Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-13T14:12:33.397Z Has data issue: false hasContentIssue false

Part IV - Senescence in Microbes

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ackermann, M., Stearns, S. C. & Jenal, U. (2003). Senescence in a bacterium with asymmetric division. Science, 300, 1920.CrossRefGoogle Scholar
Baidyaroy, D., Hausner, G, Hafez, M., et al. (2011). A 971-bp insertion in the rns gene is associated with mitochondrial hypovirulence in a strain of Cryphonectria parasitica isolated from nature. Fungal Genetics and Biology, 48, 775–83.CrossRefGoogle Scholar
Barnes, B. V. (1975). Phenotypic variation of trembling aspen of western North America. Forest Science, 21, 319–28.Google Scholar
Bastiaans, E., Aanen, D. K., Debets, A. J. M., et al. (2014). Regular bottlenecks and restrictions to somatic fusion prevent the accumulation of mitochondrial defects in Neurospora. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 369, 1646.CrossRefGoogle ScholarPubMed
Begel, O., Boulay, J., Albert, B., et al. (1999). Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Molecular and Cellular Biology, 19, 4093–100.CrossRefGoogle ScholarPubMed
Belcour, L. & Vierny, C. (1986). Variable DNA splicing sites of a mitochondrial intron: relationship to the senescence process in Podospora. EMBO Journal, 5, 609–14.CrossRefGoogle Scholar
Berrigan, D., Perkins, S. N., Haines, D. C. & Hursting, S. D. (2002). Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis, 23, 817–22.CrossRefGoogle ScholarPubMed
Böckelmann, B. & Esser, K. (1986). Plasmids of mitochondrial origin in senescent mycelia of Podospora curvicolla. Current Genetics, 10, 803–10.CrossRefGoogle ScholarPubMed
Borghouts, C., Scheckhuber, C. Q., Stephan, O. & Osiewacz, H. D. (2002). Copper homeostasis and ageing in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. International Journal of Biochemistry and Cell Biology, 34, 1355–71.CrossRefGoogle ScholarPubMed
Buffenstein, R. (2005). The naked mole-rat: a new long-living model for human ageing research. The Journals of Gerontology Series A, 60, 1369–77.CrossRefGoogle Scholar
Caten, C. E. (1972). Vegetative incompatibility and cytoplasmic infection in fungi. Journal of General Microbiology, 72, 221–9.CrossRefGoogle ScholarPubMed
Chiang, C. C., Kennell, J. C., Wanner, L. A. & Lambowitz, A. M. (1994). A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Molecular and Cellular Biology, 14, 6419–32.Google ScholarPubMed
Chiang, C. C. & Lambowitz, A. M. (1997). The Mauriceville retroplasmid reverse transcriptase initiates cDNA synthesis de novo at the 3’ end of tRNAs. Molecular and Cellular Biology, 17, 4526–35.CrossRefGoogle ScholarPubMed
Court, D. A. & Bertrand, H. (1992). Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Current Genetics, 22, 385–97.CrossRefGoogle ScholarPubMed
Court, D. A., Griffiths, A. J. F., Kraus, S. R., et al. (1991). A new senescence-inducing mitochondrial linear plasmid in field isolated Neurospora crassa strains from India. Current Genetics, 19, 129–37.CrossRefGoogle ScholarPubMed
Debets, A. J. M., Yang, X. & Griffiths, A. J. F. (1994). Vegetative incompatibility in Neurospora: its effect on mitochondrial plasmids and senescence in natural populations. Current Genetics, 26, 113–19.CrossRefGoogle ScholarPubMed
Debets, A. J. M., Yang, X. & Griffiths, A. J. F. (1995). The dynamics of mitochondrial plasmids in a Hawaiian population of Neurospora intermedia. Current Genetics, 29, 44–9.CrossRefGoogle Scholar
Dufour, E., Boulay, J., Rincheval, V. & Sainsard-Chanet, A. (2000). A causal link between respiration and senescence in Podospora anserina. Proceedings of the National Academy of Sciences of the United States Of America, 97, 4138–43.Google ScholarPubMed
Francou, F. (1981). Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immerses. Molecular and General Genetics, 18, 440–4.Google Scholar
Gagny, B., Rossignol, M. & Silar, P. (1997). Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: relationship between cytosolic translation and longevity in filamentous fungi. Fungal Genetics and Biology, 22.CrossRefGoogle ScholarPubMed
Geydan, T. D., Debets, A. J., Verkley, G. J. & van Diepeningen, A. D. (2012). Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Molecular Ecology, 21, 2816–28.CrossRefGoogle ScholarPubMed
Ghabrial, S. A. & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Reviews of Phytopathology, 47, 353–84.CrossRefGoogle ScholarPubMed
Grant, M. C., Mitton, J. B. & Linhart, Y. B. (1992). Even larger organisms. Nature, 360, 216.CrossRefGoogle Scholar
Griffiths, A. J. F. & Bertrand, H. (1984). Unstable cytoplasms in Hawaiian strains of Neurospora intermedia. Current Genetics, 8, 387–98.CrossRefGoogle ScholarPubMed
Griffiths, A. J. (1995). Natural plasmids of filamentous fungi. Microbiological Reviews, 59, 673–85.CrossRefGoogle ScholarPubMed
Grime, J. P. & Pierce, S. (2012). The Evolutionary Strategies that Shape Ecosystems (Chichester, UK: Wiley-Blackwell).CrossRefGoogle Scholar
Guarente, L. & Picard, F. (2005). Calorie restriction: the SIR2 connection. Cell, 120, 473–82.CrossRefGoogle ScholarPubMed
Harman, D. (1972). A biologic clock: the mitochondria? Journal of the American Geriatrics Society, 20, 145–7.CrossRefGoogle ScholarPubMed
Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays, 10, 125–7.CrossRefGoogle ScholarPubMed
Hursting, S. D., Lavigne, J. A., Berrigan, D., et al. (2003). Calorie restriction, ageing, and cancer prevention: mechanisms of action and applicability to humans. Annual Review of Medicine, 54, 131–52.CrossRefGoogle ScholarPubMed
Ingram, D. K., Anson, R. M., de Cabo, R., et al. (2004). Development of calorie restriction mimetics as a prolongevity strategy. Annals of the New York Academy of Sciences, 1019, 412–23.CrossRefGoogle ScholarPubMed
Jamet-Vierny, C., Begel, O. & Belcour, L. (1980). Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell, 21, 189–94.CrossRefGoogle ScholarPubMed
Kudryavtseva, O. A., Kamzolkina, O. V., Mazheika, I. S. & Sellem, C. (2012). A mitochondrial respiratory mutant of Podospora anserina obtained by short-term submerged cultivation of senescent mycelium. Microbiology, 81, 651–62.CrossRefGoogle Scholar
Kirkwood, T. B. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Koll, F., Belcour, L. & Vierny, C. (1985). A 1,100-bp sequence of mitochondrial DNA is involved in the senescence process in Podospora: study of senescent and mutant cultures. Plasmid, 14, 106–17.CrossRefGoogle Scholar
Kück, U., Kappelhoff, B. & Esser, K. (1985). Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Current Genetics, 10, 5967.CrossRefGoogle Scholar
Lane, M. A., Black, A., Handy, A., et al. (2001). Caloric restriction in primates. Annals of the New York Academy of Sciences, 928, 287–95.CrossRefGoogle ScholarPubMed
Lazarus, C. M., Earl, A. J., Turner, G. & Küntzel, H. (1980). Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited ‘ragged’ mutant of Aspergillus amstelodami. European Journal of Biochemistry, 106, 633–41.CrossRefGoogle ScholarPubMed
Lazarus, C. M. & Kuntzel, H. (1981). Anatomy of amplified mitochondrial DNA in ‘ragged’ mutants of Aspergillus amstelodami: excision points within protein genes and a common 215 bp segment containing a possible origin of replication. Current Genetics, 4, 99107.CrossRefGoogle Scholar
Leslie, J. F. & Summerell, B. A. (2006). The Fusarium Laboratory Manual (Ames, IA: Blackwell Professional).CrossRefGoogle Scholar
Lin, S. J., Kaeberlein, M., Andalis, A. A., et al. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418, 344–8.CrossRefGoogle ScholarPubMed
Lorin, S., Dufour, E., Boulay, J., et al. (2001). Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Molecular Microbiology, 42, 1259–67.CrossRefGoogle Scholar
Maas, M. F. M., De Boer, H. J., Debets, A. J. M. & Hoekstra, R. F. (2004). The mitochondrial plasmid pAL2-1 reduces calorie restriction mediated life span extension in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 41, 865–71.CrossRefGoogle ScholarPubMed
Maas, M. F. M., Krause, F., Dencher, N. A. & Sainsard-Chanet, A. (2009). Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. Journal of Molecular Biology, 387, 259–69.CrossRefGoogle Scholar
Maas, M. F. M., Sellem, C. H., Krause, F., et al. (2010). Molecular gene therapy: overexpression of the alternative NADH dehydrogenase NDI1 restores overall physiology in a fungal model of respiratory complex I deficiency. Journal of Molecular Biology, 399, 3140.CrossRefGoogle Scholar
Maas, M. F. M., Van Mourik, A., Hoekstra, R. F. & Debets, A. J. M. (2005). Polymorphism for pKALILO based senescence in Hawaiian populations of Neurospora intermedia and Neurospora tetrasperma. Fungal Genetics and Biology, 42, 224–32.CrossRefGoogle ScholarPubMed
Maheshwari, R. & Navaraj, A. (2008). Senescence in fungi: the view from Neurospora. FEMS Microbiology Letters, 280, 135–43.CrossRefGoogle ScholarPubMed
Marcinko-Kuehn, M, Yang, X, Debets, F, et al. (1994). A kalilo-like linear plasmid in Louisiana field isolates of the pseudohomothallic fungus Neurospora tetrasperma. Current Genetics, 26, 336–43.CrossRefGoogle ScholarPubMed
Marcou, D. (1961). Notion de longevite et nature cytoplasmique du determinant de senescence chez quelques champignons. Annales des Sciences Naturelles. Botanique, 11, 653764.Google Scholar
McCay, C. M., Cromwell, M. F. & Maynard, L. A. (1935). The effect of retarded growth upon the length of the life span and the ultimate body size. Journal of Nutrition, 10, 6379.CrossRefGoogle Scholar
Medawar, B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Merry, B. J. (2002). Molecular mechanisms linking calorie restriction and longevity. International Journal of Biochemistry and Cell Biology, 34, 1340–54.CrossRefGoogle ScholarPubMed
Miwa, S. & Brand, M. D. (2003). Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochemical Society Transactions, 31, 1300–1.CrossRefGoogle ScholarPubMed
Munkres, K. & Rana, R. S. (1978a). Ageing of Neurospora crassa: VII. Accumulation of fluorescent pigment (lipofuscin), and inhibition of the accumulation by nordihydroguairetic acid. Mechanisms in Ageing and Development, 7, 399406.CrossRefGoogle ScholarPubMed
Munkres, K. & Rana, R. S. (1978b). Antioxidants prolong life span and inhibit the senescence-dependent accumulation of fluorescent pigment (lipofuscin) in clones of Podospora anserina. Mechanisms in Ageing and Development, 7, 407–15.CrossRefGoogle ScholarPubMed
Osiewacz, H. D. & Esser, K. (1980). The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Current Genetics, 8, 299305.CrossRefGoogle Scholar
Nuss, D. L. (2005). Hypovirulence: mycoviruses at the fungal-plant interface. Nature Reviews Microbiology, 3, 632–42.CrossRefGoogle ScholarPubMed
Osiewacz, H. D., Hermanns, J., Marcou, D., et al. (1989). Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutation Research, 219, 915.CrossRefGoogle Scholar
Osiewacz, H. D. & Nuber, U. (1996). GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence. Molecular and General Genetics, 252, 115–24.CrossRefGoogle ScholarPubMed
Partridge, L. & Barton, N. H. (1993). Optimality, mutation and the evolution of ageing. Nature, 362, 305–11.CrossRefGoogle ScholarPubMed
Plohnke, N., Hamann, A., Poetsch, A., et al. (2014). Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms. Experimental Gerontology, 56, 1325.CrossRefGoogle ScholarPubMed
Reznick, D., Ghalambor, C. & Nunney, L. (2002). The evolution of senescence in fish. Mechanisms of Ageing and Development, 123, 773–89.CrossRefGoogle ScholarPubMed
Rieck, A., Griffiths, A. J. F. & Bertrand, H. (1982). Mitochondrial variants of Neurospora intermedia from nature. Canadian Journal of Genetics and Cytology, 24, 741–59.CrossRefGoogle ScholarPubMed
Rizet, G. (1953). Sur la longévité des souches de anserina. Comptes Rendues de l’Academie des Sciences (Paris), 237, 1106–9.Google Scholar
Rizet, G. (1957). Les modifications qui conduisent à la sénescence chez Podospora anserina sont-elles de nature cytoplasmique. Comptes Rendues de l’Academie des Sciences (Paris), 244, 663–5.Google Scholar
Schulte, E., Kück, U. & Esser, K. (1988). Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Molecular and General Genetics, 211, 342–9.CrossRefGoogle Scholar
Sellem, C. H., Bovier, E., Lorin, S. & Sainsard-Chanet, A. (2009). Mutations in two zinc-cluster proteins activate alternative respiratory and gluconeogenic pathways and restore senescence in long-lived respiratory mutants of Podospora anserina. Genetics, 182, 6978.CrossRefGoogle ScholarPubMed
Sellem, C. H., Lecellier, G. & Belcour, L. (1993). Transposition of a group II intron. Nature, 366, 176–8.CrossRefGoogle ScholarPubMed
Sellem, C. H., Marsy, S., Boivin, A., et al. (2007). A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 44, 648–58.CrossRefGoogle ScholarPubMed
Smith, M. L., Bruhn, J. N. & Anderson, J. B. (1992). The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 356, 428–31.CrossRefGoogle Scholar
Sohal, R. S. & Weindruch, R. (1996). Oxidative stress, caloric restriction, and ageing. Science, 273, 5963.CrossRefGoogle Scholar
Stewart, E. J., Madden, R., Pail, G. & Taddei, F. (2005). Ageing and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.CrossRefGoogle Scholar
Tudzynski, P. & Esser, K. (1979). Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Molecular and General Genetics, 173, 7184.CrossRefGoogle ScholarPubMed
Tudzynski, P., Stahl, U. & Esser, K. (1980). Transformation to senescence with plasmid like DNA in the ascomycete Podospora anserine. Current Genetics, 2, 181–4.CrossRefGoogle Scholar
Vainio, E. J., Müller, M. M., Korhonen, K., et al. (2014). Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME Journal, doi: 10.1038/ismej.2014.145.CrossRefGoogle Scholar
van der Gaag, M., Debets, A. J. M., Osiewacz, H. D. & Hoekstra, R. F. (1998). The dynamics of pAL2-1 homologous linear plasmids in Podospora anserina. Molecular and General Genetics, 258, 521–9.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Debets, A. J. M. & Hoekstra, R. F. (2006). Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genetics and Biology, 43, 446–52.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Debets, A. J. M., Slakhorst, S. M. & Hoekstra, R. F. (2008a). Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence. Biotechnology Journal, 3, 791802.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Goedbloed, D. J., Slakhorst, S. M., et al. (2010a). Mitochondrial recombination increases with age in Podospora anserina. Mechanisms of Ageing and Development, 131, 315–22.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Maas, M. F. M., Huberts, D. H. E. W., et al. (2009). Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina. Mechanisms of Ageing and Development, 131, 60–8.Google ScholarPubMed
van Diepeningen, A. D., Slakhorst, S. M., Koopmanschap, A. B., et al. (2010b). Calorie restriction in the filamentous fungus Podospora anserina. Experimental Gerontology, 45, 516–24.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Varga, J., Hoekstra, R. F. and Debets, A. J. M. (2008b). Mycoviruses in Aspergilli. In Aspergillus in the Genomics Era, ed. Samson, R. & Varga, J. (pp. 133–76) (Wageningen, The Netherlands, Wageningen Academic Publishers).Google Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004) The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vierny, C., Keller, A. M., Begel, O. & Belcour, L. (1982). A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature, 297, 157–9.CrossRefGoogle Scholar
Wang, C., But, T. M. & St. Leger, R.J. (2005). Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology, 151, 3223–36.CrossRefGoogle ScholarPubMed
Weindruch, R. H. & Walford, R. L. (1988). The Retardation of Ageing and Disease by Dietary Restriction (Springfield, IL: Charles C. Thomas.).Google Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Wright, R. M., Horruum, M. A. & Cummings, D. J. (1982). Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina. Cell, 29, 505–15.CrossRefGoogle ScholarPubMed
Xiong, C. H., Xia, Y. L., Zheng, & Wang, C. S. (2013). Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Applied Microbiology and Biotechnology, 97, 2009–15.CrossRefGoogle ScholarPubMed
Zwaan, B. J. (1999). The evolutionary genetics of ageing and longevity. Heredity, 82 589–97.CrossRefGoogle ScholarPubMed

References

Aguilaniu, H., Gustafsson, L., Rigoulet, M. & Nystrom, T. (2003). Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science, 299, 1751–3.CrossRefGoogle ScholarPubMed
Barker, M. G. & Walmsley, R. M. (1999). Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast, 15, 1511–18.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Barton, A. A. (1950). Some aspects of cell division in Saccharomyces cerevisiae. Journal of General Microbiology, 4, 84.CrossRefGoogle ScholarPubMed
Bilinski, T. (2012). Hypertrophy, replicative ageing and the ageing process. FEMS Yeast Research, 12, 739–40.CrossRefGoogle ScholarPubMed
Bilinski, T., Bartosz, G. (2006). Hypothesis: cell volume limits cell divisions. Acta Biochimica Polonica, 53, 833–5.CrossRefGoogle ScholarPubMed
Bilinski, T., Zadrag-Tecza, R. & Bartosz, G. (2012). Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Research, 12, 97101.CrossRefGoogle ScholarPubMed
Blagosklonny, M. V. (2013). Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle, 12, 3736–42.CrossRefGoogle ScholarPubMed
Calder, P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochemical Society Transactions, 33, 423–7.CrossRefGoogle ScholarPubMed
Carmona-Gutierrez, D. & Büttner, S. (2014). The many ways to age for a single yeast cell. Yeast, 31, 289–98.CrossRefGoogle ScholarPubMed
Chu, S. & Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Molecular Cell, 1, 685–96.CrossRefGoogle ScholarPubMed
Coelho, M., Dereli, A., Haese, A., et al. (2013). Fission yeast does not age under favorable conditions, but does so after stress. Current Biology, 23, 1844–52.CrossRefGoogle Scholar
Drinnenberg, I. A., Weinberg, D. E., Xie, K. T., et al. (2009). RNAi in budding yeast. Science, 326, 544–50.CrossRefGoogle ScholarPubMed
Egilmez, N. K. & Jazwinski, S. M. (1989). Evidence for the involvement of a cytoplasmic factor in the aging of the yeast Saccharomyces cerevisiae. Journal of Bacteriology, 171, 3742.CrossRefGoogle ScholarPubMed
Erjavec, N., Cvijovic, M., Klipp, E. & Nystrom, T. (2008). Selective benefits of damage partitioning in unicellular systems and its effects on aging. Proceedings of the National Academy of Sciences of the United States of America, 105, 18764–9.Google ScholarPubMed
Fuchs, J. & Loidl, J. (2004). Behaviour of nucleolus organizing regions (NORs) and nucleoli during mitotic and meiotic divisions in budding yeast. Chromosome Research, 12, 427–38.CrossRefGoogle ScholarPubMed
Ganley, A. R. & Kobayashi, T. (2014). Ribosomal DNA and cellular senescence: new evidence supporting the connection between rDNA and aging. FEMS Yeast Research, 14, 4959.CrossRefGoogle ScholarPubMed
Ganley, A. R. D., Breitenbach, M., Kennedy, B. K. & Kobayashi, T. (2012). Yeast hypertrophy: cause or consequence of aging? Reply to Bilinski et al. FEMS Yeast Research, 12, 267–8.CrossRefGoogle ScholarPubMed
Garigan, D., Hsu, A. L., Fraser, A. G., et al. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics, 161, 1101–12.CrossRefGoogle ScholarPubMed
Gershon, H. & Gershon, D. (2000). The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mechanisms of Ageing and Development, 120, 122.CrossRefGoogle Scholar
Hartwell, L. H. & Unger, M. W. (1977). Unequal division in Saccharomyces cerevisiae and its implications for control of cell division. Journal of Cell Biology, 75, 422–35.Google ScholarPubMed
Hayflick, L. (2007). Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both. PLoS Genetics, 3, 2351–4.CrossRefGoogle Scholar
Hayflick, L. & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25,585621.CrossRefGoogle ScholarPubMed
Jung, H. J. & Suh, Y. (2012). MicroRNA in aging: from discovery to biology. Current Genomics, 13, 548–57.Google ScholarPubMed
Kaeberlein, M. (2012). Hypertrophy and senescence factors in yeast aging: a reply to Bilinski et al. FEMS Yeast Research, 12, 269–70.CrossRefGoogle ScholarPubMed
Kaeberlein, M., Kirkland, K. T., Fields, S. & Kennedy, B. K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mechanisms of Ageing and Development, 126, 491504.CrossRefGoogle Scholar
Kennedy, B. K., Austriaco, N. R. & Guarente, L. (1994). Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life-span. Journal of Cell Biology, 127, 1985–93.Google ScholarPubMed
Kennedy, B. K. & Mccormick, M. A. (2011). Asymmetric segregation: the shape of things to come? Current Biology, 21, R149–51.CrossRefGoogle ScholarPubMed
Klinger, H., Rinnerthaler, M., Lam, Y. T., et al. (2010). Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Experimental Gerontology, 45, 533–42.CrossRefGoogle ScholarPubMed
Lai, C. Y., Jaruga, E., Borghouts, C. & Jazwinski, S. M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics, 162, 7387.CrossRefGoogle ScholarPubMed
Lin, S.-J. & Austriaco, N. (2014). Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Research, 14, 119–35.CrossRefGoogle ScholarPubMed
Lindstrom, D. L. & Gottschling, D. E. (2009). The Mother Enrichment Program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics, 183, 413–22.CrossRefGoogle Scholar
Liu, B., Larsson, L., Caballero, A., et al. (2010). The polarisome is required for segregation and retrograde transport of protein aggregates. Cell, 140, 257–67.CrossRefGoogle ScholarPubMed
Longo, V. D., Gralla, E. B. & Valentine, J. S. (1996). Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae: mitochondrial production of toxic oxygen species in vivo. Journal of Biological Chemistry, 271, 12275–80.CrossRefGoogle ScholarPubMed
Mcfaline-Figueroa, J. R., Vevea, J., Swayne, T. C., et al. (2011). Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell, 10, 885–95.CrossRefGoogle ScholarPubMed
Minois, N., Frajnt, M., Wilson, C. & Vaupel, J. W. (2005). Advances in measuring lifespan in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 102, 402–6.Google ScholarPubMed
Mortimer, R. K. & Johnston, J. R. (1959). Life span of individual yeast cells. Nature, 183, 1751–2.CrossRefGoogle ScholarPubMed
Muller, I., Zimmermann, M., Becker, D. & Flomer, M. (1980). Calendar life span versus budding life span of Saccharomyces cerevisiae. Mechanisms of Ageing and Development, 12, 4752.CrossRefGoogle ScholarPubMed
Polymenis, M. & Kennedy, B. K. (2012). Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle, 11, 3531–2.CrossRefGoogle ScholarPubMed
Pratico, D. (2002). Lipid peroxidation and the aging process. Science of Aging Knowledge Environment, 2002, re5.CrossRefGoogle ScholarPubMed
Rueegger, S. & Grosshans, H. (2012). MicroRNA turnover: when, how, and why. Trends in Biochemical Sciences, 37, 436–46.CrossRefGoogle Scholar
Shcheprova, Z., Baldi, S., Frei, S. B., et al. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454, 728–34.CrossRefGoogle ScholarPubMed
Sinclair, D., Mills, K. & Guarente, L. (1998). Aging in Saccharomyces cerevisiae. Annual Review of Microbiology, 52, 533–60.CrossRefGoogle ScholarPubMed
Sinclair, D. A. & Guarente, L. (1997). Extrachromosomal rDNA circles: a cause of aging in yeast. Cell, 91, 1033–42.CrossRefGoogle ScholarPubMed
Smith, E. D., Tsuchiya, M., Fox, L. A., et al. (2008). Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Research, 18, 564–70.CrossRefGoogle ScholarPubMed
Sohal, R. S. & Brunk, U. T. (1989). Lipofuscin as an indicator of oxidative stress and aging. Advances in Experimental Medicine and Biology, 1989(266), 1726.Google Scholar
Spiteller, G. (2001). Lipid peroxidation in aging and age-dependent diseases. Experimental Gerontology, 36, 1425–57.CrossRefGoogle ScholarPubMed
Tehlivets, O., Scheuringer, K. & Kohlwein, S. D. (2007). Fatty acid synthesis and elongation in yeast. Biochimica et Biophysica Acta, 1771, 255–70.Google ScholarPubMed
Teplyuk, N. M. (2012). Near-to-perfect homeostasis: examples of universal aging rule which germline evades. Journal of Cellular Biochemistry, 113, 388–96.CrossRefGoogle ScholarPubMed
Tufekci, K. U., Oner, M. G., Meuwissen, R. L. J. & Genc, S. (2014). The role of microRNAs in human diseases. Methods in Molecular Biology, 1107, 3350.CrossRefGoogle ScholarPubMed
Unal, E., Kinde, B. & Amon, A. (2011). Gametogenesis eliminates age-induced cellular damage and resets life span in yeast. Science, 332, 1554–57.CrossRefGoogle ScholarPubMed
Wawryn, J., Swiecilo, A., Bartosz, G. & Bilinski, T. (2002). Effect of superoxide dismutase deficiency on the life span of the yeast Saccharomyces cerevisiae: an oxygen-independent role of Cu,Zn-superoxide dismutase. Biochimica et Biophysica Acta, 1570, 199202.CrossRefGoogle ScholarPubMed
Woldringh, C. L., Huls, P. G. & Vischer, N. O. E. (1993). Volume growth of daughter and parent cells during the cell-cycle of Saccharomyces cerevisiae a/alpha as determined by image cytometry. Journal of Bacteriology, 175, 3174–81.CrossRefGoogle ScholarPubMed
Wright, J., Dungrawala, H., Bright, R. K. & Schneider, B. L. (2013). A growing role for hypertrophy in senescence. FEMS Yeast Research, 13, 26.CrossRefGoogle ScholarPubMed
Yang, J., Dungrawala, H., Hua, H., et al. (2011). Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle, 10, 144–55.CrossRefGoogle ScholarPubMed
Zadrag-Tecza, R., Kwolek-Mirek, M., Bartosz, G. & Bilinski, T. (2009). Cell volume as a factor limiting the replicative lifespan of the yeast Saccharomyces cerevisiae. Biogerontology, 10, 481–8.CrossRefGoogle ScholarPubMed
Zadrag-Tecza, R., Molon, M., Mamczur, J. & Bilinski, T. (2013). Dependence of the yeast Saccharomyces cerevisiae post-reproductive lifespan on the reproductive potential. Acta Biochimica Polonica, 60, 111–15.CrossRefGoogle ScholarPubMed
Zadrag, R., Bartosz, G. & Bilinski, T. (2005). Replicative aging of the yeast does not require DNA replication. Biochemical and Biophysical Research Communications, 333, 138–41.CrossRefGoogle Scholar
Zadrag, R., Bartosz, G. & Bilinski, T. (2008). Is the yeast a relevant model for aging of multicellular organisms? An insight from the total lifespan of Saccharomyces cerevisiae. Current Aging Science, 1, 159–65.CrossRefGoogle ScholarPubMed
Zhou, C., Slaughter, B. D., Unruh, J. R., et al. (2011). Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell, 147, 1186–96.CrossRefGoogle ScholarPubMed

References

Armstrong, R. A. (ed.) (1975). Studies on the Growth Rates of Lichens (New York: Academic Press).Google Scholar
Artursson, V., Finlay, R. D. & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 110.CrossRefGoogle ScholarPubMed
Baudisch, A. (2005). Hamilton’s indicators of the force of selection. Proceedings of the National Academy of Sciences of the United States of America, 102, 8263–8.Google ScholarPubMed
Bell, G. & Kofopanou, V. (1986). The cost of reproduction. In Oxford Surveys of Evolutionary Biology, ed. Dawkins, R. & Ridley, M. (Oxford University Press).Google Scholar
Bever, J. D. (1994). Feedback between plants and their soil communities in an old field community. Ecology, 75, 1965–77.CrossRefGoogle Scholar
Bever, J. D. (1999). Dynamics within mutualism and the maintenance of diversity: inference from a model of interguild frequency dependence. Ecology Letters, 2, 5262.CrossRefGoogle Scholar
Bever, J. D., Dickie, I. A., Facelli, E., et al. (2010). Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 25, 468–78.CrossRefGoogle ScholarPubMed
Bever, J. D., Richardson, S. C., Lawrrence, B. M., et al. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 12, 1321.CrossRefGoogle ScholarPubMed
Bever, J. D., Westover, K. M. & Antonovics, J. (1997). Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561–73.CrossRefGoogle Scholar
Bianciotto, V., Bandi, C., Minerdi, D., et al. (1996). An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Applied and Environmental Microbiology, 62, 3005–10.CrossRefGoogle ScholarPubMed
Bidartondo, M. I. (2005). Tansley review: the evolutionary ecology of myco-heterotrophy. New Phytologist, 167, 335–52.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Bruns, T. D., Weis, M., et al. (2003). Specialized cheating of the ectomycorrhizal symbiosis by an epiparasitic liverwort. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 835–42.CrossRefGoogle ScholarPubMed
Bidartondo, M. I., Read, D. J., Trappe, J. M., et al. (2011). The dawn of symbiosis between plants and fungi. Biology Letters, 7, 574–7.CrossRefGoogle ScholarPubMed
Bingham, M. A. & Simard, S. (2012). Ectomycorrhizal networks of Pseudotsuga menziesii var. glauca trees facilitate establishment of conspecific seedlings under drought. Ecosystems, 15, 188–99.CrossRefGoogle Scholar
Browning, M., Englander, L., Tooley, P. W. & Berner, D. (2008). Survival of Phytophthora ramorum hyphae after exposure to temperature extremes and various humidities. Mycologia, 100, 236–45.CrossRefGoogle ScholarPubMed
Brundrett, M. (1991). Mycorrhizas in natural ecosystems. Advances in Ecological Research, 21, 171313.CrossRefGoogle Scholar
Cairney, J. W. G. (2005). Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research, 109, 720.CrossRefGoogle ScholarPubMed
Cavalier-Smith, T. (1992). The number of symbiotic origins of organelles. Biosystems, 28, 91106.CrossRefGoogle ScholarPubMed
Charlesworth, B. (2000). Fisher, Medawar, Hamilton and the evolution of aging. Genetics, 156, 927–31.CrossRefGoogle ScholarPubMed
Charron, G., Furlan, V., Bernier-Cardou, M. & Doyon, G. (2001). Response of onion plants to arbuscular mycorrhizae: I. Effects of inoculation method and phosphorus fertilization on biomass and bulb firmness. Mycorrhiza, 11, 187–97.CrossRefGoogle Scholar
Childs, D. Z., Metcalf, C. J. E. & Rees, M. (2010). Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants. Proceedings of the Royal Society of London Series B: Biological Sciences, 277, 3055–64.Google ScholarPubMed
Childs, D. Z., Rees, M., Rose, K. E., et al. (2003). Evolution of complex flowering strategies: an age- and size-structured integral projection model. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 1829–38.CrossRefGoogle ScholarPubMed
Cowden, C. C. & Peterson, C. J. (2009). A multi-mutualist simulation: applying biological market models to diverse mycorrhizal communities. Ecological Modelling, 220, 1522–33.CrossRefGoogle Scholar
Crittenden, P. (1991). Ecological significance of necromass production in mat-forming lichens. The Lichenologist, 23, 323–31.CrossRefGoogle Scholar
Denton, G. H. & Karlén, W. (1973). Holocene climatic variations: their pattern and possible cause. Quaternary Research, 3, 155205.CrossRefGoogle Scholar
Diggle, P. K. (2002). A developmental morphologist’s perspective on plasticity. Evolutionary Ecology, 16, 267–83.CrossRefGoogle Scholar
Duffy, E. M. & Cassells, A. C. (2000). The effect of inoculation of potato (Solanum tuberosum) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution. Applied Soil Ecology, 15, 137–44.CrossRefGoogle Scholar
Eom, A. H., Hartnett, D. C. & Wilson, G. W. T. (2000). Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia, 122, 435–44.CrossRefGoogle ScholarPubMed
Finch, C. E. (1990). Longevity, Senescence, and the Genome (University of Chicago Press).Google Scholar
Fitter, A. H. & Garbaye, J. (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil, 159, 123–32.CrossRefGoogle Scholar
Foster, K. R. & Wensleers, T. (2006). A general model for the evolution of mutualisms. Journal of Evolutionary Biology, 19, 1283–93.CrossRefGoogle ScholarPubMed
Fusco, G. & Minelli, A. (2010). Phenotypic plasticity in development and evolution: facts and concepts. Proceedings of the Royal Society of London Series B: Biological Sciences, 365(1540), 547–56.Google ScholarPubMed
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99, 1424–30.CrossRefGoogle Scholar
Gehring, C. A. & Whitham, T. G. (1994). Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution, 9, 251–5.CrossRefGoogle ScholarPubMed
Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., et al. (2000). Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta, 211, 609–13.CrossRefGoogle ScholarPubMed
Griffiths, A. J. F. (1992). Fungal senescence. Annual Review of Genetics, 26, 351–72.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1966). The moulding of senescence by natural selection. Journal of Theoretical Biology, 12, 1245.CrossRefGoogle ScholarPubMed
Hammers, M., Richardson, D. S., Burke, T. & Komdeur, J. (2012). Age-dependent terminal declines in reproductive output in a wild bird. PLoS ONE, 7, e40413.CrossRefGoogle Scholar
Harper, J. L. (1977). Population Biology of Plants (New York: Academic Press).Google Scholar
Hibbett, D. S., Gilbert, L.-B. & Donoghue, M. J. (2000). Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature, 407, 506–8.CrossRefGoogle ScholarPubMed
Hoeksema, J. D. (2010). Ongoing coevolution in mycorrhizal interactions. New Phytologist, 187, 286300.CrossRefGoogle ScholarPubMed
Hoeksema, J. D., Chaudhary, V. B., Gehring, C. A., et al. (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13, 394407.CrossRefGoogle ScholarPubMed
Hoeksema, J. D. & Thompson, J. N. (2007). Geographic structure in a widespread plant-mycorrhizal interaction: pines and false truffles. Journal of Evolutionary Biology, 20, 1148–63.CrossRefGoogle Scholar
Honegger, R. (1993). Developmental biology of lichens. New Phytologist, 125, 659–77.CrossRefGoogle ScholarPubMed
Huiskes, A. H. L., Gremmen, N. J. M. & Francke, J. W. (1997). The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tesselata and its free-living phycobiont, the alga Prasiola crispa. In Antarctic Communities: Species, Structure and Survival, ed. Battaglia, B., Valencia, J. & Walton, D. W. H. (Cambridge University Press).Google Scholar
Hutchings, M. J. (1999). Clonal plants as cooperative systems: benefits in heterogeneous environments. Plant Species Biology, 14, 110.CrossRefGoogle Scholar
Ingham, R. (1988). Interactions between nematodes and vesicular-arbuscular mycorrhizae. Agriculture, Ecosystems and Environment, 24, 169–82.CrossRefGoogle Scholar
Johnson, N. C., Wilson, G. W. T., Bowker, M. A., et al. (2010). Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 107, 2093–8.Google ScholarPubMed
Jones, O. R., Scheuerlein, A., Salguero-Gómez, R., et al. (2014). Diversity of ageing across the tree of life. Nature, 505, 169–73.CrossRefGoogle ScholarPubMed
Kennedy, P. G., Hortal, S., Bergemann, S. E. & Bruns, T. D. (2007). Competitive interactions among three ectomycorrhizal fungi and their relation to host plant performance. Journal of Ecology, 95, 1338–45.CrossRefGoogle Scholar
Kiers, E. T., Duhamel, M., Beesetty, Y., et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880–2.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Lechowicz, M. J. (1983). Age dependence of photosynthesis in the caribou lichen Cladina stellaris. Plant Physiology, 71, 893–5.CrossRefGoogle ScholarPubMed
Leimar, O., Hammerstein, P. & Van Dooren, T. J. M. (2006). A new perspective on developmental plasticity and the principles of adaptive morph determination. American Naturalist, 167, 367–76.CrossRefGoogle ScholarPubMed
Lilleskov, E. A., Bruns, T. D., Horton, T. R., et al. (2004). Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiology Ecology, 49, 319–32.CrossRefGoogle ScholarPubMed
Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., et al. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant Journal, 50, 529–44.CrossRefGoogle Scholar
Loso, M. G. & Doak, D. F. (2006). The biology behind lichenometric dating curves. Oecologia, 147, 223–29.CrossRefGoogle ScholarPubMed
Lutzoni, F., Pagel, M. & Reeb, V. (2001). Major fungal lineages are derived from lichen symbiotic ancestors. Nature, 411, 937–40.CrossRefGoogle ScholarPubMed
Margulis, L. & Bermudes, D. (1985). Symbiosis as a mechanism of evolution: status of cell symbiosis theory. Symbiosis, 1, 101–24.Google ScholarPubMed
Martin, F., Duplessis, S., Ditengou, F., et al. (2001). Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytologist, 151, 145–54.CrossRefGoogle ScholarPubMed
Marx, D. H. (1972). Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology, 10, 429–54.CrossRefGoogle ScholarPubMed
Metcalf, C. J. E. & Pavard, S. (2007). Why evolutionary biologists should be demographers. Trends in Ecology and Evolution, 22, 205–12.CrossRefGoogle ScholarPubMed
Metcalf, C. J. E., Rose, K. E., Childs, D. Z., et al. (2008). Evolution of flowering decisions in a stochastic, density-dependent environment. Proceedings of the National Academy of Sciences of the United States of America, 105, 10466–70.Google Scholar
Mock, K. E., Rowe, C. A., Hooten, M. B., et al. (2008). Clonal dynamics in western North American aspen (Populus tremuloides). Molecular Ecology, 17, 4827–44.CrossRefGoogle ScholarPubMed
Molina, R., Massicotte, H. & Trappe, J. M. (1992). Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In Mycorrhizal Functioning: An Integrative Plant-Fungal Process, ed. Allen, M. F. (New York: Chapman & Hall).Google Scholar
Moran, N. A. (2006). Symbiosis. Current Biology, 16, 866–71.CrossRefGoogle ScholarPubMed
Morgan, J. A. W., Bending, G. D. & White, P. J. (2005). Biological costs and benefits to plant-microbe interactions in the rhizosphere. Journal of Experimental Botany, 56, 1729–39.CrossRefGoogle ScholarPubMed
Nash, T. H. (2008). Lichen Biology (Cambridge University Press).CrossRefGoogle Scholar
Newsham, K., Fitter, A. & Watkinson, A. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 9911000.CrossRefGoogle Scholar
Noë, R. & Hammerstein, P. (1995). Biological markets. Trends in Ecology and Evolution, 10, 336–9.CrossRefGoogle ScholarPubMed
Nussey, D. H., Froy, H., Lemaître, J.-F., et al. (2013). Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Research Reviews, 12, 214–25.CrossRefGoogle ScholarPubMed
Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. (2007). Environmental conditions in early life influence ageing rates in a wild population of red deer. Current Biology, 17, R1000–1.CrossRefGoogle Scholar
Osiewacz, H. D. (2002). Genes, mitochondria and aging in filamentous fungi. Ageing Research Reviews, 1, 425–42.CrossRefGoogle ScholarPubMed
Paracer, S. & Ahmadjian, V. (2000). Symbiosis: An Introduction to Biological Associations (Oxford University Press).CrossRefGoogle Scholar
Peay, K. G., Kennedy, P. G. & Bruns, T. D. (2008). Fungal community ecology: a hybrid beast with a molecular master. BioScience, 58, 799810.CrossRefGoogle Scholar
Piercey-Normore, M. D. (2004). Selection of algal genotypes by three species of lichen fungi in the genus Cladonia. Canadian Journal of Botany, 82, 947–61.CrossRefGoogle Scholar
Pringle, A., Chen, D. & Taylor, J. W. (2003). Sexual fecundity is correlated to size in the lichenized fungus Xanthoparmelia cumberlandia. Bryologist, 106, 221–5.CrossRefGoogle Scholar
Rasmussen, H. N. (1995). Terrestrial Orchids: From Seed to Mycotrophic Plant (Cambridge University Press).CrossRefGoogle Scholar
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91, 11841–3.Google ScholarPubMed
Reznick, D., Nunney, L. & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology and Evolution, 15, 421–5.CrossRefGoogle ScholarPubMed
Ricklefs, R. E. (2000). Intrinsic aging-related mortality in birds. Journal of Avian Biology, 31, 103–11.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91, 5364.CrossRefGoogle Scholar
Roach, D. A., Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age by environment interactions reveal aging. Ecology, 90, 1427–33.CrossRefGoogle ScholarPubMed
Ronsheim, M. L. (2012). The effect of mycorrhizae on plant growth and reproduction varies with soil phosphorus and developmental stage. American Midland Naturalist, 167, 2839.CrossRefGoogle Scholar
Rose, M. R., Rauser, C. L., Benford, G., et al. (2007). Hamilton’s forces of natural selection after forty years. Evolution, 61, 1265–76.CrossRefGoogle ScholarPubMed
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. (2004). The evolution of cooperation. Quarterly Review of Biology, 79, 135–60.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101, 545–54.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R., Siewert, W., Casper, B. B. & Tielbörger, K. (2012). A demographic approach to study effects of climate change in desert plants. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 367, 3100–14.CrossRefGoogle ScholarPubMed
Schwartz, M. W. & Hoeksema, J. D. (1998). Specialization and resource trade: biological markets as a model of mutualisms. Ecology, 79, 1029–38.CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2010). Longitudinal analysis of Plantago: adaptive benefits of iteroparity in a short-lived, herbaceous perennial. Ecology, 91, 441–7.CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101, 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P., Warren, R. J. II & Pulliam, H. R. (2014). Life history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology, 102, 1318–28.CrossRefGoogle Scholar
Shriver, R., Cutler, K. & Doak, D. (2012). Comparative demography of an epiphytic lichen: support for general life history patterns and solutions to common problems in demographic parameter estimation. Oecologia, 170, 137–46.CrossRefGoogle ScholarPubMed
Simard, S. W., Beiler, K. J., Bingham, M. A., et al. (2012). Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 26, 3960.CrossRefGoogle Scholar
Smith, S. E. & Read, D. J. (2008). Mycorrhizal Symbiosis (New York: Academic Press).Google Scholar
Smith, S. E. & Smith, F. A. (1990). Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytologist, 114, 138.CrossRefGoogle ScholarPubMed
Solbrig, O. T. (1980). Demography and natural selection. In Demography and Evolution in Plant Populations, ed. Solbrig, O. T. (Berkeley: University of California Press).Google Scholar
Spitze, K. (1991). Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution, 45, 8292.Google ScholarPubMed
Stearns, S. C. & Magwene, P. (2003). The naturalist in a world of genomics. American Naturalist, 161, 171–80.CrossRefGoogle Scholar
Taylor, D. L., Bruns, T. D., Leake, J. R. & Read, D. J. (2002). Mycorrhizal specificity and function in myco-heterotrophic plants. In Mycorrhizal Ecology, ed. Van der Hejden, M. G. A. & Sanders, I. R. (Berlin: Springer-Verlag).Google Scholar
Teste, F. P., Simard, S. W., Durall, D. M., et al. (2009). Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology, 90, 2808–22.CrossRefGoogle ScholarPubMed
Thompson, J. N. & Cunningham, B. M. (2002). Geographic structure and dynamics of coevolutionary selection. Nature, 417, 735–8.CrossRefGoogle ScholarPubMed
Thompson, J. N. & Fernandez, C. C. (2006). Temporal dynamics of antagonism and mutualism in a geographically variable plant-insect interaction. Ecology, 87, 103–12.CrossRefGoogle Scholar
Tibell, L. (2001). Photobiont association and molecular phylogeny of the lichen genus Chaenotheca. Bryologist, 104, 191–8.CrossRefGoogle Scholar
van der Heijden, M. G. A. & Horton, T. R. (2009). Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 97, 1139–50.CrossRefGoogle Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004). The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Verbruggen, E., Röling, W. F. M., Gamper, H. A., et al. (2010). Positive effects of organic farming on below‐ground mutualists: large‐scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 186, 968–79.CrossRefGoogle ScholarPubMed
Wehner, J., Antunes, P. M., Powell, J. R., et al. (2010). Plant pathogen protection by arbuscular mycorrhizae: a role for fungal diversity? Pedobiologia, 53, 197201.CrossRefGoogle Scholar
Werner, G. D., Strassmann, J. E., Ivens, A. B., et al. (2014). Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 111, 1237–44.Google ScholarPubMed
Wijesinghe, D. K. & Handel, S. N. (1994). Advantages of clonal growth in heterogeneous habitats: an experiment with Potentilla simplex. Journal of Ecology, 82, 495502.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×