Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T08:52:06.463Z Has data issue: false hasContentIssue false

16 - Megafans on Mars

A Fluvial Analogue for the Sinus Meridiani Layered Sediments

from Part III - Applications in Other Sciences

Published online by Cambridge University Press:  30 April 2023

Justin Wilkinson
Affiliation:
Texas State University, Jacobs JETS Contract, NASA Johnson Space Center
Yanni Gunnell
Affiliation:
Université Lumière Lyon 2
Get access

Summary

The layered sediments at Sinus Meridiani, Mars, ~ 1 km thick and covering 300,000 km2, have been probed by the rover Opportunity. Numerous observations on these rocks are reevaluated through the poorly-known model of the fluvial megafan. We conclude that at least some sections of the Meridiani stack are vestiges of large fluvial megafans. Our reasons include the following: the southern uplands of Mars are a feasible sediment source; sediment was likely delivered via rivers that cut the extensive valley network that drain the upland toward Meridiani; the units cover large areas commensurate with terrestrial megafan landscapes, and display the same very low slopes; megafan landscapes lie directly adjacent to upland sediment sources, as seen at Meridiani; megafans require neither closed basins nor waterbodies for sedimentation to occur; numerous examples of fluvial channels appear in some units; and morphologies of the widespread raised ridges of the ridge-forming unit (RFU) are suggestive of indurated channel networks seen on megafans in Oman. Features of vast aggradational landscapes as encapsulated in the novel megafan analogue thus provide answers to several key observations, whereas existing fluvial analyses usually apply the classic attributes of erosional landscapes, leading to significant difficulties in interpretation of the Meridiani units.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews-Hanna, J. C., Phillips, R. J., and Zuber, M. T. (2007). Meridiani Planum and the global hydrology of Mars. Nature, 446, 36.Google Scholar
Andrews‐Hanna, J. C., Zuber, M. T., Arvidson, R. E., and Wiseman, S. M. (2010). Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. Journal of Geophysical Research, 115, E06002.Google Scholar
Andrews-Hanna, J. C. and Lewis, K. W. (2011). Early Mars hydrology: 2 – Hydrological evolution in the Noachian and Hesperian epochs. Journal of Geophysical Research, 116, 02007. doi: 10.1029/2010JE003709.Google Scholar
Arvidson, R. E., Seelos, F. P., Deal, K. S., et al. (2003). Mantled and exhumed terrains in Terra Meridiani, Mars. Journal of Geophysical Research, 108, 8073, doi:10.1029/2002JE001982.Google Scholar
Besler, H. (1984). The development of the Namib dune field according to sedimentological and geomorphological evidence. In Vogel, J. C., ed., Late Cainozoic Palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam, 445454.Google Scholar
Burr, D. M., Williams, R. M. E., Wendell, K. D., Chojnacki, M., and Emery, J. P. (2010). Inverted fluvial features in the Aeolis/Zephyria Plana region, Mars: Formation mechanism and initial paleodischarge estimates. Journal of Geophysical Research, 115, E07011, doi:10.1029/2009JE003496, 2010Google Scholar
Christensen, P. R. and Ruff, S. W. (2004). Formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. Journal of Geophysical, 109, E08003 doi:10.1029/2003JE002233.Google Scholar
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research, 107, 5111, doi:10.1029/2001JE001505.Google Scholar
Craddock, R. A. and Maxwell, T. A. (1993). Geomorphic evolution of the Martian highlands through ancient fluvial process. Journal of Geophysical Research, 98, 34533468.Google Scholar
Davis, J. (2017). Unraveling a Martian enigma: The hidden rivers of Arabia Terra. Planetary Society 21 March 2017 [https://www.planetary.org/blogs/guest-blogs/2017/the-river-plains-of-mars-arabia-terra.html, accessed 10 May 2020]Google Scholar
Davis, J. M., Balme, M., Grindrod, P. M., Williams, R. M. E., and Gupta, S. (2016). Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology, 44, 847850.Google Scholar
Davis, J. M., Gupta, S., Balme, M., et al. (2019). A diverse array of fluvial depositional systems in Arabia Terra: Evidence for mid-Noachian to early Hesperian rivers on Mars. Journal of Geophysical Research: Planets, 124, 19131934. doi:10.1029/2019JE005976Google Scholar
Dickson, J. L., Kerber, L. A., Fassett, C. I., and Ehlmann, B. L. (2018). A global, blended CTX mosaic of Mars with vectorized seam mapping: A new mosaicking pipeline using principles of non-destructive image editing. Lunar Planetary Science Conference, 49, Abstract 2083.Google Scholar
Edgett, K. S. (2005). The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars, 1, 558.Google Scholar
Edgett, K. S. and Malin, M. C. (2002). Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra. Geophysical Research Letters, 29, 2179.Google Scholar
Edgett, K. S. and Parker, T. J. (1997). Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani. Geophysical Research Letters, 24, 28972900.Google Scholar
Fassett, C. I. and Head, J. W. (2008). The timing of martian valley network activity: Constraints from buffered crater counting. Icarus, 195, 6189.Google Scholar
Fawdon, P., Gupta, S., Davis, J., et al. (2018). Hypanis Valles delta: The last high stand of a sea on early Mars. Lunar Planetary Science Conference, 49, Abstract 2839.Google Scholar
Fuller, E. R. and Head, J. W. (2002). Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. Journal of Geophysical Research, 107, 5081, doi:10.1029/2002JE001842.Google Scholar
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al. (2006). Mineralogy of the light-toned outcrop at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation. Journal of Geophysical Research, 111, E12S03. doi:10.1029/2005JE002672.Google Scholar
Golombek, M. P., Grant, J. A., Crumpler, L. S., et al. (2006). Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. Journal of Geophysical Research, 111, E12S10, doi:10.1029/2006JE002754.Google Scholar
Grotzinger, J. P. and Milliken, R. E. (2012). The sedimentary rock record of Mars: Distribution, origins, and global stratigraphy. In Grotzinger, J. P. and Milliken, R. E., eds., Sedimentary Geology of Mars. SEPM Special Publication, 102, 148.Google Scholar
Grotzinger, J. P., Arvidson, R. E., Bell, J. F., et al. (2005). Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars. Earth and Planetary Science Letters, 240, 1172.Google Scholar
Haddon, I. G. and McCarthy, T. S. (2005). The Mesozoic–Cenozoic interior sag basins of Central Africa: The Late-Cretaceous–Cenozoic Kalahari and Okavango basins. Journal of African Earth Sciences, 43, 316333.Google Scholar
Hartley, A. J., Weissmann, G. S., Nichols, G. J., and Warwick, G. L. (2010). Large distributive fluvial systems: Characteristics, distribution, and controls on development. Journal of Sedimentary Research, 80, 167183.Google Scholar
Hayden, A. T., Lamba, M. P., Fischer, W. W., et al. (2019). Formation of sinuous ridges by inversion of river-channel belts in Utah, USA, with implications for Mars. Icarus, 332, 92110.Google Scholar
Hoke, M. R. T. and Hynek, B. M. (2009). Roaming zones of precipitation on ancient Mars as recorded in valley networks. Journal of Geophysical Research, 114, E08002, doi:10.1029/2008JE003247.Google Scholar
Howard, A. D., Moore, J. M., and Irwin, R. P. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. Journal of Geophysical Research, 110, E12S15, doi:10.1029/2005JE002460.Google Scholar
Hüser, K. ( 1976). Kalkkrusten im Namib-Randbereich des mittleren Südwestafrika. Basler Afrika Bibliographien, 15, 5177.Google Scholar
Hynek, B. M. and Di Achille, G. (2017). Geologic Map of Meridiani Planum, Mars. Pamphlet, Scientific Investigations, Map No. 3356, United States Geological Survey, Washington DC.Google Scholar
Hynek, B. M. and Phillips, R. J. (2001). Evidence for extensive denudation of the martian highlands. Geology, 29, 407410.Google Scholar
Hynek, B. M. and Phillips, R. J. (2003). New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology, 31, 757760.Google Scholar
Hynek, B. M. and Phillips, R. J. (2008). The stratigraphy of Meridiani Planum, Mars, and implications for the layered deposits’ origin. Earth and Planetary Science Letters, 274, 214220.Google Scholar
Hynek, B. M. Arvidson, R. E., and Phillips, R. J. (2002). Geologic setting and origin of Terra Meridiani hematite deposit on Mars. Journal of Geophysical Research, 107. doi:10.1029/2002JE001891.Google Scholar
Hynek, B. M., Phillips, R. J., and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record. Journal of Geophysical Research, 108. doi:10.1029/2003JE002062.Google Scholar
Hynek, B. M., Beach, M., and Hoke, M. R. T. (2010). Updated global map of Martian valley networks and implications for climate and hydrologic processes. Journal of Geophysical Research, 115, E09008, doi:10.1029/2009JE003548.Google Scholar
Hynek, B. M., Osterloo, M. K., and Young, K. S. (2015). Late stage formation of martian chlorides. Geology, 43, 787790.Google Scholar
Iriondo, M. H. (1993). Geomorphology and late Quaternary of the Chaco (South America). Geomorphology, 7, 289303.Google Scholar
Irwin, R. P. and Howard, A. D. (2002). Drainage basin evolution in Noachian Terra Cimmeria, Mars. Journal of Geophysical Research, 107 (E7), 5056. doi: 10.1029/2001JE001818.Google Scholar
Irwin, R. P., Howard, A. D., Craddock, R. A., and Moore, J. M. (2005a). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research, 110, E12S15. doi: 10.1029/2005JE002460.Google Scholar
Irwin, R. P., Craddock, R. A., and Howard, A. D. (2005b). Interior channels in Martian valley networks: Discharge and runoff production. Geology, 33, 489492.Google Scholar
Irwin, R. P., Howard, A. D., and Craddock, R. A. (2008). Fluvial valley networks on Mars. Rice, In S., A. Roy, and B. Rhoads, eds., River Confluences, Tributaries, and the Fluvial Network. Wiley, Chichester, 419452.Google Scholar
Kerber, L., Dickson, J. L., Head, J. W., and Grosfils, E. B. (2017). Polygonal ridge networks on Mars: Diversity of morphologies and the special case of the Eastern Medusae Fossae Formation. Icarus, 281, 200219.Google Scholar
Knauth, L. P., Burt, D. M., and Wohletz, K. H. (2005). Impact origin of sediments at the Opportunity landing site on Mars. Nature, 438, 11231128.Google Scholar
Luo, W., Cang, X., and Howard, A. D. (2017). New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nature Communications, 8:15766. doi: 10.1038/ncomms15766Google Scholar
Maizels, J. (1990a). Raised channel systems as indicators or palaeohydrologic change: a case study from Oman. Palaeogeography, Palaeoclimatology, Palaeoecology, 76, 241277.Google Scholar
Maizels, J. (1990b). Long-term paleochannel evolution during episodic growth of an exhumed Plio-Pleistocene alluvial fan, Oman. In A. H. Rachocki and M. Church, eds., Alluvial Fans: A Field Approach. Wiley, Chichester, 271–304.Google Scholar
Malin, M. C. and Edgett, K. S. (2000). Sedimentary rocks of early Mars. Science, 290, 19271937.Google Scholar
McCarthy, T. S. (2013). The Okavango Delta and Its place in the geomorphological evolution of Southern Africa. South African Journal of Geology, 116, 154.Google Scholar
McCollom, T. M. and Hynek, B. H. (2005). A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature, 438, 11291131.Google Scholar
Miall, A. D. (1996). The Geology of Fluvial Deposits. Springer, New York, 582 pp.Google Scholar
Michalski, J. R. and Bleacher, J. E. (2013). Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature, 502, 4752.Google Scholar
Miller, R. P. (1937). Drainage lines in bas-relief. Journal of Geology, 4, 432438.Google Scholar
Newsom, H. E., Barber, C. A., Hare, T. M., et al. (2003). Paleolakes and impact basins in southern Arabia Terra, including Meridiani Planum: Implications for the formation of hematite deposits on Mars. Journal of Geophysical Research, 108(E12), 8075, doi:10.1029/2002JE001993, 2003.Google Scholar
Niles, P. B. and Michalski, J. (2009). Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature Geoscience, 2, 215220.Google Scholar
Ollier, C. D. (1977). Outline geological and geomorphic history of the Central Namib Desert. Madoqua, 10, 207212.Google Scholar
Ormö, J., Komatsu, G., Chan, M. A., Beitler, B., and Parry, W. T. (2004). Geological features indicative of processes related to the hematite formation in Meridiani Planum and Aram Chaos, Mars: A comparison with diagenetic hematite deposits in southern Utah, USA. Icarus, 171, 295316.Google Scholar
Pain, C. F., Clarke, J. D. A., and Thomas, M. (2007). Inversion of relief on Mars. Icarus, 190, 478491.Google Scholar
Rhodes, D. D. (1987). Table Mountain of Calaveras and Tuolumne counties, California. In Centennial Field Guide Volume 1, Cordilleran Section. Geological Society of America, 269272.Google Scholar
Schumm, S. A. (1977). The Fluvial System. Wiley Interscience, New York, 338 pp.Google Scholar
Schumm, S. A. (1981). Evolution and response of the fluvial system: sedimentologic implications. In Ethridge, E. G. and Flores, R. M., eds., Recent and Ancient Nonmarine Depositional Environments. SEPM Special Publication, 31, 1929.Google Scholar
Shanley, K. W. and McCabe, P. J. (1994). Perspectives on the sequence stratigraphy of continental strata. American Association of Petroleum Geologists Bulletin, 78, 544568.Google Scholar
Squyres, S. W. and Knoll, A. H. (2005). Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth and Planetary Science Letters, 240, 110.Google Scholar
Squyres, S. W., Arvidson, R. E., Bollen, D., et al. 2006). Overview of the Opportunity Mars Exploration Rover Mission to Meridiani (Planum: Eagle Crater to Purgatory Ripple. Journal of Geophysical Research, 111, E12S12. doi:10.1029/2006JE002771.Google Scholar
Squyres, S. W., Knoll, A. H., Arvidson, R. E., et al. (2009). Exploration of Victoria Crater by the Mars Rover Opportunity Science, 324, 10581061.Google Scholar
Van Dijk, W. M., Densmore, A. L., Singh, A., et al. (2016). Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India. Journal of Geophysical Research: Earth Surface, 121, 201222.Google Scholar
Ward, J. D. (1984). A Reappraisal of the Cenozoic stratigraphy in the Kuiseb valley of the central Namib desert. In Vogel, J. C., ed., Late Cainozoic Palaeoclimates of the Southern Hemisphere. Balkema, Rotterdam, 455463.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2010). Fluvial form in modern continental sedimentary basins: distributive fluvial systems. Geology, 38, 3942.Google Scholar
Weissmann, G. S., Hartley, A. J., Nichols, G. J., et al. (2011). Alluvial facies distributions in continental sedimentary basins – distributive fluvial systems. In Davidson, S. K., Leleu, S., and North, C. P., eds., From River to Rock Record: The Preservation of Fluvial Sediments and their Subsequent Interpretation. SEPM Special Publication, 97, 327355.Google Scholar
Weissmann, G. S., Hartley, A. J., Scuderi, L. A., et al. (2013). Prograding distributive fluvial systems—Geomorphic models and ancient examples. In Driese, S. G. and Nordt, L. C., eds., New Frontiers in Paleopedology and Terrestrial Paleoclimatology, SEPM Special Publication, 104, 131147.Google Scholar
Weissmann, G. S. Hartley, A. J., Scuderi, L. A., et al. (2015). Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review. Geomorphology, 250, 187219.Google Scholar
Wilkinson, M. J. (1990). Palaeoenvironments in the Namib Desert: The Lower Tumas Basin in the Late Cenozoic. The University of Chicago, Geography Research Paper, 231, 196 pp.Google Scholar
Wilkinson, M. J. and McGovern, P. J. (2010). Megafans and paleo-megafans in Amazonis and northwest Tharsis: implications for fluvial processes, surface geology, and spreading of the Olympus Mons volcano. Lunar and Planetary Science Conference, 41, Abstract 2253.Google Scholar
Wilkinson, M. J., Marshal, L. G., and Lundberg, J. G. (2006). River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. Journal of South American Earth Science, 21, 151172.Google Scholar
Wilkinson, M. J., Marshal, L. G., Lundberg, J. G., and Kreslavsky, M. H. (2010). Megafan environments in northern South America and their impact on Amazon Neogene aquatic ecosystems. In Hoorn, C. and Wesselingh, F. P., eds., Amazonia, Landscape and Species Evolution: A Look into the Past. Blackwell, London, 162–184.Google Scholar
Williams, R. M. E. (2007). Global spatial distribution of raised curvilinear features on Mars. Lunar Planetary Science Conference 38, Abstract 1821.Google Scholar
Zabrusky, K., Andrews-Hanna, J. C., and Wiseman, S. M. (2012). Reconstructing the distribution and depositional history of the sedimentary deposits of Arabia Terra, Mars. Icarus, 220, 311330.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×