Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-14T08:48:58.822Z Has data issue: false hasContentIssue false

4 - A History of Pig Domestication: New Ways of Exploring a Complex Process

from Part I - Evolution, Taxonomy, and Domestication

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albarella, U., Davis, S. J. M., Detry, C. & Rowley-Conwy, P. (2005). Pigs of the ‘Far West’: the biometry of Sus from archaeological sites in Portugal. Anthropozoologica 40(2): 2754.Google Scholar
Albarella, U., Dobney, K. & Rowley-Conwy, P. (2006). The domestication of the pig (Sus scrofa): new challenges and approaches. In Zeder, M. A., Bradley, D. G., Emshwiller, E. & Smith, B. D. (eds.), Documenting domestication: new genetic and archaeological paradigms. Berkeley, CA: University of California Press, pp. 209227.Google Scholar
Alexandri, P., Triantafyllidis, A., Papakostas, S., et al. (2012). The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. Journal of Biogeography 39: 713723.Google Scholar
Arbuckle, B. S. (2006). Experimental animal domestication and its application to the study of animal exploitation in prehistory. In Vigne, J.-D., Helmer, D. & Peters, J. (eds.), The first steps of animal domestication: new archaeological approaches. Proc. 9th ICAZ Conf. Oxford: Oxbow Books, pp. 1833.Google Scholar
Balasse, M., Evin, A., Tornero, C., et al. (2016). Wild, domestic and feral? Investigating the status of suids in the Romanian Gumelniţa (5th mil. cal BC) with biogeochemistry and geometric morphometrics. Journal of Anthropological Archaeology 42: 2736.Google Scholar
Bartosiewicz, L., Gillis, R., Girdland Flink, L., et al. (2013). Chalcolithic pig remains from Çamlibel Tarlasi, Central Anatolia. In De Cupere, B., Linseele, V. & Hamilton-Dyer, S. (eds.), Archaeozoology of the Near East X. Proceedings of the Tenth International Symposium on the Archaeozoology of South-Western Asia and Adjacent Areas. Leuven/Walpole, MA: Peeters, pp. 101120.Google Scholar
Boessneck, J. & Von Den Driesch, A. (1978). The significance of measuring animal bones from archaeological sites. In Meadow, R. H. & Zeder, M. A. (eds.), Approaches to faunal analysis in the Middle East. Bulletin No. 2. Cambridge, MA: Peabody Museum, Harvard University, pp. 2540.Google Scholar
Bookstein, F. L. (1991). Morphometric tools for land-mark data: geometry and biology. New York, NY: Cambridge University Press.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., et al. (2014). Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Molecular Ecology 23(16): 40894102.Google Scholar
Burger, P., Terral, J.-F., Ruas, M.-P., Ivorra, S. & Picq, S. (2011). Assessing past agrobiodiversity of Prunus avium L. (Rosaceae): a morphometric approach focussed on the stones from the archaeological site Hôtel-Dieu (16th century, Tours, France). Vegetation History and Archaeobotany 20(5): 447458.CrossRefGoogle Scholar
Caumul, R. & Polly, P. D. (2005). Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in marmots (Marmota, Rodentia). Evolution 59(11): 24602472.Google ScholarPubMed
Chen, B. Z., Zhang, J. Z. & Lu, H. Y. (1995). Discovery of rice phytoliths in the Neolithic site at Jiahu-of-Henan Province and its significance. Chinese Science Bulletin 40: 11861191.Google Scholar
Conolly, J., Colledge, S., Dobney, K., et al. (2011). Meta-analysis of zooarchaeological data from SW Asia and SE Europe provides insight into the origins and spread of animal husbandry. Journal of Archaeological Science 38(3): 538545.Google Scholar
Cornette, R., Herrel, A., Stoetzel, E., et al. (2015). Specific information levels in relation to fragmentation patterns of shrew mandibles: do fragments tell the same story? Journal of Archaeological Science 53: 323330.Google Scholar
Cucchi, T., Fujita, M. & Dobney, K. (2009). New insights into pig taxonomy, domestication and human dispersal in Island South East Asia: molar shape analysis of Sus remains from Niah Caves, Sarawak. International Journal of Osteoarchaeology 19(4): 508530.Google Scholar
Cucchi, T., Balasescu, A., Bem, C., Radu, V. & Tresset, A. (2011a). New insights into the invasive process of the eastern house mouse (Mus musculus musculus): evidence from the burnt houses of Chalcolithic Romania. The Holocene 21: 1195.Google Scholar
Cucchi, T., Hulme-Beaman, A., Yuan, J. & Dobney, K. (2011b). Early Neolithic pig domestication at Jiahu, Henan Province, China: clues from molar shape analyses using geometric morphometric approaches. Journal of Archaeological Science 38(1): 1122.Google Scholar
Cucchi, T., Kovács, Z. E., Berthon, R., et al. (2013). On the trail of Neolithic mice and men towards Transcaucasia: zooarchaeological clues from Nakhchivan (Azerbaijan). Biological Journal of the Linnean Society 108(4): 917928.Google Scholar
Cucchi, T., Barnett, R., Martínková, N., et al. (2014). The changing pace of insular life: 5000 years of microevolution in the orkney vole (Microtus arvalis orcadensis). Evolution 68(10): 28042820.Google Scholar
Cucchi, T., Dai, L., Balasse, M., et al. (2016). Social complexification and pig husbandry in Ancient China: a combined geometric morphometric and isotopic approach. PLoS ONE 11(7): e0158523.Google Scholar
Darwin, C. (1868). The variation of animals and plants under domestication. London: John Murray.Google Scholar
Davis, S. J. M. (1981). The effects of temperature change and domestication on the body size of late Pleistocene to Holocene mammals of Israel. Paleobiology 7(1): 101114.CrossRefGoogle Scholar
Dobney, K. & Larson, G. (2006). Genetics and animal domestication: new windows on an elusive process, Journal of Zoology 269(2): 261271.Google Scholar
Dobney, K., Cucchi, T. & Larson, G. (2008). The pigs of Island Southeast Asia and the Pacific: new evidence for taxonomic status and human-mediated dispersal. Asian Perspectives 44: 5974.Google Scholar
Duval, C., Lepetz, S., Horard-Herbin, M.-P. & Cucchi, T. (2015). Did Romanization impact Gallic pig morphology? New insights from molar geometric morphometrics. Journal of Archaeological Science 57: 345354.Google Scholar
Ervynck, A., Dobney, K., Hongo, H. & Meadow, R. (2001). Born free? New evidence for the status of Sus scrofa at Neolithic Çayönü Tepesi (Southeastern Anatolia, Turkey). Paléorient 27(2): 4773.Google Scholar
Evin, A., Cucchi, T., Cardini, A., et al. (2013). The long and winding road: identifying pig domestication through molar size and shape. Journal of Archaeological Science 40(1): 735743.Google Scholar
Evin, A., Girdland Flink, L., Krause-Kyora, B., et al. (2014). Exploring the complexity of domestication: a response to Rowley-Conwy and Zeder. World Archaeology 46: 825834. doi:10.1080/00438243.2014.953711CrossRefGoogle Scholar
Evin, A., Dobney, K., Schafberg, R., et al. (2015a). Phenotype and animal domestication: a study of dental variation between domestic, wild, captive, hybrid and insular Sus scrofa. BMC Evolutionary Biology 15(1): 6.Google Scholar
Evin, A., Flink, L.G., Balasescu, A., et al. (2015b). Unravelling the complexity of domestication: a case study using morphometrics and ancient DNA analyses of archaeological pigs from Romania. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1660): 20130616.Google Scholar
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14(9): R107.Google Scholar
Frantz, L. A. F., Schraiber, J. G., Madsen, O., et al. (2015). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics 47(10): 11411148.Google Scholar
Groenen, M. A. M., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424): 393398.Google Scholar
Groves, C. P. (1983). Pigs east of the Wallace Line. Journal de la Société des océanistes 39: 105119.Google Scholar
Hongo, H., Pearson, J., Öksüz, B. & Ilgezdi, G. (2009). The process of ungulate domestication at Çayönü, Southeastern Turkey: a multidisciplinary approach focusing on Bos sp. and Cervus elaphus. Anthropozoologica 44(1): 6378.Google Scholar
Jing, Y. & Flad, R. K. (2002). Pig domestication in ancient China. Antiquity 76: 724732.CrossRefGoogle Scholar
Krause-Kyora, B., Makarewicz, C., Evin, A., et al. (2013). Use of domesticated pigs by Mesolithic hunter-gatherers in northwestern Europe. Nature Communications 4: 2348.CrossRefGoogle ScholarPubMed
Kuhl, F. P. & Giardina, C. R. (1982). Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18: 236258.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science (New York, N.Y.) 307(5715): 16181621.Google Scholar
Larson, G., Albarella, U., Dobney, K., et al. (2007a). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the United States of America 104(39): 1527615281.Google Scholar
Larson, G., Cucchi, T., Fujita, M., et al. (2007b). Phylogeny and ancient DNA of Sus provides insights into neolithic expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences of the United States of America 104(12): 48344839.Google Scholar
Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. (2005). New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. Journal of Zoology 266: 2535. doi:10.1017/S0952836905006588Google Scholar
MacKinnon, M. (2001). High on the hog: linking zooarchaeological, literary, and artistic data for pig breeds in Roman Italy. American Journal of Archaeology 105(4): 649.Google Scholar
Mayer, J. J. & Brisbin, I. L. (1991). Wild pigs in the United States: their history, comparative morphology, and current status. Athens, GA and London: University of Georgia Press.Google Scholar
Meadow, R. H. (1989). Osteological evidence for the process of animal domestication. In Clutton-Brock, J. (ed.), The walking larder: patterns of domestication, pastoralism, and predation. London: Unwin Hyman, pp. 8090.Google Scholar
Megens, H. J. J., Crooijmans, R. P. M. A., Cristobal, M.S.S., et al. (2008). Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics Selection Evolution 40(1): 103128.Google Scholar
Meiri, S. & Dayan, T. (2003). On the validity of Bergmann's rule. Journal of Biogeography 30(3): 331351.Google Scholar
Meiri, M., Huchon, D., Bar-Oz, G., et al. (2013). Ancient DNA and population turnover in southern levantine pigs – signature of the sea peoples migration? Scientific Reports 3: 3035.Google Scholar
Nelson, S. M. (1998). Ancestors for the pigs: pigs in prehistory. Philadilphia, PA: MASCA Rese.Google Scholar
Newton, C., Lorre, C., Sauvage, C., Ivorra, S. & Terral, J. F. (2014). On the origins and spread of Olea europaea L. (olive) domestication: evidence for shape variation of olive stones at Ugarit, Late Bronze Age, Syria – a window on the Mediterranean Basin and on the westward diffusion of olive varieties. Vegetation History and Archaeobotany 23(5): 567575.CrossRefGoogle Scholar
O'Regan, H. J. & Kitchener, A. C. (2005). The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Review 35(3–4): 215230.CrossRefGoogle Scholar
Ottoni, C., Flink, L. G., Evin, A., et al. (2013). Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30(4): 824832.Google Scholar
Owen, J., Dobney, K., Evin, A., et al. (2014). The zooarchaeological application of quantifying cranial shape differences in wild boar and domestic pigs (Sus scrofa) using 3D geometric morphometrics. Journal of Archaeological Science 43: 159167.Google Scholar
Pagnoux, C., Bouby, L., Ivorra, S., et al. (2014). Inferring the agrobiodiversity of Vitis vinifera L. (grapevine) in ancient Greece by comparative shape analysis of archaeological and modern seeds. Vegetation History and Archaeobotany 24(1): 7584.CrossRefGoogle Scholar
Peters, J., Helmer, D., Von Den Driesch, A. & Segui, M. S. (1999). Early animal husbandry in the Northern Levant. Paléorient 25(2): 2748.Google Scholar
Pond, W. G. & Mersmann, H. J. (2001). Biology of the domestic pig. Ithaca, NY: Cornell University Press.Google Scholar
Price, E. O. (2002). Animal domestication and behavior. Wallingford and New York: CABI Publishing.Google Scholar
Rehfeldt, C., Henning, M. & Fiedler, I. (2008). Consequences of pig domestication for skeletal muscle growth and cellularity. Livestock Science 116: 3041.Google Scholar
Rohlf, J. F. & Marcus, L. F. L. F. (1993). A revolution in morphometrics. Trends in Ecology & Evolution 8(4): 129132.Google Scholar
Ros, J., Evin, A., Bouby, L. & Ruas, M.-P. (2014). Geometric morphometric analysis of grain shape and the identification of two-rowed barley (Hordeum vulgare subsp. distichum L.) in southern France. Journal of Archaeological Science 41: 568575.CrossRefGoogle Scholar
Rowley-Conwy, P. & Zeder, M. (2014). Mesolithic domestic pigs at Rosenhof – or wild boar? A critical re-appraisal of ancient DNA and geometric morphometrics. World Archaeology 46: 813824. doi:10.1080/00438243.2014.953704Google Scholar
Rowley-Conwy, P., Albarella, U. & Dobney, K. (2012). Distinguishing wild boar from domestic pigs in prehistory: a review of approaches and recent results. Journal of World Prehistory 25: 144. doi:10.1007/s10963-012-9055-0Google Scholar
Rubin, C.-J., Megens, H.-J., Barrio, A. M., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America 109(48): 1952919536.Google Scholar
Shelach, G. (2000). The earliest Neolithic cultures of northeast China: recent discoveries and new perspectives on the beginning of agriculture. Journal of World Prehistory 14(4): 363413.Google Scholar
Stoetzel, E., Denys, C., Michaux, J. & Renaud, S. (2013). Mus in Morocco: a Quaternary sequence of intraspecific evolution. Biological Journal of the Linnean Society 109(3): 599621.Google Scholar
Terral, J. F., Alonso, N., Capdevila, R. B., et al. (2004). Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. Journal of Biogeography 31(1): 6377.Google Scholar
Terral, J. F., Tabard, E., Bouby, L., et al. (2010). Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Annals of Botany 105(3): 443455.Google Scholar
Valenzuela-Lamas, S., Baylac, M., Cucchi, T. & Vigne, J. (2011). House mouse dispersal in Iron Age Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society 102: 483497.Google Scholar
Vigne, J.-D. (1998). Faciès culturels et sous-système technique de l'acquisition des ressources animales. Application au Néolithique ancien méditerranéen. In Rencontres Méridionales de Préhistoire Récente. Deuxième Session, Arles, 1996. Antibes: Editions APDCA, 2745.Google Scholar
Vigne, J.-D., Peters, J. & Helmer, D. (2005). The first steps of animal domestication: new archaeozoological techniques (Proceedings of the 9th ICAZ Conference). Oxford: Oxbow Books Limited.Google Scholar
Zeder, M. A. (2006). Central questions in the domestication of plants and animals. Evolutionary Anthropology: Issues, News, and Reviews 15(3): 105117.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×