Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T11:40:09.545Z Has data issue: false hasContentIssue false

19 - Skeletal muscle cell membrane electrical breakdown in electrical trauma

from Part IV - Biophysical mechanisms of cellular injury

Published online by Cambridge University Press:  08 April 2010

R. C. Lee
Affiliation:
University of Chicago
E. G. Cravalho
Affiliation:
Massachusetts General Hospital, Boston
J. F. Burke
Affiliation:
Professor of Surgery, Chief of Trauma Services, Massachusetts General Hospital, Boston
Get access

Summary

Introduction

Rhabdomyolysis is a characteristic clinical feature of electrical trauma. The release of large quantities of myoglobin into the intravascular space and the frequent localization of technetium-99 in skeletal muscle are common manifestations. It was this attribute of electrical trauma victims that caused several experienced clinicians to liken electrical trauma to the mechanical crush injury in its clinical manifestations. More than a decade later, the pathogenic mechanisms responsible for rhabdomyolysis following electrical trauma have yet to be specifically identified by clinical studies. While heat generation by the passage of electrical current (joule heating) has commonly been believed to be the only mediator of tissue injury, over the past few decades considerable evidence has accrued suggesting that other nonthermal mechanisms may be important.

In many cases of electrical trauma, particularly when the duration of electrical contact is short, heating is predictably insignificant in some regions in the current path where skeletal muscle damage is common (see Chapter 14). This information has been the motivation to postulate that in these instances cell membrane rupture due to the induced transmembrane potential may be the important mechanism of cellular damage. This chapter describes the rationale for the hypothesis and details the results of experiments designed to test its validity.

For a given applied electric field, the magnitude of the induced transmembrane potential imposed by the field depends on the cell size and orientation in the field.

Type
Chapter
Information
Electrical Trauma
The Pathophysiology, Manifestations and Clinical Management
, pp. 401 - 425
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×