Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-01T16:52:36.833Z Has data issue: false hasContentIssue false

Chapter 13 - Developmental Programming of Ageing Induced by Poor Maternal Nutrition

Evidence from Rodent Studies

from Section III - Outcomes

Published online by Cambridge University Press:  01 December 2022

Lucilla Poston
Affiliation:
King's College London
Keith M. Godfrey
Affiliation:
University of Southampton
Peter D. Gluckman
Affiliation:
University of Auckland
Mark A. Hanson
Affiliation:
University of Southampton
Get access

Summary

Developmental programming predisposes to life-course disease, impairing multi-organ function. Cumulative changes in cellular phenotype influence healthspan and lifespan. Poor maternal nutrition is a major fetal challenge programming changes in offspring phenotype. We review longitudinal studies showing that nutritional programming accelerates sexually dimorphic ageing in multiple organs. Few studies contain the necessary data over multiple life-course ages to evaluate ageing trajectories. We focus on rodent models designed to address influences of maternal nutritional programming of offspring health and evaluate their effects on functional ageing. We report age-related outcomes in offspring of low protein fed and obese, over-nourished mothers. Effects of exercise and dietary interventions are presented to elucidate mechanisms of ageing-programming interactions. We present in vitro and in vivo data on programming-ageing interaction involving the hypothalamo-pituitary-adrenal axis, metabolic, reactive oxygen species (ROS) and reproductive function. We hypothesize that glucocorticoids and ROS represent interactive molecular systems responsible for many programming-ageing interactive outcomes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nathanielsz, P. W., Life Before Birth: The Challenges of Fetal Development, 2nd ed (San Antonio, TX: Life Course Health Press, LLC, 2021).Google Scholar
Puppala, S., Li, C., Glenn, J. P., Saxena, R., Gawrieh, S., Quinn, A., Palarczyk, J., Dick, E. J., Nathanielsz, P. W., & Cox, L. A., Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation. The Journal of Physiology, 596 (2018) 5823–5837. https://doi.org/10.1113/JP275422.CrossRefGoogle Scholar
Chahal, H. S. & Drake, W. M., The endocrine system and ageing. Journal of Pathology, 211 (2007) 173–180. https://doi.org/10.1002/path.2110.CrossRefGoogle Scholar
Rodríguez-González, G. L., Reyes-Castro, L. A., Vega, C. C., Boeck, L., Ibáñez, C., Nathanielsz, P. W., Larrea, F., & Zambrano, E., Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress. Age (Dordr), 36 (2014) 9721. https://doi.org/10.1007/s11357-014-9721-5.Google Scholar
Tarry-Adkins, J. L., Fernandez-Twinn, D. S., Chen, J. H., Hargreaves, I. P., Neergheen, V., Aiken, C. E., & Ozanne, S. E., Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. DMM Disease Models and Mechanisms, 9 (2016) 1221–1229. https://doi.org/10.1242/dmm.026591.Google Scholar
Barker, D. J. P., Eriksson, J. G., Forsen, T., & Osmond, C., Fetal origins of adult disease: strength of effects and biological basis. International Journal of Epidemiology, 31 (2002) 1235–1239.Google Scholar
Barker, D. J. P., Mothers, Babies and Diseases in Later Life, 2nd ed (LP London, England: Churchill Livingstone, 1998).Google Scholar
Backhouse, E. V, Shenkin, S. D., McIntosh, A. M., Bastin, M. E., Whalley, H. C., Valdez Hernandez, M., Muñoz Maniega, S., Harris, M. A., Stolicyn, A., Campbell, A., Steele, D., Waiter, G. D., Sandu, A.-L., Waymont, J. M. J., Murray, A. D., Cox, S. R., de Rooij, S. R., Roseboom, T. J., & Wardlaw, J. M., Early life predictors of late life cerebral small vessel disease in four prospective cohort studies. Brain: A Journal of Neurology, (2021) Dec 31;144(12):3769–78. https://doi.org/10.1093/BRAIN/AWAB331.CrossRefGoogle Scholar
Rabadán-Diehl, C. & Nathanielsz, P., From mice to men: research models of developmental programming. J Dev Orig Health Dis. 2013;4(1):3–9. https://doi.org/10.1017/S2040174412000487.CrossRefGoogle Scholar
Zambrano, E., Reyes-Castro, L. A., & Nathanielsz, P. W., Aging, glucocorticoids and developmental programming. Age (Dordr). 2015;37(3):9774. https://doi.org/10.1007/s11357-015-9774-0.Google Scholar
Rodríguez-González, G. L., Vega, C. C., Boeck, L., Vázquez, M., Bautista, C. J., Reyes-Castro, L. A., Saldaña, O., Lovera, D., Nathanielsz, P. W., & Zambrano, E., Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. International Journal of Obesity (Lond), 39 (2014) 549–556. https://doi.org/10.1038/ijo.2014.209.CrossRefGoogle Scholar
Zambrano, E., Rodríguez-González, G. L., Guzmán, C., García-Becerra, R., Boeck, L., Díaz, L., Menjivar, M., Larrea, F., & Nathanielsz, P. W., A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. The Journal of Physiology, 563 (2005) 275–284. https://doi.org/10.1113/jphysiol.2004.078543.Google Scholar
Rodríguez-González, G. L., Reyes-Castro, L. A., Bautista, C. J., Beltrán, A. A., Ibáñez, C. A., Vega, C. C., Lomas-Soria, C., Castro-Rodr, D. C.íguez, A. L. Elías-López, P. W. Nathanielsz, , & Zambrano, E., Maternal obesity accelerates rat offspring metabolic ageing in a sex-dependent manner. Journal of Physiology, 597 (2019) 5549–5563. https://doi.org/10.1113/JP278232.CrossRefGoogle Scholar
Vega, C. C., Reyes-Castro, L. A., Bautista, C. J., Larrea, F., Nathanielsz, P. W., & Zambrano, E., Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. International Journal of Obesity (2005), 39 (2015) 712–9. https://doi.org/10.1038/ijo.2013.150.Google Scholar
Ibáñez, C. A., Vázquez-Martínez, M., León-Contreras, J. C., Reyes-Castro, L. A., Rodríguez-González, G. L., Bautista, C. J., Nathanielsz, P. W., & Zambrano, E., Different statistical approaches to characterization of adipocyte size in offspring of obese rats: effects of maternal or offspring exercise intervention. Frontiers in Physiology, 9:1571 (2018). https://doi.org/10.3389/FPHYS.2018.01571.CrossRefGoogle Scholar
Santos, M., Rodríguez-González, G. L., Ibáñez, C., Vega, C. C., Nathanielsz, P. W., & Zambrano, E., Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 308 (2015) R219R225. https://doi.org/10.1152/ajpregu.00398.2014.Google Scholar
Zambrano, E., Martínez-Samayoa, P. M., Rodríguez-González, G. L., & Nathanielsz, P. W., Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. The Journal of Physiology, 588 (2010) 1791–1799. https://doi.org/10.1113/jphysiol.2010.190033.Google Scholar
Rodríguez-González, G. L., Reyes-Castro, L. A., Vega, C. C., Boeck, L., Ibáñez, C., Nathanielsz, P. W., Larrea, F., & Zambrano, E., Accelerated aging of reproductive capacity in male rat offspring of protein-restricted mothers is associated with increased testicular and sperm oxidative stress. Age (Dordrecht, Netherlands), 36 (2014). Age (Dordr) 2014;36(6):9721. https://doi.org/10.1007/S11357-014-9721-5.CrossRefGoogle Scholar
Zambrano, E., Martínez-Samayoa, P. M., Rodríguez-González, G. L., & Nathanielsz, P. W., Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. The Journal of Physiology, 588 (2010) 1791–1799. https://doi.org/10.1113/jphysiol.2010.190033.CrossRefGoogle Scholar
Vega, C. C., Reyes-Castro, L. A., Bautista, C. J., Larrea, F., Nathanielsz, P. W., & Zambrano, E., Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. International Journal of Obesity, 39 (2015) 712–719. https://doi.org/10.1038/ijo.2013.150.CrossRefGoogle Scholar
Santos, M., Rodríguez-González, G. L., Ibáñez, C., Vega, C. C., Nathanielsz, P. W., & Zambrano, E., Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 308 (2015) R219R225. https://doi.org/10.1152/ajpregu.00398.2014.Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G., The hallmarks of aging. Cell, 153 (2013) 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039.Google Scholar
Cheng, C. J., Gelfond, J. A. L., Strong, R., & Nelson, J. F., Genetically heterogeneous mice exhibit a female survival advantage that is age‐ and site‐specific: results from a large multi‐site study. Aging Cell, 18 (2019) e12905. https://doi.org/10.1111/acel.12905.Google Scholar
Fowden, A. L., Li, J., & Forhead, A. J., Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proceedings of the Nutrition Society, 57 (1998) 113–122. https://doi.org/10.1079/pns19980017.Google Scholar
Malinowska, K. W., Hardy, R. N., & Nathanielsz, P. W., Plasma adrenocorticosteroid concentrations immediately after birth in the rat, rabbit and guinea-pig. Experientia, 28 (1972) 1366–1367.Google Scholar
Thomas, A. L., Krane, E. J., & Nathanielsz, P. W., Changes in the fetal thyroid axis after induction of premature parturition by low dose continuous intravascular cortisol infusion to the fetal sheep at 130 days of gestation. Endocrinology, 103 (1978) 17–23.Google Scholar
McMullen, S., Langley-Evans, S. C., Gambling, L., Lang, C., Swali, A., & McArdle, H. J., A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Medical Hypotheses, 78 (2012) 88–94. https://doi.org/10.1016/j.mehy.2011.09.047.CrossRefGoogle Scholar
Bowman, R. E., Maclusky, N. J., Diaz, S. E., Zrull, M. C., & Luine, V. N., Aged rats: sex differences and responses to chronic stress. Brain Research, 1126 (2006) 156–166. https://doi.org/10.1016/j.brainres.2006.07.047.Google Scholar
Ferrari, E., Cravello, L., Muzzoni, B., Casarotti, D., Paltro, M., Solerte, S. B., Fioravanti, M., Cuzzoni, G., Pontiggia, B., & Magri, F., Age-related changes of the hypothalamic-pituitary-adrenal axis: pathophysiological correlates. European Journal of Endocrinology, 144 (2001) 319–329.Google Scholar
Peeters, G. M. E. E., van Schoor, N. M., Visser, M., Knol, D. L., Eekhoff, E. M. W., de Ronde, W., & Lips, P., Relationship between cortisol and physical performance in older persons. Clinical Endocrinology (Oxf), 67 (2007) 398–406. https://doi.org/10.1111/j.1365-2265.2007.02900.x.CrossRefGoogle Scholar
Zhao, Z.-Y. Y., Lu, F.-H. H., Xie, Y., Fu, Y.-R. R., Bogdan, A., & Touitou, Y., Cortisol secretion in the elderly. Influence of age, sex and cardiovascular disease in a Chinese population. Steroids, 68 (2003) 551–555.Google Scholar
McEwen, B. S., Protective and damaging effects of stress mediators. The New England Journal of Medicine, 338 (1998) 171–179. https://doi.org/10.1056/NEJM199801153380307.Google Scholar
Yeager, M. P., Pioli, P. A., & Guyre, P. M., Cortisol exerts bi-phasic regulation of inflammation in humans. Dose Response, 9 (2011) 332–347. https://doi.org/10.2203/dose-response.10-013.Yeager.CrossRefGoogle Scholar
Tenk, J., Mátrai, P., Hegyi, P., Rostás, I., Garami, A., Szabó, I., Solymár, M., Pétervári, E., Czimmer, J., Márta, K., Mikó, A., Füredi, N., Párniczky, A., Zsiborás, C., & Balaskó, M., In obesity, HPA axis activity does not increase with BMI, but declines with aging: a meta-analysis of clinical studies. PLoS One, 11 (2016) e0166842. https://doi.org/10.1371/journal.pone.0166842.Google Scholar
Yang, S., Gerow, K. G., Huber, H. F., Considine, M. M., Li, C., Mattern, V., Comuzzie, A. G., Ford, S. P., & Nathanielsz, P. W., A decline in female baboon hypothalamo-pituitary-adrenal axis activity anticipates aging. Aging, 9 (2017) 1375–1385. https://doi.org/10.18632/aging.101235.Google Scholar
Willis, E. L., Eberle, R., Wolf, R. F., White, G. L., & McFarlane, D., The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS ONE, 9 (2014). https://doi.org/10.1371/journal.pone.0107167.Google Scholar
Jang, Y. C., Liu, Y., Hayworth, C. R., Bhattacharya, A., Lustgarten, M. S., Muller, F. L., Chaudhuri, A., Qi, W., Li, Y., Huang, J.-Y., Verdin, E., Richardson, A., Van Remmen, H., The, S., & Barshop, A., Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell, 11 (2012) 770–782. https://doi.org/10.1111/j.1474-9726.2012.00843.x.Google Scholar
Pacher, P., Obrosova, I., Mabley, J., & Szabo, C., Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Current Medicinal Chemistry, 12 (2012) 267–275. https://doi.org/10.2174/0929867053363207.Google Scholar
Morimoto, S., Sosa, T. C., Calzada, L., Reyes-Castro, L. A., Díaz-Díaz, E., Morales, A., Nathanielsz, P. W., & Zambrano, E., Developmental programming of aging of isolated pancreatic islet glucose-stimulated insulin secretion in female offspring of mothers fed low-protein diets in pregnancy and/or lactation. Journal of Developmental Origins of Health and Disease, 3 (2012) 483–8. https://doi.org/10.1017/S2040174412000463.Google Scholar
Morimoto, S., Calzada, L., Sosa, T. C., Reyes-Castro, L. A., Rodriguez-Gonz, G. L.ález, A. Morales, P. W. Nathanielsz, , & Zambrano, E., Emergence of ageing-related changes in insulin secretion by pancreatic islets of male rat offspring of mothers fed a low-protein diet. The British Journal of Nutrition, 107(11) (2012) 1562–5. https://doi.org/10.1017/S0007114511004855.Google Scholar
Rodríguez-González, G. L., Vega, C. C., Boeck, L., Vázquez, M., Bautista, C. J., Reyes-Castro, L. A., Saldaña, O., Lovera, D., Nathanielsz, P. W., & Zambrano, E., Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. International Journal of Obesity, 39 (2015) 549–556. https://doi.org/10.1038/ijo.2014.209.Google Scholar
Beeson, J. H., Blackmore, H. L., Carr, S. K., Dearden, L., Duque-Guimar, D. E.ães, L. C. Kusinski, L. C. Pantaleão, A. G. Pinnock, C. E. Aiken, D. A. Giussani, D. S. Fernandez-Twinn, , & Ozanne, S. E., Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Molecular Metabolism, 16 (2018) 35–44. https://doi.org/10.1016/j.molmet.2018.06.009.Google Scholar
Santos, M., Rodríguez-González, G. L., Ibáñez, C., Vega, C. C., Nathanielsz, P. W., & Zambrano, E., Adult exercise effects on oxidative stress and reproductive programming in male offspring of obese rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 308 (2015) 219–225. https://doi.org/10.1152/ajpregu.00398.2014.-Exercise.Google Scholar
Horvath, S., Haghani, A., Zoller, J. A., Lu, A. T., Ernst, J., Pellegrini, M., Jasinska, A. J., Mattison, J. A., Salmon, A. B., Raj, K., Horvath, M., Paul, K. C., Ritz, B. R., Robeck, T. R., Spriggs, M., Ehmke, E. E., Jenkins, S., Li, C., & Nathanielsz, P. W., Pan-primate DNA methylation clocks. bioRxiv, (2021). https://doi.org/10.1101/2020.11.29.402891.Google Scholar
Bronikowski, A. M., Alberts, S. C., Altmann, J., Packer, C., Dee Carey, K., & Tatar, M., The aging baboon: comparative demography in a non-human primate. Proceedings of the National Academy of Sciences of the United States of America, 99 (2002) 9591–9595. https://doi.org/10.1073/pnas.142675599.Google Scholar
Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin‐Dolan, R., Thakor, A. S., Derks, J. B., Tarry‐Adkins, J. L., Ozanne, S. E., & Giussani, D. A., Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. The FASEB Journal, 30 (2016) 1968–1975. https://doi.org/10.1096/fj.201500057.Google Scholar
Reyes-Castro, L. A., Padilla-Gómez, E., Parga-Martínez, N. J., Castro-Rodr, D. C.íguez, G. L. Quirarte, S. Díaz-Cintra, P. W. Nathanielsz, , & Zambrano, E., Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus, 28 (2018) 18–30. https://doi.org/10.1002/hipo.22798.CrossRefGoogle Scholar
Rodriguez, J. S. S., Rodríguez-González, G. L. L., Reyes-Castro, L. A. A., Ibáñez, C., Ramírez, A., Chavira, R., Larrea, F., Nathanielsz, P. W. W., & Zambrano, E., Maternal obesity in the rat programs male offspring exploratory, learning and motivation behavior: prevention by dietary intervention pre-gestation or in gestation. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 30 (2012) 75–81. https://doi.org/10.1016/j.ijdevneu.2011.12.012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×