Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-14T17:48:33.116Z Has data issue: false hasContentIssue false

13 - The physiology of escape

from Part III - Related behaviors and other factors influencing escape

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 343 - 359
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & Mcgregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience Biobehavioral Reviews, 29, 11231144.Google Scholar
Bard, P. (1928). A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. American Journal Physiology, 84, 490410.Google Scholar
Beijamini, V. & Andreatini, R. (2003). Effects of Hypericum perforatum and paroxetine in the mouse defense test battery. Pharmacology Biochemistry and Behavior, 74, 10151024.Google Scholar
Bittencourt, A. S., Carobrez, A. P., Zamprogno, L. P., Tufik, S. & Schenberg, L. C. (2004). Organization of single components of defensive behaviors within distinct columns of periaqueductal gray matter of the rat: Role of N-methyl-D-aspartic acid glutamate receptors. Neuroscience, 125, 7189.Google Scholar
Blanchard, D. C. (1997). Stimulus, environmental and pharmacological control of defensive behaviors. In Bouton, M. & Fanselow, M. S. (eds.) Learning, Motivation and Cognition. The Functional Behaviorism of Robert C. Bolles. Washington DC: American Psychological Association.Google Scholar
Blanchard, R. J. & Blanchard, D. C. (1989). Antipredator defensive behaviors in a visible burrow system. Journal of Comparative Psychology, 103, 7082.Google Scholar
Blanchard, D. C. & Blanchard, R. J. (2008). Defensive behaviors, fear and anxiety. In Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D. J. (eds.) Handbook of Anxiety and Fear. Amsterdam: Elsevier Academic Press.Google Scholar
Blanchard, R. J., Taukulis, H. K., Rodgers, R. J., Magee, L. K. & Blanchard, D. C. (1993). Yohimbine potentiates active defensive responses to threatening stimuli in Swiss-Webster mice. Pharmacology Biochemistry and Behavior, 44, 673681.Google Scholar
Blanchard, R. J., Kaawaloa, J. N., Hebert, M. A. & Blanchard, D. C. (1999). Cocaine produces panic-like flight responses in mice in the mouse defense test battery. Pharmacology Biochemistry and Behavior, 64, 523528.Google Scholar
Blanchard, D. C., Griebel, G. & Blanchard, R. J. (2001). Mouse defensive behaviors: Pharmacological and behavioral assays for anxiety and panic. Neuroscience and Biobehavioral Reviews, 25, 205218.Google Scholar
Blanchard, D. C., Griebel, G. & Blanchard, R. J. (2003a). The Mouse Defense Test Battery: Pharmacological and behavioral assays for anxiety and panic. European Journal of Pharmacology, 463, 97116.Google Scholar
Blanchard, D. C., Markham, C., Yang, M. et al. (2003b). Failure to produce conditioning with low-dose trimethylthiazoline or cat feces as unconditioned stimuli. Behavioral Neuroscience, 117, 360368.Google Scholar
Blanchard, D. C., Litvin, Y., Pentkowski, N. S. & Blanchard, R. J. (2009). Defense and aggression. In Berntson, G. G. & Cacioppo, J. T. (eds.) Handbook of Neuroscience for the Behavioral Sciences. Hoboken, NJ: John Wiley & Sons.Google Scholar
Blanchard, D. C., Griebel, G., Pobbe, R. & Blanchard, R. J. (2011). Risk assessment as an evolved threat detection and analysis process. Neuroscience Biobehavioral Reviews, 35, 991998.Google Scholar
Borelli, K. G., Ferreira-Netto, C., Coimbra, N. C. & Brandao, M. L. (2005). Fos-like immunoreactivity in the brain associated with freezing or escape induced by inhibition of either glutamic acid decarboxylase or GABAA receptors in the dorsal periaqueductal gray. Brain Research, 1051, 100111.Google Scholar
Bourin, M., Baker, G. B. & Bradwejn, J. (1998). Neurobiology of panic disorder. Journal of Psychosomatic Research, 44, 163180.Google Scholar
Bovier, P., Broekkamp, C. L. & Lloyd, K. G. (1982). Enhancing GABAergic transmission reverses the aversive state in rats induced by electrical stimulation of the periaqueductal grey region. Brain Research, 248, 313320.Google Scholar
Brandao, M. L., De Aguiar, J. C. & Graeff, F. G. (1982). GABA mediation of the anti-aversive action of minor tranquilizers. Pharmacology Biochemistry and Behavior, 16, 397402.Google Scholar
Cannon, W. B. (1915). Bodily Changes in Pain, Hunger, Fear and Rage. New York, NY: D. Appleton & Company.Google Scholar
Cannon, W. B. (1927). The James-Lange theory of emotion: A critical examination and an alternative theory. American Journal of Psychology, 39, 106124.Google Scholar
Canteras, N. S. (2002). The medial hypothalamic defensive system: hodological organization and functional implications. Pharmacology Biochemistry and Behavior, 71, 481491.Google Scholar
Canteras, N. S. & Graeff, F. G. (2014). Executive and modulatory neural circuits of defensive reactions: Implications for panic disorder. Neuroscience Biobehavioral Reviews, 46, 352364.Google Scholar
Canteras, N. S., Kroon, J. A., Do-Monte, F. H., Pavesi, E. & Carobrez, A. P. (2008). Sensing danger through the olfactory system: The role of the hypothalamic dorsal premammillary nucleus. Neuroscience Biobehavioral Review, 32, 12281235.Google Scholar
Cardoso, S. H., Coimbra, N. C. & Brandao, M. L. (1994). Defensive reactions evoked by activation of NMDA receptors in distinct sites of the inferior colliculus. Behavioral Brain Research, 63, 1724.Google Scholar
Carrasco, G. A. & Van De Kar, L. D. (2003). Neuroendocrine pharmacology of stress. European Journal of Pharmacology, 463, 235272.Google Scholar
Cezario, A. F., Ribeiro-Barbosa, E. R., Baldo, M. V. & Canteras, N. S. (2008). Hypothalamic sites responding to predator threats: The role of the dorsal premammillary nucleus in unconditioned and conditioned antipredatory defensive behavior. European Journal of Neuroscience, 28, 10031015.Google Scholar
Coimbra, N. C. & Brandao, M. L. (1993). GABAergic nigro-collicular pathways modulate the defensive behaviour elicited by midbrain tectum stimulation. Behavioral Brain Research, 59, 131139.Google Scholar
Cox, B. J., Norton, G. R., Swinson, R. P. & Endler, N. S. (1990). Substance abuse and panic-related anxiety: A critical review. Behavioral Research and Therapy, 28, 385393.Google Scholar
De Bortoli, V. C., Nogueira, R. L. & Zangrossi, H. Jr. (2006). Effects of fluoxetine and buspirone on the panicolytic-like response induced by the activation of 5-HT1A and 5-HT2A receptors in the rat dorsal periaqueductal gray. Psychopharmacology, 183, 422428.Google Scholar
De Paula Soares, V. & Zangrossi, H. Jr. (2004). Involvement of 5-HT1A and 5-HT2 receptors of the dorsal periaqueductal gray in the regulation of the defensive behaviors generated by the elevated T-maze. Brain Research Bulletin, 64, 181188.Google Scholar
Deakin, J. F. & Graeff, F. G. (1991). 5-HT and mechanisms of defence. Journal of Psychopharmacology, 5, 305315.Google Scholar
Diamond, D. M., Bennett, M. C., Fleshner, M. & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2, 421430.Google Scholar
Dielenberg, R. A., Hunt, G. E. & Mcgregor, I. S. (2001). “When a rat smells a cat”: The distribution of Fos immunoreactivity in rat brain following exposure to a predatory odor. Neuroscience, 104, 10851097.Google Scholar
Du Vigneaud, V., Ressler, C. & Trippett, S. (1953). The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. Journal of Biological Chemistry, 205, 949957.Google Scholar
Ferreira-Netto, C., Borelli, K. G. & Brandao, M. L. (2005). Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats. Brain Research, 1031, 151163.Google Scholar
Fokkema, D. S. & Koolhaas, J. M. (1985). Acute and conditioned blood pressure changes in relation to social and psychosocial stimuli in rats. Physiology and Behavior, 34, 3338.Google Scholar
Graeff, F. G. (1990). Brain defence systems and anxiety. In Roth, M., Burrow, G. D. & Noyes, R. (eds.) Handbook of Anxiety, Vol. 3, 307357. Amsterdam: Elsevier.Google Scholar
Graeff, F. G. (1997). Serotonergic systems. Psychiatric Clinics of North America, 20, 723739.Google Scholar
Graeff, F. G., Viana, M. B. & Tomaz, C. (1993). The elevated T maze: A new experimental model of anxiety and memory: effect of diazepam. Brazilian Journal of Medical and Biological Research, 26, 6770.Google Scholar
Griebel, G., Blanchard, D. C., Agnes, R. S. & Blanchard, R. J. (1995a). Differential modulation of antipredator defensive behavior in Swiss–Webster mice following acute or chronic administration of imipramine and fluoxetine. Psychopharmacology, 120, 5766.Google Scholar
Griebel, G., Blanchard, D. C., Jung, A. et al. (1995b). Further evidence that the mouse defense test battery is useful for screening anxiolytic and panicolytic drugs: Effects of acute and chronic treatment with alprazolam. Neuropharmacology, 34, 16251633.Google Scholar
Griebel, G., Blanchard, D. C. & Blanchard, R. J. (1996). Predator-elicited flight responses in Swiss–Webster mice: An experimental model of panic attacks. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 20, 185205.Google Scholar
Gross, C. T. & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13, 651658.Google Scholar
Hahn, J. D. & Swanson, L. W. (2012). Connections of the lateral hypothalamic area juxtadorsomedial region in the male rat. Journal of Comparative Neurology, 520, 18311890.Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K. & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 12011213.Google Scholar
Hogg, S., Michan, L. & Jessa, M. (2006). Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology, 51, 141145.Google Scholar
Huhman, K. L., Bunnell, B. N., Mougey, E. H. & Meyerhoff, J. L. (1990). Effects of social conflict on POMC-derived peptides and glucocorticoids in male golden hamsters. Physiology and Behavior, 47, 949956.Google Scholar
Joels, M. & De Kloet, E. R. (1992). Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences, 15, 2530.Google Scholar
Johnson, M. R., Lydiard, R. B. & Ballenger, J. C. (1995). Panic disorder. Pathophysiology and drug treatment. Drugs, 49, 328344.Google Scholar
Johnson, P. L., Molosh, A., Fitz, S. D., Truitt, W. A. & Shekhar, A. (2012). Orexin, stress, and anxiety/panic states. Progress in Brain Research, 198, 133161.Google Scholar
Karatsoreos, I. N. & McEwen, B. S. (2013). Resilience and vulnerability: A neurobiological perspective. F1000 Prime Reports, 5, 13.Google Scholar
Klein, D. F. (1993). False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Archives of General Psychiatry, 50, 306317.Google Scholar
Litvin, Y. & Pfaff, D. W. (2013). The involvement of oxytocin and vasopressin in fear and anxiety. In Choleris, E., Pfaff, D. W. & Kavaliers, M. (eds.) Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior. Cambridge: Cambridge University Press.Google Scholar
Litvin, Y., Pentkowski, N. S., Pobbe, R. L., Blanchard, D. C. & Blanchard, R. J. (2008). Unconditioned models of fear and anxiety. In Blanchard, R. J., Blanchard, D. C., Griebel, G. & Nutt, D. J. (eds.) Handbook of Anxiety and Fear. Amsterdam: Elsevier Academic Press.Google Scholar
Lowry, C. A., Johnson, P. L., Hay-Schmidt, A., Mikkelsen, J. & Shekhar, A. (2005). Modulation of anxiety circuits by serotonergic systems. Stress, 8, 233246.Google Scholar
Lupien, S. J. & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 127.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.Google Scholar
McGaugh, J. L. & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12, 205210.Google Scholar
Melo, L. L., Cardoso, S. H. & Brandao, M. L. (1992). Antiaversive action of benzodiazepines on escape behavior induced by electrical stimulation of the inferior colliculus. Physiology and Behavior, 51, 557562.Google Scholar
Micheau, J., Destrade, C. & Soumireu-Mourat, B. (1984). Time-dependent effects of posttraining intrahippocampal injections of corticosterone on retention of appetitive learning tasks in mice. European Journal of Pharmacology, 106, 3946.Google Scholar
Mochcovitch, M. D. & Nardi, A. E. (2010). Selective serotonin-reuptake inhibitors in the treatment of panic disorder: A systematic review of placebo-controlled studies. Expert Review of Neurotherapeutics, 10, 12851293.Google Scholar
Motta, S. C., Goto, M., Gouveia, F. V. et al. (2009). Dissecting the brain’s fear system reveals the hypothalamus is critical for responding in subordinate conspecific intruders. Proceedings of the National Academy of Sciences, 106, 48704875.Google Scholar
O’Keefe, J. & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Oxford University Press.Google Scholar
Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y. & Blanchard, R. J. (2006). Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. European Journal of Neuroscience, 23, 21852196.Google Scholar
Petrovich, G. D., Canteras, N. S. & Swanson, L. W. (2001). Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Research Reviews, 38, 247289.Google Scholar
Pobbe, R. L. & Zangrossi, H. Jr. (2005). 5-HT(1A) and 5-HT(2A) receptors in the rat dorsal periaqueductal gray mediate the antipanic-like effect induced by the stimulation of serotonergic neurons in the dorsal raphe nucleus. Psychopharmacology, 183, 314321.Google Scholar
Pobbe, R. L., Zangrossi, H. Jr., Blanchard, D. C. & Blanchard, R. J. (2011). Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors. European Neuropsychopharmacology, 21, 306315.Google Scholar
Quintino-Dos-Santos, J. W., Muller, C. J., Bernabe, C. S. et al. (2014). Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats. PLoS One, 9, e90726.Google Scholar
Risold, P. Y. & Swanson, L. W. (1995). Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements. Proceedings of the National Academy of Sciences U S A, 92, 38983902.Google Scholar
Romero, L. M. (2004). Physiological stress in ecology: Lessons from biomedical research. Trends in Ecology and Evolution, 19, 249255.Google Scholar
Roncon, C. M., Biesdorf, C., Coimbra, N. C. et al. (2013). Cooperative regulation of anxiety and panic-related defensive behaviors in the rat periaqueductal grey matter by 5-HT1A and mu-receptors. Journal of Psychopharmacology, 27, 11411148.Google Scholar
Roozendaal, B., Van Der Zee, E. A., Hensbroek, R. A. et al. (1997). Muscarinic acetylcholine receptor immunoreactivity in the amygdala–II. Fear-induced plasticity. Neuroscience, 76, 7583.Google Scholar
Roozendaal, B., Hahn, E. L., Nathan, S. V., De Quervain, D. J. & Mcgaugh, J. L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. Journal of Neuroscience, 24, 81618169.Google Scholar
Rosen, J. B. (2004). The neurobiology of conditioned and unconditioned fear: A neurobehavioral system analysis of the amygdala. Behavioral and Cognitive Neuroscience Reviews, 3, 2341.Google Scholar
Spiess, J., Rivier, J., Rivier, C. & Vale, W. (1981). Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proceedings of the National Academy of Sciences, 78, 65176521.Google Scholar
Staples, L. G., McGregor, I. S., Apfelbach, R. & Hunt, G. E. (2008). Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats. Neuroscience, 151, 937947.Google Scholar
Thaker, M., Vanak, A. T., Lima, S. L. & Hews, D. K. (2010). Stress and aversive learning in a wild vertebrate: The role of corticosterone in mediating escape from a novel stressor. American Naturalist, 175, 5060.Google Scholar
Tuppy, H. (1953). The amino-acid sequence in oxytocin. Biochimica et Biophysica Acta, 11, 449450.Google Scholar
Turner, R. A., Pierce, J. G. & Du, V. V. (1951). The purification and the amino acid content of vasopressin preparations. Journal of Biological Chemistry, 191, 2128.Google Scholar
Vale, W., Spiess, J., Rivier, C. & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 13941397.Google Scholar
Viana, M. B., Tomaz, C. & Graeff, F. G. (1994). The elevated T-maze: a new animal model of anxiety and memory. Pharmacology Biochemistry & Behavior, 49, 549554.Google Scholar
Viken, R. J., Knutson, J. F. & Johnson, A. K. (1989). Effects of behavior and social condition on cardiovascular response to footshock stress. Physiology and Behavior, 46, 961966.Google Scholar
Yang, M., Farrokhi, C., Vasconcellos, A., Blanchard, R. J. & Blanchard, D. C. (2006). Central infusion of Ovine CRF (oCRF) potentiates defensive behaviors in CD-1 mice in the Mouse Defense Test Battery (MDTB). Behavioral Brain Research, 171, 18.Google Scholar
Zangrossi, H. Jr. & Graeff, F. G.(2014). Serotonin in anxiety and panic: Contributions of the elevated T-maze. Neuroscience Biobehavioral Reviews, 46, 397406.Google Scholar
Zanoveli, J. M., Nogueira, R. L. & Zangrossi, H. Jr. (2003). Serotonin in the dorsal periaqueductal gray modulates inhibitory avoidance and one-way escape behaviors in the elevated T-maze. European Journal of Pharmacology, 473, 153161.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×