Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-03T00:51:44.628Z Has data issue: false hasContentIssue false

17 - Why Some Fungi Senesce and Others Do Not

An Evolutionary Perspective on Fungal Senescence

from Part IV - Senescence in Microbes

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, M., Stearns, S. C. & Jenal, U. (2003). Senescence in a bacterium with asymmetric division. Science, 300, 1920.CrossRefGoogle Scholar
Baidyaroy, D., Hausner, G, Hafez, M., et al. (2011). A 971-bp insertion in the rns gene is associated with mitochondrial hypovirulence in a strain of Cryphonectria parasitica isolated from nature. Fungal Genetics and Biology, 48, 775–83.CrossRefGoogle Scholar
Barnes, B. V. (1975). Phenotypic variation of trembling aspen of western North America. Forest Science, 21, 319–28.Google Scholar
Bastiaans, E., Aanen, D. K., Debets, A. J. M., et al. (2014). Regular bottlenecks and restrictions to somatic fusion prevent the accumulation of mitochondrial defects in Neurospora. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 369, 1646.CrossRefGoogle ScholarPubMed
Begel, O., Boulay, J., Albert, B., et al. (1999). Mitochondrial group II introns, cytochrome c oxidase, and senescence in Podospora anserina. Molecular and Cellular Biology, 19, 4093–100.CrossRefGoogle ScholarPubMed
Belcour, L. & Vierny, C. (1986). Variable DNA splicing sites of a mitochondrial intron: relationship to the senescence process in Podospora. EMBO Journal, 5, 609–14.CrossRefGoogle Scholar
Berrigan, D., Perkins, S. N., Haines, D. C. & Hursting, S. D. (2002). Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis, 23, 817–22.CrossRefGoogle ScholarPubMed
Böckelmann, B. & Esser, K. (1986). Plasmids of mitochondrial origin in senescent mycelia of Podospora curvicolla. Current Genetics, 10, 803–10.CrossRefGoogle ScholarPubMed
Borghouts, C., Scheckhuber, C. Q., Stephan, O. & Osiewacz, H. D. (2002). Copper homeostasis and ageing in the fungal model system Podospora anserina: differential expression of PaCtr3 encoding a copper transporter. International Journal of Biochemistry and Cell Biology, 34, 1355–71.CrossRefGoogle ScholarPubMed
Buffenstein, R. (2005). The naked mole-rat: a new long-living model for human ageing research. The Journals of Gerontology Series A, 60, 1369–77.CrossRefGoogle Scholar
Caten, C. E. (1972). Vegetative incompatibility and cytoplasmic infection in fungi. Journal of General Microbiology, 72, 221–9.CrossRefGoogle ScholarPubMed
Chiang, C. C., Kennell, J. C., Wanner, L. A. & Lambowitz, A. M. (1994). A mitochondrial retroplasmid integrates into mitochondrial DNA by a novel mechanism involving the synthesis of a hybrid cDNA and homologous recombination. Molecular and Cellular Biology, 14, 6419–32.Google ScholarPubMed
Chiang, C. C. & Lambowitz, A. M. (1997). The Mauriceville retroplasmid reverse transcriptase initiates cDNA synthesis de novo at the 3’ end of tRNAs. Molecular and Cellular Biology, 17, 4526–35.CrossRefGoogle ScholarPubMed
Court, D. A. & Bertrand, H. (1992). Genetic organization and structural features of maranhar, a senescence-inducing linear mitochondrial plasmid of Neurospora crassa. Current Genetics, 22, 385–97.CrossRefGoogle ScholarPubMed
Court, D. A., Griffiths, A. J. F., Kraus, S. R., et al. (1991). A new senescence-inducing mitochondrial linear plasmid in field isolated Neurospora crassa strains from India. Current Genetics, 19, 129–37.CrossRefGoogle ScholarPubMed
Debets, A. J. M., Yang, X. & Griffiths, A. J. F. (1994). Vegetative incompatibility in Neurospora: its effect on mitochondrial plasmids and senescence in natural populations. Current Genetics, 26, 113–19.CrossRefGoogle ScholarPubMed
Debets, A. J. M., Yang, X. & Griffiths, A. J. F. (1995). The dynamics of mitochondrial plasmids in a Hawaiian population of Neurospora intermedia. Current Genetics, 29, 44–9.CrossRefGoogle Scholar
Dufour, E., Boulay, J., Rincheval, V. & Sainsard-Chanet, A. (2000). A causal link between respiration and senescence in Podospora anserina. Proceedings of the National Academy of Sciences of the United States Of America, 97, 4138–43.Google ScholarPubMed
Francou, F. (1981). Isolation and characterization of a linear DNA molecule in the fungus Ascobolus immerses. Molecular and General Genetics, 18, 440–4.Google Scholar
Gagny, B., Rossignol, M. & Silar, P. (1997). Cloning, sequencing, and transgenic expression of Podospora curvicolla and Sordaria macrospora eEF1A genes: relationship between cytosolic translation and longevity in filamentous fungi. Fungal Genetics and Biology, 22.CrossRefGoogle ScholarPubMed
Geydan, T. D., Debets, A. J., Verkley, G. J. & van Diepeningen, A. D. (2012). Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Molecular Ecology, 21, 2816–28.CrossRefGoogle ScholarPubMed
Ghabrial, S. A. & Suzuki, N. (2009). Viruses of plant pathogenic fungi. Annual Reviews of Phytopathology, 47, 353–84.CrossRefGoogle ScholarPubMed
Grant, M. C., Mitton, J. B. & Linhart, Y. B. (1992). Even larger organisms. Nature, 360, 216.CrossRefGoogle Scholar
Griffiths, A. J. F. & Bertrand, H. (1984). Unstable cytoplasms in Hawaiian strains of Neurospora intermedia. Current Genetics, 8, 387–98.CrossRefGoogle ScholarPubMed
Griffiths, A. J. (1995). Natural plasmids of filamentous fungi. Microbiological Reviews, 59, 673–85.CrossRefGoogle ScholarPubMed
Grime, J. P. & Pierce, S. (2012). The Evolutionary Strategies that Shape Ecosystems (Chichester, UK: Wiley-Blackwell).CrossRefGoogle Scholar
Guarente, L. & Picard, F. (2005). Calorie restriction: the SIR2 connection. Cell, 120, 473–82.CrossRefGoogle ScholarPubMed
Harman, D. (1972). A biologic clock: the mitochondria? Journal of the American Geriatrics Society, 20, 145–7.CrossRefGoogle ScholarPubMed
Holliday, R. (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays, 10, 125–7.CrossRefGoogle ScholarPubMed
Hursting, S. D., Lavigne, J. A., Berrigan, D., et al. (2003). Calorie restriction, ageing, and cancer prevention: mechanisms of action and applicability to humans. Annual Review of Medicine, 54, 131–52.CrossRefGoogle ScholarPubMed
Ingram, D. K., Anson, R. M., de Cabo, R., et al. (2004). Development of calorie restriction mimetics as a prolongevity strategy. Annals of the New York Academy of Sciences, 1019, 412–23.CrossRefGoogle ScholarPubMed
Jamet-Vierny, C., Begel, O. & Belcour, L. (1980). Senescence in Podospora anserina: amplification of a mitochondrial DNA sequence. Cell, 21, 189–94.CrossRefGoogle ScholarPubMed
Kudryavtseva, O. A., Kamzolkina, O. V., Mazheika, I. S. & Sellem, C. (2012). A mitochondrial respiratory mutant of Podospora anserina obtained by short-term submerged cultivation of senescent mycelium. Microbiology, 81, 651–62.CrossRefGoogle Scholar
Kirkwood, T. B. (1977). Evolution of ageing. Nature, 270, 301–4.CrossRefGoogle ScholarPubMed
Koll, F., Belcour, L. & Vierny, C. (1985). A 1,100-bp sequence of mitochondrial DNA is involved in the senescence process in Podospora: study of senescent and mutant cultures. Plasmid, 14, 106–17.CrossRefGoogle Scholar
Kück, U., Kappelhoff, B. & Esser, K. (1985). Despite mtDNA polymorphism the mobile intron (plDNA) of the COI gene is present in ten different races of Podospora anserina. Current Genetics, 10, 5967.CrossRefGoogle Scholar
Lane, M. A., Black, A., Handy, A., et al. (2001). Caloric restriction in primates. Annals of the New York Academy of Sciences, 928, 287–95.CrossRefGoogle ScholarPubMed
Lazarus, C. M., Earl, A. J., Turner, G. & Küntzel, H. (1980). Amplification of a mitochondrial DNA sequence in the cytoplasmically inherited ‘ragged’ mutant of Aspergillus amstelodami. European Journal of Biochemistry, 106, 633–41.CrossRefGoogle ScholarPubMed
Lazarus, C. M. & Kuntzel, H. (1981). Anatomy of amplified mitochondrial DNA in ‘ragged’ mutants of Aspergillus amstelodami: excision points within protein genes and a common 215 bp segment containing a possible origin of replication. Current Genetics, 4, 99107.CrossRefGoogle Scholar
Leslie, J. F. & Summerell, B. A. (2006). The Fusarium Laboratory Manual (Ames, IA: Blackwell Professional).CrossRefGoogle Scholar
Lin, S. J., Kaeberlein, M., Andalis, A. A., et al. (2002). Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature, 418, 344–8.CrossRefGoogle ScholarPubMed
Lorin, S., Dufour, E., Boulay, J., et al. (2001). Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Molecular Microbiology, 42, 1259–67.CrossRefGoogle Scholar
Maas, M. F. M., De Boer, H. J., Debets, A. J. M. & Hoekstra, R. F. (2004). The mitochondrial plasmid pAL2-1 reduces calorie restriction mediated life span extension in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 41, 865–71.CrossRefGoogle ScholarPubMed
Maas, M. F. M., Krause, F., Dencher, N. A. & Sainsard-Chanet, A. (2009). Respiratory complexes III and IV are not essential for the assembly/stability of complex I in fungi. Journal of Molecular Biology, 387, 259–69.CrossRefGoogle Scholar
Maas, M. F. M., Sellem, C. H., Krause, F., et al. (2010). Molecular gene therapy: overexpression of the alternative NADH dehydrogenase NDI1 restores overall physiology in a fungal model of respiratory complex I deficiency. Journal of Molecular Biology, 399, 3140.CrossRefGoogle Scholar
Maas, M. F. M., Van Mourik, A., Hoekstra, R. F. & Debets, A. J. M. (2005). Polymorphism for pKALILO based senescence in Hawaiian populations of Neurospora intermedia and Neurospora tetrasperma. Fungal Genetics and Biology, 42, 224–32.CrossRefGoogle ScholarPubMed
Maheshwari, R. & Navaraj, A. (2008). Senescence in fungi: the view from Neurospora. FEMS Microbiology Letters, 280, 135–43.CrossRefGoogle ScholarPubMed
Marcinko-Kuehn, M, Yang, X, Debets, F, et al. (1994). A kalilo-like linear plasmid in Louisiana field isolates of the pseudohomothallic fungus Neurospora tetrasperma. Current Genetics, 26, 336–43.CrossRefGoogle ScholarPubMed
Marcou, D. (1961). Notion de longevite et nature cytoplasmique du determinant de senescence chez quelques champignons. Annales des Sciences Naturelles. Botanique, 11, 653764.Google Scholar
McCay, C. M., Cromwell, M. F. & Maynard, L. A. (1935). The effect of retarded growth upon the length of the life span and the ultimate body size. Journal of Nutrition, 10, 6379.CrossRefGoogle Scholar
Medawar, B. (1952). An Unsolved Problem of Biology (London: Lewis).Google Scholar
Merry, B. J. (2002). Molecular mechanisms linking calorie restriction and longevity. International Journal of Biochemistry and Cell Biology, 34, 1340–54.CrossRefGoogle ScholarPubMed
Miwa, S. & Brand, M. D. (2003). Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochemical Society Transactions, 31, 1300–1.CrossRefGoogle ScholarPubMed
Munkres, K. & Rana, R. S. (1978a). Ageing of Neurospora crassa: VII. Accumulation of fluorescent pigment (lipofuscin), and inhibition of the accumulation by nordihydroguairetic acid. Mechanisms in Ageing and Development, 7, 399406.CrossRefGoogle ScholarPubMed
Munkres, K. & Rana, R. S. (1978b). Antioxidants prolong life span and inhibit the senescence-dependent accumulation of fluorescent pigment (lipofuscin) in clones of Podospora anserina. Mechanisms in Ageing and Development, 7, 407–15.CrossRefGoogle ScholarPubMed
Osiewacz, H. D. & Esser, K. (1980). The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Current Genetics, 8, 299305.CrossRefGoogle Scholar
Nuss, D. L. (2005). Hypovirulence: mycoviruses at the fungal-plant interface. Nature Reviews Microbiology, 3, 632–42.CrossRefGoogle ScholarPubMed
Osiewacz, H. D., Hermanns, J., Marcou, D., et al. (1989). Mitochondrial DNA rearrangements are correlated with a delayed amplification of the mobile intron (plDNA) in a long-lived mutant of Podospora anserina. Mutation Research, 219, 915.CrossRefGoogle Scholar
Osiewacz, H. D. & Nuber, U. (1996). GRISEA, a putative copper-activated transcription factor from Podospora anserina involved in differentiation and senescence. Molecular and General Genetics, 252, 115–24.CrossRefGoogle ScholarPubMed
Partridge, L. & Barton, N. H. (1993). Optimality, mutation and the evolution of ageing. Nature, 362, 305–11.CrossRefGoogle ScholarPubMed
Plohnke, N., Hamann, A., Poetsch, A., et al. (2014). Proteomic analysis of mitochondria from senescent Podospora anserina casts new light on ROS dependent aging mechanisms. Experimental Gerontology, 56, 1325.CrossRefGoogle ScholarPubMed
Reznick, D., Ghalambor, C. & Nunney, L. (2002). The evolution of senescence in fish. Mechanisms of Ageing and Development, 123, 773–89.CrossRefGoogle ScholarPubMed
Rieck, A., Griffiths, A. J. F. & Bertrand, H. (1982). Mitochondrial variants of Neurospora intermedia from nature. Canadian Journal of Genetics and Cytology, 24, 741–59.CrossRefGoogle ScholarPubMed
Rizet, G. (1953). Sur la longévité des souches de anserina. Comptes Rendues de l’Academie des Sciences (Paris), 237, 1106–9.Google Scholar
Rizet, G. (1957). Les modifications qui conduisent à la sénescence chez Podospora anserina sont-elles de nature cytoplasmique. Comptes Rendues de l’Academie des Sciences (Paris), 244, 663–5.Google Scholar
Schulte, E., Kück, U. & Esser, K. (1988). Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Molecular and General Genetics, 211, 342–9.CrossRefGoogle Scholar
Sellem, C. H., Bovier, E., Lorin, S. & Sainsard-Chanet, A. (2009). Mutations in two zinc-cluster proteins activate alternative respiratory and gluconeogenic pathways and restore senescence in long-lived respiratory mutants of Podospora anserina. Genetics, 182, 6978.CrossRefGoogle ScholarPubMed
Sellem, C. H., Lecellier, G. & Belcour, L. (1993). Transposition of a group II intron. Nature, 366, 176–8.CrossRefGoogle ScholarPubMed
Sellem, C. H., Marsy, S., Boivin, A., et al. (2007). A mutation in the gene encoding cytochrome c1 leads to a decreased ROS content and to a long-lived phenotype in the filamentous fungus Podospora anserina. Fungal Genetics and Biology, 44, 648–58.CrossRefGoogle ScholarPubMed
Smith, M. L., Bruhn, J. N. & Anderson, J. B. (1992). The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature, 356, 428–31.CrossRefGoogle Scholar
Sohal, R. S. & Weindruch, R. (1996). Oxidative stress, caloric restriction, and ageing. Science, 273, 5963.CrossRefGoogle Scholar
Stewart, E. J., Madden, R., Pail, G. & Taddei, F. (2005). Ageing and death in an organism that reproduces by morphologically symmetric division. PLoS Biology, 3, e45.CrossRefGoogle Scholar
Tudzynski, P. & Esser, K. (1979). Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Molecular and General Genetics, 173, 7184.CrossRefGoogle ScholarPubMed
Tudzynski, P., Stahl, U. & Esser, K. (1980). Transformation to senescence with plasmid like DNA in the ascomycete Podospora anserine. Current Genetics, 2, 181–4.CrossRefGoogle Scholar
Vainio, E. J., Müller, M. M., Korhonen, K., et al. (2014). Viruses accumulate in aging infection centers of a fungal forest pathogen. ISME Journal, doi: 10.1038/ismej.2014.145.CrossRefGoogle Scholar
van der Gaag, M., Debets, A. J. M., Osiewacz, H. D. & Hoekstra, R. F. (1998). The dynamics of pAL2-1 homologous linear plasmids in Podospora anserina. Molecular and General Genetics, 258, 521–9.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Debets, A. J. M. & Hoekstra, R. F. (2006). Dynamics of dsRNA mycoviruses in black Aspergillus populations. Fungal Genetics and Biology, 43, 446–52.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Debets, A. J. M., Slakhorst, S. M. & Hoekstra, R. F. (2008a). Mitochondrial pAL2-1 plasmid homologs are senescence factors in Podospora anserina independent of intrinsic senescence. Biotechnology Journal, 3, 791802.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Goedbloed, D. J., Slakhorst, S. M., et al. (2010a). Mitochondrial recombination increases with age in Podospora anserina. Mechanisms of Ageing and Development, 131, 315–22.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Maas, M. F. M., Huberts, D. H. E. W., et al. (2009). Calorie restriction causes healthy life span extension in the filamentous fungus Podospora anserina. Mechanisms of Ageing and Development, 131, 60–8.Google ScholarPubMed
van Diepeningen, A. D., Slakhorst, S. M., Koopmanschap, A. B., et al. (2010b). Calorie restriction in the filamentous fungus Podospora anserina. Experimental Gerontology, 45, 516–24.CrossRefGoogle ScholarPubMed
van Diepeningen, A. D., Varga, J., Hoekstra, R. F. and Debets, A. J. M. (2008b). Mycoviruses in Aspergilli. In Aspergillus in the Genomics Era, ed. Samson, R. & Varga, J. (pp. 133–76) (Wageningen, The Netherlands, Wageningen Academic Publishers).Google Scholar
Vaupel, J. W., Baudisch, A., Dölling, M., et al. (2004) The case for negative senescence. Theoretical Population Biology, 65, 339–51.CrossRefGoogle ScholarPubMed
Vierny, C., Keller, A. M., Begel, O. & Belcour, L. (1982). A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature, 297, 157–9.CrossRefGoogle Scholar
Wang, C., But, T. M. & St. Leger, R.J. (2005). Colony sectorization of Metarhizium anisopliae is a sign of ageing. Microbiology, 151, 3223–36.CrossRefGoogle ScholarPubMed
Weindruch, R. H. & Walford, R. L. (1988). The Retardation of Ageing and Disease by Dietary Restriction (Springfield, IL: Charles C. Thomas.).Google Scholar
Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398411.CrossRefGoogle Scholar
Wright, R. M., Horruum, M. A. & Cummings, D. J. (1982). Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina. Cell, 29, 505–15.CrossRefGoogle ScholarPubMed
Xiong, C. H., Xia, Y. L., Zheng, & Wang, C. S. (2013). Increasing oxidative stress tolerance and subculturing stability of Cordyceps militaris by overexpression of a glutathione peroxidase gene. Applied Microbiology and Biotechnology, 97, 2009–15.CrossRefGoogle ScholarPubMed
Zwaan, B. J. (1999). The evolutionary genetics of ageing and longevity. Heredity, 82 589–97.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×