Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-15T19:55:43.263Z Has data issue: false hasContentIssue false

5 - Genetics of dog behavior

from PART II - BEHAVIOR, COGNITION AND TRAINING

Published online by Cambridge University Press:  30 December 2016

Linda van den Berg
Affiliation:
Rotterdam, the Netherlands
James Serpell
Affiliation:
University of Pennsylvania
Get access

Summary

Introduction

Selection for behavior has played a key role in the history of dog domestication and breeding. Early dog domestication probably involved selection for tameness. A few generations of selection for tameness in the famous Russian silver fox experiments led to a domesticated strain of foxes that showed dog-like behavior and displayed curly tails, drop ears, and loss of pigment (Trut et al., 2009). The early domestication of dogs was followed by the formation of dog breeds. Different aspects of ancestral wolf behavior have been selected for in different breeds: dogs have been bred to guard, herd, hunt, pull sleds, and to provide companionship. Selection for physical appearance became more important at a later stage when people began breeding dogs for show. Extreme population bottlenecks, founder effects, drift and strong artificial selection for desired traits during breed formation have resulted in a dog population that is a collection of genetic isolates with highly diverging morphology, disease susceptibility, and behavioral characteristics (Sutter & Ostrander, 2004).

Scott and Fuller (1965) performed a pioneering study of breed differences and inheritance of canine behavior. Their experiment involved dogs of five breeds: basenji, beagle, American cocker spaniel, Shetland sheepdog and wire-haired fox terrier. Breeds and their crosses were compared for reactivity, trainability and problem-solving behaviors. Scott and Fuller observed behavioral differences between the breeds in the majority of their behavioral tests; for instance, in playful aggression and dominance. Wire-haired fox terriers were the most aggressive, consistently “ganging up” on group members. These attacks were so serious that victims had to be removed in order to prevent serious injury. More recently, Svartberg (2006) compared the behavior of 31 dog breeds using data from a standard behavioral test. Significant breed differences were observed for all investigated traits (Figure 5.1). Dog breeds also differ in the prevalence of problem behavior. For instance, certain breeds are predisposed to obsessive-compulsive behaviors: bull terriers frequently exhibit tail chasing, while Doberman pinschers are prone to acral licking.

The fact that breed differences in behavior exist, and that behavioral dispositions can be selected for, suggests that there is a genetic basis for behavior. Behavioral genetics is the study of the individual variation in behavior due to genetic differences between animals. Behavioral genetic studies in dogs have traditionally been studies of breed differences, selection studies, and population-based heritability studies.

Type
Chapter
Information
The Domestic Dog
Its Evolution, Behavior and Interactions with People
, pp. 69 - 92
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acland, G. M., Ray, K., Mellersh, C. S. et al. (1998). Linkage analysis and comparative mapping of canine progressive rod-cone degeneration (prcd) establishes potential locus homology with retinitis pigmentosa (RP17) in humans. Proceedings of the National Academy of Sciences USA, 95: 3048–53.CrossRefGoogle ScholarPubMed
Akey, J. M., Ruhe, A. L., Akey, D. T. et al. (2010). Tracking footprints of artificial selection in the dog genome. Proceedings of the National Academy of Sciences USA, 107: 1160–5.CrossRefGoogle ScholarPubMed
Albert, F. W., Carlborg, O., Plyusnina, I. et al. (2009). Genetic architecture of tameness in a rat model of animal domestication. Genetics, 182: 541–54.CrossRefGoogle Scholar
Appleby, D. L., Bradshaw, J. W. & Casey, R. A. (2002). Relationship between aggressive and avoidance behavior by dogs and their experience in the first six months of life. Veterinary Record, 150: 434–8.CrossRefGoogle ScholarPubMed
Arvelius, P., Malm, S., Svartberg, K. & Strandberg, E. (2009). Genetic analysis of herding behavior in Swedish Border Collie dogs. Journal of Veterinary Behavior, 4: 237–57.CrossRefGoogle Scholar
Badino, P., Odore, R., Osella, M. C. et al. (2004). Modifications of serotonergic and adrenergic receptor concentrations in the brain of aggressive Canis familiaris . Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 139: 343–50.CrossRefGoogle ScholarPubMed
Bamberger, M. & Houpt, K. A. (2006). Signalment factors, comorbidity, and trends in behavior diagnoses in dogs: 1,644 cases (1991–2001). Journal of the American Veterinary Medical Association, 229: 1591–601.Google Scholar
Bearden, C. E., Reus, V. I. & Freimer, N. B. (2004). Why genetic investigation of psychiatric disorders is so difficult. Current Opinion in Genetics & Development, 14: 280–6.CrossRefGoogle ScholarPubMed
Beaver, B. V. (1993). Profiles of dogs presented for aggression. Journal of the American Animal Hospital Association, 29: 564–9.Google Scholar
Benjamin, J., Li, L., Patterson, C. et al. (1996). Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genetics, 12: 81–4.CrossRefGoogle ScholarPubMed
Blackshaw, J. K. (1991). An overview of types of aggressive behavior in dogs and methods of treatment. Applied Animal Behaviour Science, 30: 351–61.CrossRefGoogle Scholar
Boomsma, D., Busjahn, A. & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3: 872–82.CrossRefGoogle ScholarPubMed
Borchelt, P. L. (1983). Aggressive behavior of dogs kept as companion animals: classification and influence of sex, reproductive status and breed. Applied Animal Ethology, 10: 45–61.CrossRefGoogle Scholar
Borchelt, P. L. & Voith, V. L. (1996). Aggressive behavior in dogs and cats. In Readings in Companion Animal Behavior, eds. Voith, V. L. & Borchelt, P. L.. Trenton, NJ: Veterinary Learning Systems, pp. 217–29.Google Scholar
Bourdon, R. M. (1997). Heritability and repeatability. In Understanding Animal Breeding, ed. Bourdon, R. M.. Upper Saddle River, NJ: Prentice Hall, pp. 149–84.Google Scholar
Boyko, A. R., Quignon, P., Li, L. et al. (2010). A simple genetic architecture underlies morphological variation in dogs. PLoS Biology, 8: e1000451.CrossRefGoogle ScholarPubMed
Bradshaw, J. W., Goodwin, D., Lea, A. M. & Whitehead, S. L. (1996). A survey of the behavioral characteristics of pure-bred dogs in the United Kingdom. Veterinary Record, 138: 465–8.CrossRefGoogle ScholarPubMed
Brown, S. A., Crowell-Davis, S., Malcolm, T. & Edwards, P. (1987). Naloxone-responsive compulsive tail chasing in a dog. Journal of the American Veterinary Medical Association, 190: 884–6.Google Scholar
Brunner, H. G., Nelen, M., Breakefield, X. O., Ropers, H. H. & van Oost, B. A. (1993). Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science, 262: 578–80.CrossRefGoogle ScholarPubMed
Bulmer, M. G. (1972). The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genetics Research, 19: 17–25.CrossRefGoogle ScholarPubMed
Burmeister, M., McInnis, M. G. & Zöllner, S. (2008). Psychiatric genetics: progress amid controversy. Nature Reviews Genetics, 9, 527–40.CrossRefGoogle ScholarPubMed
Cadieu, E., Neff, M. W., Quignon, P. et al. (2009). Coat variation in the domestic dog is governed by variants in three genes. Science, 326: 150–3.CrossRefGoogle ScholarPubMed
Candille, S. I., Kaelin, C. B., Cattanach, B. M. et al. (2007). A bdefensin mutation causes black coat color in domestic dogs. Science, 318: 1418–23.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E. et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297: 851–4.CrossRefGoogle ScholarPubMed
Chamberlain, N. L., Driver, E. D. & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22: 3181–6.CrossRefGoogle ScholarPubMed
Chase, K., Jones, P., Martin, A., Ostrander, E. A. & Lark, K. G. (2009). Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic. Journal of Heredity, 100(Suppl 1): S37–41.CrossRefGoogle ScholarPubMed
Chen, L., Brown, R. E., McKenna, J. T. & McCarley, R. W. (2009). Animal models of narcolepsy. CNS & Neurological Disorders – Drug Targets, 8: 296–308.CrossRefGoogle ScholarPubMed
Colhoun, H. M., McKeigue, P. M. & Davey Smith, G. (2003). Problems of reporting genetic associations with complex outcomes. Lancet, 361: 865–72.CrossRefGoogle ScholarPubMed
Courreau, J.-F. & Langlois, B. (2005). Genetic parameters and environmental effects which characterise the defence ability of the Belgian shepherd dog. Applied Animal Behaviour Science, 91: 233–45.CrossRefGoogle Scholar
Cyranoski, D. (2010). Genetics: pet project. Nature, 466: 1036–8.CrossRefGoogle ScholarPubMed
De Keuster, T., Lamoureux, J. & Kahn, A. (2006). Epidemiology of dog bites: a Belgian experience of canine behavior and public health concerns. Veterinary Journal, 172: 482–7.CrossRefGoogle ScholarPubMed
Dodman, N. H., Bronson, R. & Gliatto, J. (1993). Tail chasing in a bull terrier. Journal of the American Veterinary Medical Association, 202, 758–60.Google Scholar
Dodman, N. H., Karlsson, E. K., Moon-Fanelli, A. et al. (2010). A canine chromosome 7 locus confers compulsive disorder susceptibility. Molecular Psychiatry, 15: 8–10.CrossRefGoogle ScholarPubMed
Dodman, N. H. & Shuster, L. (1998). Psychopharmacology of Animal Behavior Disorders. London: Blackwell Science.Google Scholar
Doyle, A. E., Faraone, S. V., Seidman, L. J. et al. (2005). Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? Journal of Child Psychology & Psychiatry, 46: 774–803.CrossRefGoogle ScholarPubMed
Drögemüller, C., Karlsson, E. K., Hytönen, M. K. et al. (2008). A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science, 321: 1462.CrossRefGoogle ScholarPubMed
Duffy, D. L., Hsu, Y. & Serpell, J. A. (2008). Breed differences in canine aggression. Applied Animal Behavior Science, 114: 441–60.CrossRefGoogle Scholar
Dykman, R. A., Murphree, O. D. & Ackerman, P. T. (1966). Litter patterns in the offspring of nervous and stable dogs: II. autonomic and motor conditioning. The Journal of Nervous and Mental Disease, 141: 419–32.Google Scholar
Ebstein, R. P., Segman, R., Benjamin, J. et al. (1997). 5-HT2C (HTR2C) serotonin receptor gene polymorphism associated with the human personality trait of reward dependence: interaction with dopamine D4 receptor (D4DR) and dopamine D3 receptor (D3DR) polymorphisms. American Journal of Medical Genetetics, 74: 65–72.Google ScholarPubMed
Everts, R. E., Rothuizen, J. & van Oost, B. A. (2000). Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1 R) in Labrador and Golden retrievers with yellow coat colour. Animal Genetics, 31: 194–9.CrossRefGoogle Scholar
Fan, M., Liu, B., Jiang, T. et al. (2010). Meta-analysis of the association between the monoamine oxidase-A gene and mood disorders. Psychiatric Genetics, 20: 1–7.CrossRefGoogle ScholarPubMed
Fernandez, M., Pissiota, A., Frans, O. et al. (2001). Brain function in a patient with torture related post-traumatic stress disorder before and after fluoxetine treatment: a positron emission tomography provocation study. Neuroscience Letters, 297: 101–4.CrossRefGoogle Scholar
Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Oxford: Clarendon Press.CrossRefGoogle Scholar
Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M. & Beedle, A. S. (2009). Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nature Reviews Endocrinology, 5: 401–8.CrossRefGoogle ScholarPubMed
Goddard, M. E. & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10: 381–91.CrossRefGoogle ScholarPubMed
Goddard, M. E. & Beilharz, R. G. (1983). Genetics of traits which determine the suitability of dogs as guide-dogs for the blind. Applied Animal Ethology, 9: 299–315.CrossRefGoogle Scholar
Goddard, M. E. & Beilharz, R. G. (1982). Genetic and environmental factors affecting the suitability of dogs as guide dogs for the blind. Theoretical and Applied Genetics, 62: 97–102.CrossRefGoogle ScholarPubMed
Hall, N. J. & Wynne, C. D. (2012). The canid genome: behavioral geneticists’ best friend? Genes, Brain and Behavior, 11: 889–902.Google ScholarPubMed
Hamer, D. (2002). Genetics. Rethinking behavior genetics. Science, 298: 71–2.CrossRefGoogle ScholarPubMed
Hart, B. L. & Miller, M. F. (1985). Behavioral profiles of dog breeds. Journal of the American Veterinary Medical Association, 186: 1175–80.Google ScholarPubMed
Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection model. Biometrics, 31: 423–47.CrossRefGoogle Scholar
Hejjas, K., Kubinyi, E., Ronai, Z. et al. (2009). Molecular and behavioral analysis of the intron 2 repeat polymorphism in the canine dopamine D4 receptor gene. Genes Brain and Behavior, 8: 330–6.CrossRefGoogle ScholarPubMed
Hejjas, K., Vas, J., Kubinyi, E., et al. (2007a). Novel repeat polymorphisms of the dopaminergic neurotransmitter genes among dogs and wolves. Mammalian Genome, 18, 871–879.CrossRefGoogle ScholarPubMed
Hejjas, K., Vas, J., Topal, J. et al. (2007b). Association of polymorphisms in the dopamine D4 receptor gene and the activity-impulsivity endophenotype in dogs. Animal Genetics, 38: 629–33.CrossRefGoogle ScholarPubMed
Heijmans, B. T., Tobi, E. W., Stein, A. D. et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences USA, 105: 17046–9.CrossRefGoogle ScholarPubMed
Heywood, S. (1977). Chasing one's own tail? An example of self-pursuit in a red setter. Perception, 6: 483.CrossRefGoogle Scholar
Hill, S. Y. (2010). Neural plasticity, human genetics, and risk for alcohol dependence. International Review of Neurobiology, 91: 53–94.Google ScholarPubMed
Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. (2002). A comprehensive review of genetic association studies. Genetics in Medicine, 4: 45–61.CrossRefGoogle ScholarPubMed
Hoffmann, A. & Spengler, D. (2014). DNA memories of early social life. Neuroscience, 264: 64–75.CrossRefGoogle ScholarPubMed
Houpt, K. A. & Willis, M. B. (2001). Genetics of behavior. In The Genetics of the Dog, eds. Ruvinsky, A. & Sampson, J.. Oxon, New York: CABI Publishing, pp. 371–400.Google Scholar
Hradecká, L., Bartoš, L., Svobodová, I. & Sales, J. (2015). Heritability of behavioural traits in domestic dogs: a meta-analysis. Applied Animal Behaviour Science, 170: 1–13.CrossRefGoogle Scholar
Hunter, R. G. (2012). Epigenetic effects of stress and corticosteroids in the brain. Frontiers in Cellular Neuroscience, 6: 18.CrossRefGoogle Scholar
Huson, H. J., Parker, H. G., Runstadler, J. & Ostrander, E. A. (2010). A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog. BMC Genetics, 11: 71.CrossRefGoogle ScholarPubMed
Inoue, K. & Lupski, J. R. (2003). Genetics and genomics of behavioral and psychiatric disorders. Current Opinion in Genetics & Development, 13: 303–9.CrossRefGoogle ScholarPubMed
International Schizophrenia Consortium, Purcell, S. M., Wray, N. R. et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460: 748–52.Google ScholarPubMed
Janssens, A. C. & van Duijn, C. M. (2008). Genome-based prediction of common diseases: advances and prospects. Human Molecular Genetics, 17(R2): R166–73.CrossRefGoogle ScholarPubMed
Jones, A. C. & Gosling, S. D. (2005). Temperament and personality in dogs (Canis familiaris): a review and evaluation of past research. Applied Animal Behaviour Science, 95: 1–53.CrossRefGoogle Scholar
Jones, P., Chase, K., Martin, A. et al. (2008). Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics, 179: 1033–44.CrossRefGoogle ScholarPubMed
Karlsson, E. K., Baranowska, I., Wade, C. M. et al. (2007). Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics, 39: 1321–8.CrossRefGoogle ScholarPubMed
Karlsson, E. K. & Lindblad-Toh, K. (2008). Leader of the pack: gene mapping in dogs and other model organisms. Nature Reviews Genetics, 9: 713–25.CrossRefGoogle ScholarPubMed
Kirkness, E. F., Bafna, V., Halpern, A. L. et al. (2003). The dog genome: survey sequencing and comparative analysis. Science, 301: 1898–903.CrossRefGoogle ScholarPubMed
Koch, I. J., Clark, M. M., Thompson, M. J., Deere-Machemer, K. A., Wang, J., Duarte, L., et al. (2016) The concerted impact of domestication and transposon insertions on methylation patterns between dogs and grey wolves. Molecular Ecology, 25: 1838–855. http://doi: 10.1111/mec.13480 Google Scholar
Konno, A., Inoue-Murayama, M. & Hasegawa, T. (2011). Androgen receptor gene polymorphisms are associated with aggression in Japanese Akita Inu. Biology Letters, 7: 658–60.CrossRefGoogle ScholarPubMed
Kubinyi, E., Vas, J., Hejjas, K. et al. (2012). Polymorphism in the tyrosine hydroxylase (TH) gene is associated with activity-impulsivity in German shepherd dogs. PLoS One, 7: e30271.CrossRefGoogle ScholarPubMed
Kukekova, A. V., Trut, L. N., Chase, K. et al. (2011a). Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behavior Genetics, 41: 593–606.CrossRefGoogle ScholarPubMed
Kukekova, A. V., Johnson, J. L., Teiling, C. et al. (2011b). Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes). BMC Genomics, 12: 482.CrossRefGoogle Scholar
Landsberg, G. (2004). Canine aggression. In Handbook of Behavior Problems of the Dog and Cat, eds. Landsberg, G., Hunthausen, W. & Ackerman, L.. Edinburgh: Saunders, pp. 385–426.Google Scholar
Landsberg, G. (1991). The distribution of canine behavior cases at three behavior referral practices. Veterinary Medicine, 1011–17.
Lequarré, A. S., Andersson, L., André, C. et al. (2011). LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Veterinary Journal, 189: 155–9.CrossRefGoogle ScholarPubMed
Lesch, K. P. & Merschdorf, U. (2000). Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behavioral Sciences & the Law, 18: 581–604.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Li, M. D. & Burmeister, M. (2009). New insights into the genetics of addiction. Nature Reviews Genetics. 10: 225–31.CrossRefGoogle Scholar
Liinamo, A.-E., van den Berg, L., Leegwater, P. A. J. et al. (2007). Genetic variation in aggression-related traits in golden retriever dogs. Applied Animal Behavior Science, 104: 95–106.CrossRefGoogle Scholar
Lin, L., Faraco, J., Li, R. et al. (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98: 365–76.CrossRefGoogle ScholarPubMed
Lindberg, S., Strandberg, E. & Swenson, L. (2004). Genetic analysis of hunting behavior in Swedish Flatcoated Retrievers. Applied Animal Behavior Science, 88: 289–98.CrossRefGoogle Scholar
Lindblad-Toh, K., Wade, C. M., Mikkelsen, T. S. et al. (2005). Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature, 438: 803–19.CrossRefGoogle ScholarPubMed
Liu, C. (2011). Brain expression quantitative trait locus mapping informs genetic studies of psychiatric diseases. Neuroscience Bulletin, 27: 123–33.CrossRefGoogle ScholarPubMed
Lockwood, R. & Rindy, K. (1987). Are “pit bulls” different? An analysis of the pit bull terrier controversy. Anthrozoos, 1: 2–8.CrossRefGoogle Scholar
Mackenzie, S. A., Oltenacu, E. A. B. & Houpt, K. A. (1986). Canine behavioral genetics – a review. Applied Animal Behaviour Science, 15: 365–93.CrossRefGoogle Scholar
Manolio, T. A., Collins, F. S, Cox, N. J. et al. (2009). Finding the missing heritability of complex diseases. Nature, 461: 747–53.CrossRefGoogle ScholarPubMed
Mattick, J. S., Taft, R. J. & Faulkner, G. J. (2010). A global view of genomic information-moving beyond the gene and the master regulator. Trends in Genetics, 26: 21–8.CrossRefGoogle ScholarPubMed
McCarthy, M. I., Abecasis, G. R., Cardon, L. R. et al. (2008). Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nature Reviews Genetics, 9, 356–69.CrossRefGoogle ScholarPubMed
Messa, C., Colombo, C., Moresco, R. M. et al. (2003). 5-HT(2A) receptor binding is reduced in drug-naive and unchanged in SSRI-responder depressed patients compared to healthy controls: a PET study. Psychopharmacology (Berl), 167: 72–8.CrossRefGoogle ScholarPubMed
Mikkelsen, J. & Lund, J. D. (2000). Euthanasia of dogs due to behavioral problems: an epidemiological study of euthanasia of dogs in Denmark, with a special focus on problems of aggression. The European Journal of Companion Animal Practice, 10: 143–50.Google Scholar
Mills, D. S. (2003). Medical paradigms for the study of problem behavior: a critical review. Applied Animal Behaviour Science, 81: 265–77.CrossRefGoogle Scholar
Mugford, R. A. (1984). Behavior problems in the dog. In Nutrition and Behavior in Dogs and Cats, ed. Anderson, R. S.. Oxford: Pergamon Press, pp. 207–15.Google Scholar
Nicholas, F. W. (2003). Quantitative variation. In Introduction to Veterinary Genetics, ed. Nicholas, F.W., Oxford: Blackwell Publishing, pp. 191–201.Google Scholar
Overall, K. L. (2000). Natural animal models of human psychiatric conditions: assessment of mechanism and validity. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 24: 727–76.CrossRefGoogle ScholarPubMed
Overall, K. L. (2010). Breed specific legislation: how data can spare breeds and reduce dog bites. The Veterinary Journal, 186: 277–9.CrossRefGoogle ScholarPubMed
Overall, K. L. & Dunham, A. E. (2002). Clinical features and outcome in dogs and cats with obsessive-compulsive disorder: 126 cases (1989–2000). Journal of the American Veterinary Medical Association, 221: 1445–52.CrossRefGoogle Scholar
Parker, H. G., Shearin, A. L. & Ostrander, E. A. (2010). Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annual Reviews of Genetics, 44: 309–36.CrossRefGoogle ScholarPubMed
Parker, H. G., vonHoldt, B. M., Quignon, P. et al. (2009). An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science, 325: 995–8.CrossRefGoogle ScholarPubMed
Pérez-Guisado, J., Lopez-Rodríguez, R. & Muñoz-Serrano, A. (2006). Heritability of dominant–aggressive behavior in English cocker spaniels. Applied Animal Behaviour Science, 100: 219–27.CrossRefGoogle Scholar
Pfannkuche, K., Summer, H., Li, O., Hescheler, J. & Dröge, P. (2009). The high mobility group protein HMGA2: a co-regulator of chromatin structure and pluripotency in stem cells? Stem Cell Reviews, 5: 224–30.CrossRefGoogle ScholarPubMed
Plomin, R. (1990). Nature and Nurture: An Introduction to Human Behavioral Genetics. Pacific Grove, CA: Brooks/Cole.Google Scholar
Podberscek, A. L & Serpell, J. A. (1997). Environmental influences on the expression of aggressive behavior in English cocker spaniels. Applied Animal Behaviour Science, 52: 215–27.CrossRefGoogle Scholar
Popova, N. K., Naumenko, V. S., Kozhemyakina, R. V. & Plyusnina, I. Z. (2010). Functional characteristics of serotonin 5-HT2A and 5-HT2C receptors in the brain and the expression of the 5-HT2A and 5-HT2C receptor genes in aggressive and non-aggressive rats. Neuroscience and Behavioral Physiology, 40: 357–61.CrossRefGoogle ScholarPubMed
Popova, N. K., Nikulina, E. M. & Kulikov, A. V. (1993). Genetic analysis of different kinds of aggressive behavior. Behavior Genetics, 23: 491–7.CrossRefGoogle ScholarPubMed
Psychiatric GWAS Consortium Steering Committee (2009). A framework for interpreting genome-wide association studies of psychiatric disorders. Molecular Psychiatry, 14: 10–17.
Rapoport, J. L, Ryland, D. H. & Kriete, M. (1992). Drug treatment of canine acral lick. An animal model of obsessive-compulsive disorder. Archives of General Psychiatry, 49, 517–21.CrossRefGoogle Scholar
Reisner, I. R. (1997). Assessment, management, and prognosis of canine dominance-related aggression. Veterinary Clinics of North America Small Animal Practice, 27: 479–95.CrossRefGoogle ScholarPubMed
Reisner, I. R., Mann, J. J., Stanley, M., Huang, Y. Y. & Houpt, K. A. (1996). Comparison of cerebrospinal fluid monoamine metabolite levels in dominant-aggressive and non-aggressive dogs. Brain Research, 714: 57–64.CrossRefGoogle ScholarPubMed
Reuterwall, C. & Ryman, N. (1973). An estimate of the magnitude of additive genetic variation of some mental characters in Alsatian dogs. Hereditas, 73: 277–84.Google ScholarPubMed
Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S. & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends in Cognitive Sciences, 16: 81–91.CrossRefGoogle ScholarPubMed
Robinson, G. E. (2004). Genomics. Beyond nature and nurture. Science, 304: 397–9.CrossRefGoogle ScholarPubMed
Ruefenacht, S., Gebhardt-Henrich, S., Miyake, T. & Gaillard, C. (2002). A behavior test on German shepherd dogs: heritability of seven different traits. Applied Animal Behavior Science, 79: 113–32.CrossRefGoogle Scholar
Saetre, P., Lindberg, J., Leonard, J. A. et al. (2004). From wild wolf to domestic dog: gene expression changes in the brain. Brain Research and Molecular Brain Research, 126: 198–206.CrossRefGoogle Scholar
Saetre, P., Strandberg, E., Sundgren, P. E. et al. (2006). The genetic contribution to canine personality. Genes Brain and Behavior, 5: 240–8.CrossRefGoogle ScholarPubMed
Salmon Hillbertz, N. H., Isaksson, M., Karlsson, E. K. et al. (2007). Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in ridgeback dogs. Nature Genetics, 39: 1318–20.CrossRefGoogle ScholarPubMed
Schwartz, S. (1993). Naltrexone-induced pruritus in a dog with tail-chasing behavior. Journal of the American Veterinary Medical Association, 202: 278–80.Google Scholar
Scott, J. P. & Fuller, J. L. (1965). Genetics and the Social Behavior of the Dog. Chicago, IL: The University of Chicago Press.Google Scholar
Smoller, J. W. & Tsuang, M. T. (1998). Panic and phobic anxiety: defining phenotypes for genetic studies. American Journal of Psychiatry, 155: 1152–62.CrossRefGoogle ScholarPubMed
Stamps, J. & Groothuis, T. G. G. (2010). The development of animal personality: relevance, concepts and perspectives. Biological Reviews, 85: 301–25.CrossRefGoogle Scholar
Stöger, R. (2008). The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays, 30, 156–66.CrossRefGoogle ScholarPubMed
Stutzmann, F., Vatin, V., Cauchi, S. et al. (2007). Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Human Molecular Genetics, 16: 1837–44.CrossRefGoogle ScholarPubMed
Sutter, N. B., Bustamante, C. D., Chase, K. et al. (2007). A single IGF1 allele is a major determinant of small size in dogs. Science, 316: 112–15.CrossRefGoogle ScholarPubMed
Sutter, N. B. & Ostrander, E. A. (2004). Dog star rising: the canine genetic system. Nature Reviews Genetics, 5: 900–10.CrossRefGoogle ScholarPubMed
Svartberg, K. (2002). Shyness-boldness predicts performance in working dogs. Applied Animal Behaviour Science, 79: 157–74.CrossRefGoogle Scholar
Svartberg, K. (2006). Breed-typical behavior in dogs – historical remnants or recent constructs? Applied Animal Behaviour Science, 96: 293–313.CrossRefGoogle Scholar
Svartberg, K. & Forkman, B. (2002). Personality traits in the domestic dog (Canis familiaris). Applied Animal Behaviour Science, 79: 133–155.CrossRefGoogle Scholar
Takeuchi, Y., Hashizume, C., Arata, S. et al. (2009a). An approach to canine behavioral genetics employing guide dogs for the blind. Animal Genetics, 40: 217–24.CrossRefGoogle ScholarPubMed
Takeuchi, Y., Kaneko, F., Hashizume, C. et al. (2009b). Association analysis between canine behavioral traits and genetic polymorphisms in the shiba inu breed. Animal Genetics, 40: 616–22.CrossRefGoogle ScholarPubMed
Thannickal, T. C., Moore, R. Y., Nienhuis, R. et al. (2000). Reduced number of hypocretin neurons in human narcolepsy. Neuron, 27: 469–74.CrossRefGoogle ScholarPubMed
Tiira, K., Escriou, C., Thomas, A. et al. (2011). Phenotypic and genetic characterization of tail chasing in bull terriers. Journal of Veterinary Behavior: Clinical Applied Research, 6: 83.CrossRefGoogle Scholar
Tiira, K., Hakosalo, O., Kareinen, L. et al. (2012). Environmental effects on compulsive tail chasing in dogs. PLoS One, 7: e41684.CrossRefGoogle ScholarPubMed
Tobi, E. W., Lumey, L. H., Talens, R. P. et al. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human Molecular Genetics, 18: 4046–53.CrossRefGoogle ScholarPubMed
Todd, J. A. (2006). Statistical false positive or true disease pathway? Nature Genetics, 38: 731–3.CrossRefGoogle ScholarPubMed
Trut, L., Oskina, I. & Kharlamova, A. (2009). Animal evolution during domestication: the domesticated fox as a model. Bioessays, 31: 349–60.CrossRefGoogle Scholar
Uhde, T. W., Malloy, L. C. & Slate, S. O. (1992). Fearful behavior, body size, and serum IGF-I levels in nervous and normal pointer dogs. Pharmacology, Biochemistry and Behavior, 43: 263–9.CrossRefGoogle ScholarPubMed
Våge, J., Wade, C., Biagi, T. et al. (2010a). Association of dopamine- and serotonin-related genes with canine aggression. Genes Brain and Behavior, 9: 372–8.CrossRefGoogle ScholarPubMed
Våge, J., Bønsdorff, T. B., Arnet, E., Tverdal, A. & Lingaas, F. (2010b). Differential gene expression in brain tissues of aggressive and non-aggressive dogs. BMC Veterinary Research, 6: 34.CrossRefGoogle ScholarPubMed
Van den Berg, L., Schilder, M. B., de Vries, H., Leegwater, P. A. & van Oost, B. A. (2006). Phenotyping of aggressive behavior in golden retriever dogs with a questionnaire. Behavior Genetics, 36: 882–902.CrossRefGoogle ScholarPubMed
Van den Berg, L., Schilder, M. B. H. & Knol, B. W. (2003). Behavior genetics of canine aggression: behavioral phenotyping of golden retrievers by means of an aggression test. Behavior Genetics, 33: 469–83.CrossRefGoogle ScholarPubMed
Vaysse, A., Ratnakumar, A., Derrien, T. et al. (2011). Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genetics, 7: e1002316.CrossRefGoogle ScholarPubMed
Vermeire, S., Audenaert, K., De Meester, R. et al. (2012). Serotonin 2A receptor, serotonin transporter and dopamine transporter alterations in dogs with compulsive behavior as a promising model for human obsessive-compulsive disorder. Psychiatry Research, 201: 78–87.Google ScholarPubMed
Vermeire, S. T., Audenaert, K. R., De Meester, R. H. et al. (2011). Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioral disorders. Research in Veterinary Science, 91: 465–72.CrossRefGoogle Scholar
Vonholdt, B. M., Pollinger, J. P., Lohmueller, K. E. et al. (2010). Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature, 464: 898–902.CrossRefGoogle ScholarPubMed
Waterland, R. A. & Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23: 5293–300.CrossRefGoogle ScholarPubMed
Waterland, R. A., Travisano, M., Tahiliani, K. G., Rached, M. T. & Mirza, S. (2008). Methyl donor supplementation prevents transgenerational amplification of obesity. International Journal of Obesity (Lond), 32: 1373–9.CrossRefGoogle ScholarPubMed
Willis, M. B. (1976). The German Shepherd Dog: Its History, Development and Genetics. Leicester, UK: K.&R. Books.Google Scholar
Wilson, B. J. & Wade, C. M. (2012). Empowering international canine inherited disorder management. Mammalian Genome, 23: 195–202.CrossRefGoogle ScholarPubMed
Wilson, D., Clark, A., Coleman, K. & Dearstyne, T. (1994). Shyness and boldness in humans and other animals. Trends in Ecology & Evolution, 9: 442–6.Google Scholar
Wilsson, E. & Sundgren, P.-E. (1997a). The use of a behavior test for the selection of dogs for service and breeding, II: heritability for tested parameters and effect of selection based on service dog characteristics. Applied Animal Behaviour Science, 54: 235–41.CrossRefGoogle Scholar
Wilsson, E. & Sundgren, P.-E. (1997b). The use of a behavior test for the selection of dogs for service and breeding, I: method of testing and evaluating test results in the adult dog, demands on different kinds of service dogs, sex and breed differences. Applied Animal Behaviour Science, 53: 279–95.CrossRefGoogle Scholar
Wright, H. F., Mills, D. S. & Pollux, P. M. (2012). Behavioral and physiological correlates of impulsivity in the domestic dog (Canis familiaris). Physiology & Behavior, 105: 676–82.CrossRefGoogle Scholar
Yeh, M. T., Coccaro, E. F. & Jacobson, K. C. (2010). Multivariate behavior genetic analyses of aggressive behavior subtypes. Behavior Genetics, 40: 603–61 CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×