444.Google Scholar
Vásquez, G. M., and Silverman, J. (2008) Intraspecific aggression and colony fusion in the Argentine ant. Animal Behaviour, 75(2): 583593.Google Scholar
Weiner, S. A., Woods, W. A., Jr., and Starks, P. T. (2009) The energetic costs of stereotyped behavior in the paper wasp, Polistes dominulus. Naturwissenschaften, 96(2): 297302.Google Scholar
West-Eberhard, M. J. (1967) Foundress associations in Polistine wasps: Dominance hierarchies and the evolution of social behavior. Science, 157(3796): 15841585.Google Scholar
Wheeler, D. E., and Nijhout, H. F. (1981) Soldier determination in ants: New role for juvenile hormone. Science, 213(4505): 361363.Google Scholar
Wilson, E. O. (2000) Sociobiology: The New Synthesis. Cambridge, MA: The Belknap Press of Harvard University Press.Google Scholar
Wingfield, J. C., Hegner, R. E., Dufty, A. M., and Ball, G. F. (1990) The “Challenge Hypothesis”: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136(6): 829846.Google Scholar
Winston, M. L. (1991) The Biology of the Honey Bee. Cambridge, MA: Harvard University Press.Google Scholar
Wittemyer, G., and Getz, W. M. (2007) Hierarchical dominance structure and social organization in African elephants, Loxodonta africana. Animal Behaviour, 73: 671681.Google Scholar
Wong, J. W. Y., Meunier, J., and Kölliker, M. (2013) The evolution of parental care in insects: The roles of ecology, life history and the social environment. Ecological Entomology, 38(2): 123137.Google Scholar
Wray, M. K., Mattila, H. R., and Seeley, S. D. (2011) Collective personalities in honeybee colonies are linked to colony fitness. Animal Behavior, 81(3): 559568.Google Scholar
Wright, C. M., Skinker, V. E., Izzo, A. S., Tibbetts, E. A., and Pruitt, J. N. (2017) Queen personality type predicts nest-guarding behaviour, colony size and the subsequent collective aggressiveness of the colony. Animal Behavior, 124: 713.Google Scholar
Yang, A. S., Martin, C. H., and Nijhout, H. F. (2004) Geographic variation of caste structure among ant populations. Current Biology, 14(6): 514519.Google Scholar
Zayed, A., and Robinson, G. E. (2012) Understanding the relationship between brain gene expression and social behavior: Lessons from the honey bee. Annual Review of Genetics, 46: 591615.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×