Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T00:21:47.262Z Has data issue: false hasContentIssue false

Chapter 7 - Abstractness and Language as an Inner Tool

from Part II - Abstractness and Language

Published online by Cambridge University Press:  20 July 2023

Anna M. Borghi
Affiliation:
University of Rome
Get access

Summary

Chapter 7 shows that abstract concepts are inner/cognitive tools. Inner speech is potent in enhancing our cognition, imagination, and motivation. In this chapter, I propose that we use inner speech more extensively with more abstract concepts, during both their acquisition and use, while monitoring our knowledge during their processing and referring to others to complement and enrich it. I review several studies with children and adults showing that the mouth motor system is more engaged during abstract concept acquisition and elaboration. This mouth activation suggests that language is implicitly activated during abstract language processing. Also, while low numbers engage the hand effector more, the processing of larger numbers might involve language, hence the mouth, more extensively. I overview research on the neural underpinning of abstract concepts, which confirms the importance of linguistic and social neural networks for their representation. Finally, I illustrate studies on abstractness in conditions characterized by impairments in social interaction and inner and overt speech abilities, such as autism, schizophrenia, and aphasia. Overall, the studies reviewed support the idea of a determinant role of language as an inner tool supporting the acquisition and use of abstract concepts.

Type
Chapter
Information
The Freedom of Words
Abstractness and the Power of Language
, pp. 209 - 254
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alderson-Day, B., McCarthy-Jones, S., Bedford, S., Collins, H., Dunne, H., Rooke, C., & Fernyhough, C. (2014). Shot through with voices: Dissociation mediates the relationship between varieties of inner speech and auditory hallucination proneness. Consciousness and Cognition, 27, 288296.CrossRefGoogle ScholarPubMed
Alderson-Day, B., Mitrenga, K., Wilkinson, S., McCarthy-Jones, S., & Fernyhough, C. (2018). The Varieties of Inner Speech Questionnaire–Revised (VISQ-R): Replicating and refining links between inner speech and psychopathology. Consciousness and Cognition, 65, 4858.CrossRefGoogle ScholarPubMed
Alderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., & Fernyhough, C. (2016). The brain’s conversation with itself: Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110120.Google Scholar
Andres, M., Di Luca, S., & Pesenti, M. (2008). Finger counting: The missing tool? Behavioral and Brain Sciences, 31(6), 642643.CrossRefGoogle Scholar
Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563576.CrossRefGoogle ScholarPubMed
Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology, 5, 1459. https://doi.org/10.3389/fpsyg.2014.01459CrossRefGoogle ScholarPubMed
Angeleri, R., Bosco, F. M., Gabbatore, I., Bara, B. G., & Sacco, K. (2012). Assessment battery for communication (ABaCo): Normative data. Behavior Research Methods, 44(3), 845861.CrossRefGoogle ScholarPubMed
Arcara, G., & Bambini, V. (2016). A test for the assessment of pragmatic abilities and cognitive substrates (APACS): Normative data and psychometric properties. Frontiers in Psychology, 7, 70.Google Scholar
Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 4653. https://doi.org/10.1016/j.cognition.2009.11.007CrossRefGoogle ScholarPubMed
Bahnmueller, J., Maier, C. A., Göbel, S. M., & Moeller, K. (2019). Direct evidence for linguistic influences in two-digit number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(6), 11421150. https://doi.org/10.1037/xlm0000642Google ScholarPubMed
Baixauli, I., Colomer, C., Roselló, B., & Miranda, A. (2016). Narratives of children with high-functioning autism spectrum disorder: A meta-analysis. Research in Developmental Disabilities, 59, 234254. https://doi.org/10.1016/j.ridd.2016.09.007CrossRefGoogle ScholarPubMed
Bambini, V., Arcara, G., Bechi, M., Buonocore, M., Cavallaro, R., & Bosia, M. (2016). The communicative impairment as a core feature of schizophrenia: Frequency of pragmatic deficit, cognitive substrates, and relation with quality of life. Comprehensive Psychiatry, 71, 106120.CrossRefGoogle ScholarPubMed
Bambini, V., Arcara, G., Bosinelli, F., Buonocore, M., Bechi, M., Cavallaro, R., & Bosia, M. (2020). A leopard cannot change its spots: A novel pragmatic account of concretism in schizophrenia. Neuropsychologia, 139, 107332.CrossRefGoogle ScholarPubMed
Bang, J., Burns, J., & Nadig, A. (2013). Brief report: Conveying subjective experience in conversation: Production of mental state terms and personal narratives in individuals with high functioning autism. Journal of Autism and Developmental Disorders, 43(7), 17321740. https://doi.org/10.1007/s10803–012-1716-4Google Scholar
Barca, L., Mazzuca, C., & Borghi, A. M. (2017). Pacifier overuse and conceptual relations of abstract and emotional concepts. Frontiers in Psychology, 8, 2014. https://doi.org/10.3389/fpsyg.2017.02014Google Scholar
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 3746. https://doi.org/10.1016/0010-0277(85)90022-8CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11(3), 211227.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (1991). Deriving categories to achieve goals. In Bower, G. H., ed., Psychology of learning and motivation, vol. 27. Elsevier, pp. 164.Google Scholar
Barsalou, L. W., Dutriaux, L., & Scheepers, C. (2018). Moving beyond the distinction between concrete and abstract concepts. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170144.Google Scholar
Beauchamp, M. S. (2015). The social mysteries of the superior temporal sulcus. Trends in Cognitive Sciences, 19(9), 489490.CrossRefGoogle ScholarPubMed
Berkovich-Ohana, A., Noy, N., Harel, M., Furman-Haran, E., Arieli, A., & Malach, R. (2020). Inter-participant consistency of language-processing networks during abstract thoughts. NeuroImage, 211, 116626.Google Scholar
Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive Neuropsychology, 33(3–4), 130174. https://doi.org/10.1080/02643294.2016.1147426CrossRefGoogle Scholar
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796. https://doi.org/10.1093/cercor/bhp055CrossRefGoogle ScholarPubMed
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N., & Possing, E. T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512528.CrossRefGoogle ScholarPubMed
Binney, R. J., Hoffman, P., Ralph, L., & Matthew, A. (2016). Mapping the multiple graded contributions of the anterior temporal lobe representational hub to abstract and social concepts: Evidence from distortion-corrected fMRI. Cerebral Cortex, 26(11), 42274241.Google Scholar
Bleuler, E. (1911). Dementia praecox oder Gruppe der Schizophrenien, vol. 4. Deuticke.Google Scholar
Borghi, A. M. (2020). A future of words: Language and the challenge of abstract concepts. Journal of Cognition, 3(1).CrossRefGoogle ScholarPubMed
Borghi, A. M. (2022a). Concepts for which we need others more: The case of abstract concepts. Current Directions in Psychological Science, 31(3), 238246.CrossRefGoogle Scholar
Borghi, A. M. (2022b). Merging affordances and (abstract) concepts. In Djebbara, Z. ed., Affordances in everyday life: A multidisciplinary collection of essays. New York: Springer. OSF Preprint. 10.31219/osf.io/zn8ahGoogle Scholar
Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. (2019). Words as social tools: Language, sociality and inner grounding in abstract concepts. Physics of Life Reviews, 29, 120153.CrossRefGoogle ScholarPubMed
Borghi, A. M., Barca, L., Binkofski, F., & Tummolini, L. (2018). Abstract concepts, language and sociality: From acquisition to inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0134Google ScholarPubMed
Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. (2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263292. https://doi.org/10.1037/bul0000089CrossRefGoogle ScholarPubMed
Borghi, A. M., & Fernyhough, C. (2023). Concepts, abstractness and inner speech. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 378(1870), 20210371.Google Scholar
Borghi, A. M., Flumini, A., Cimatti, F., Marocco, D., & Scorolli, C. (2011). Manipulating objects and telling words: A study on concrete and abstract words acquisition. Frontiers in Psychology, 2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110830/Google Scholar
Borghi, A. M., Mazzuca, C., Da Rold, F., Falcinelli, I., Fini, C., Michalland, A.-H., & Tummolini, L. (2021). Abstract words as social tools: Which necessary evidence? Frontiers in Psychology, 11. https://www.frontiersin.org/article/10.3389/fpsyg.2020.613026CrossRefGoogle ScholarPubMed
Borghi, A. M., & Zarcone, E. (2016). Grounding abstractness: Abstract concepts and the activation of the mouth. Frontiers in Psychology, 7, 1498. https://doi.org/10.3389/fpsyg.2016.01498Google Scholar
Caselli, M. C., Bello, A., Rinaldi, P., Stefanini, S., & Pasqualetti, P. (2015). Il primo vocabolario del Bambino: Gesti, parole e frasi. Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI: Valori di riferimento fra 8 e 36 mesi delle Forme complete e delle Forme brevi del questionario MacArthur-Bates CDI. FrancoAngeli.Google Scholar
Champagne-Lavau, M., & Stip, E. (2010). Pragmatic and executive dysfunction in schizophrenia. Journal of Neurolinguistics, 23(3), 285296.CrossRefGoogle Scholar
Chojnicka, I., & Wawer, A. (2020). Social language in autism spectrum disorder: A computational analysis of sentiment and linguistic abstraction. PLoS ONE, 15(3), e0229985. https://doi.org/10.1371/journal.pone.0229985Google Scholar
Church, B. A., Rice, C. L., Dovgopoly, A., Lopata, C. J., Thomeer, M. L., Nelson, A., & Mercado, E. (2015). Learning, plasticity, and atypical generalization in children with autism. Psychonomic Bulletin & Review, 22(5), 13421348. https://doi.org/10.3758/s13423–014-0797-9CrossRefGoogle ScholarPubMed
Daprati, E., Franck, N., Georgieff, N., Proust, J., Pacherie, E., Dalery, J., & Jeannerod, M. (1997). Looking for the agent: An investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition, 65(1), 7186.CrossRefGoogle ScholarPubMed
Daprati, E., Nico, D., Delorme, R., Leboyer, M., & Zalla, T. (2013). Memory for past events: Movement and action chains in high-functioning autism spectrum disorders. Experimental Brain Research, 226(3), 325334. https://doi.org/10.1007/s00221–013-3436-1CrossRefGoogle ScholarPubMed
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28.CrossRefGoogle ScholarPubMed
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970974.Google Scholar
Della Rosa, P. A., Catricalà, E., Canini, M., Vigliocco, G., & Cappa, S. F. (2018). The left inferior frontal gyrus: A neural crossroads between abstract and concrete knowledge. NeuroImage, 175, 449459. https://doi.org/10.1016/j.neuroimage.2018.04.021CrossRefGoogle ScholarPubMed
D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., & Farah, M. J. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35(5), 725730.Google Scholar
Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 2739.Google Scholar
Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251266. https://doi.org/10.1016/j.cognition.2010.05.007CrossRefGoogle ScholarPubMed
Dove, G. (2019). Language influences social cognition: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 29, 169171. https://doi.org/10.1016/j.plrev.2019.03.007CrossRefGoogle Scholar
Dove, G., Barca, L., Tummolini, L., & Borghi, A. M. (2020). Words have a weight: Language as a source of inner grounding and flexibility in abstract concepts. Psychological Research, 86, 24512467. https://doi.org/10.1007/s00426-020-01438-6Google Scholar
Dreyer, F. R., & Pulvermüller, F. (2018). Abstract semantics in the motor system? An event-related fMRI study on passive reading of semantic word categories carrying abstract emotional and mental meaning. Cortex, 100, 5270. https://doi.org/10.1016/j.cortex.2017.10.021CrossRefGoogle Scholar
Eskes, G. A., Bryson, S. E., & McCormick, T. A. (1990). Comprehension of concrete and abstract words in autistic children. Journal of Autism and Developmental Disorders, 20(1), 6173.Google Scholar
Fabbri-Destro, M., Gizzonio, V., & Avanzini, P. (2013). Autism, motor dysfunctions and mirror mechanism. Clinical Neuropsychiatry, 10, 177187.Google Scholar
Fabbri-Destro, M., Gizzonio, V., Bazzini, M. C., Cevallos, C., Cheron, G., & Avanzini, P. (2019). The relationship between pantomime execution and recognition across typically developing and autistic children. Research in Autism Spectrum Disorders, 61, 2232. https://doi.org/10.1016/j.rasd.2019.01.008CrossRefGoogle Scholar
Falandays, J. B., & Spivey, M. J. (2019). Abstract meanings may be more dynamic, due to their sociality: Comment on “Words as social tools: Language, sociality and inner grounding in abstract concepts” by Anna M. Borghi et al. Physics of Life Reviews, 9, 175177. https://doi.org/10.1016/j.plrev.2019.02.011CrossRefGoogle Scholar
Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593. https://doi.org/10.1002/hbm.20422CrossRefGoogle ScholarPubMed
Fiebach, C. J., & Friederici, A. D. (2004). Processing concrete words: FMRI evidence against a specific right-hemisphere involvement. Neuropsychologia, 42(1), 6270.Google Scholar
Fini, C., Zannino, G. D., Orsoni, M., Carlesimo, G. A., Benassi, M., & Borghi, A. M. (2021). Articulatory suppression delays processing of abstract words: The role of inner speech. Quarterly Journal of Experimental Psychology, 75(7). https://doi.org/10.1177/17470218211053623Google ScholarPubMed
Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57(5), 822826.Google Scholar
Fischer, M. H. (2008). Finger counting habits modulate spatial-numerical associations. Cortex, 44(4), 386392. https://doi.org/10.1016/j.cortex.2007.08.004CrossRefGoogle ScholarPubMed
Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260.Google Scholar
Fischer, M. H., & Shaki, S. (2018). Number concepts: Abstract and embodied. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0125Google Scholar
Frith, C. (2012a). Explaining delusions of control: The comparator model 20 years on. Consciousness and Cognition, 21(1), 5254.CrossRefGoogle Scholar
Frith, C. D. (2012b). The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599), 22132223.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2012). Mechanisms of social cognition. Annual Review of Psychology, 63, 287313.Google Scholar
Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff, A., Rees, G., Frith, C., & Tylén, K. (2012). Coming to terms: Quantifying the benefits of linguistic coordination. Psychological Science, 23(8), 931939. https://doi.org/10.1177/0956797612436816Google Scholar
Gastgeb, H. Z., Dundas, E. M., Minshew, N. J., & Strauss, M. S. (2012). Category formation in autism: Can individuals with autism form categories and prototypes of dot patterns? Journal of Autism and Developmental Disorders, 42(8), 16941704. https://doi.org/10.1007/s10803–011-1411-xGoogle Scholar
Gastgeb, H. Z., Rump, K. M., Best, C. A., Minshew, N. J., & Strauss, M. S. (2009). Prototype formation in autism: Can individuals with autism abstract facial prototypes? Autism Research, 2(5), 279284. https://doi.org/10.1002/aur.93CrossRefGoogle ScholarPubMed
Gentner, D., & Asmuth, J. (2019). Metaphoric extension, relational categories, and abstraction. Language, Cognition and Neuroscience, 34(10), 12981307.Google Scholar
Gentner, D., & Boroditsky, L. (2001). Individuation, relativity, and early word learning. Language Acquisition and Conceptual Development, 3, 215256.Google Scholar
Ghio, M., Vaghi, M. M. S., & Tettamanti, M. (2013). Fine-grained semantic categorization across the abstract and concrete domains. PLoS ONE, 8(6), e67090. https://doi.org/10.1371/journal.pone.0067090Google Scholar
Gianelli, C., Ranzini, M., Marzocchi, M., Rettore Micheli, L., & Borghi, A. M. (2012). Influence of numerical magnitudes on the free choice of an object position. Cognitive Processing, 13 Suppl. 1, S185–188. https://doi.org/10.1007/s10339–012-0483-7CrossRefGoogle ScholarPubMed
Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306(5695), 496499.Google Scholar
Granato, G., Borghi, A. M., Mattera, A., & Baldassarre, G. (2022). A computational model of inner speech supporting flexible goal-directed behaviour in Autism. Scientific Reports, 12(1), 14198.Google Scholar
Grandin, T. (2006). Thinking in pictures: And other reports from my life with autism. Vintage.Google Scholar
Granito, C., Scorolli, C., & Borghi, A. M. (2015). Naming a Lego world. The role of language in the acquisition of abstract concepts. PLoS ONE, 10(1), e0114615. https://doi.org/10.1371/journal.pone.0114615Google Scholar
Green, A. E., Kenworthy, L., Mosner, M. G., Gallagher, N. M., Fearon, E. W., Balhana, C. D., & Yerys, B. E. (2014). Abstract analogical reasoning in high-functioning children with autism spectrum disorders. Autism Research, 7(6), 677686.Google Scholar
Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 525. https://doi.org/10.1007/s10803–005-0039-0CrossRefGoogle ScholarPubMed
Happé, F. G. (1995). The role of age and verbal ability in the theory of mind task performance of subjects with autism. Child Development, 66(3), 843855.Google Scholar
Hein, G., & Knight, R. T. (2008). Superior temporal sulcus – It’s my area: Or is it? Journal of Cognitive Neuroscience, 20(12), 21252136. https://doi.org/10.1162/jocn.2008.20148CrossRefGoogle Scholar
Henningsen-Schomers, M. R., & Pulvermüller, F. (2021). Modelling concrete and abstract concepts using brain-constrained deep neural networks. Psychological Research, 86(8), 25332559.CrossRefGoogle Scholar
Herrera, G., Jordan, R., & Vera, L. (2006). Abstract concept and imagination teaching through virtual reality in people with autism spectrum disorders. Technology and Disability, 18(4), 173180. https://doi.org/10.3233/TAD-2006-18403Google Scholar
Hobson, R. P., & Lee, A. (1989). Emotion-related and abstract concepts in autistic people: Evidence from the British Picture Vocabulary Scale. Journal of Autism and Developmental Disorders, 19(4), 601623.Google Scholar
Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex, 63, 250266. https://doi.org/10.1016/j.cortex.2014.09.001Google Scholar
Jessen, F., Heun, R., Erb, M., Granath, D. O., Klose, U., Papassotiropoulos, A., & Grodd, W. (2000). The concreteness effect: Evidence for dual coding and context availability. Brain and Language, 74(1), 103112. https://doi.org/10.1006/brln.2000.2340Google Scholar
Johnson, C. R., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18(2), 7389.CrossRefGoogle Scholar
Kalénine, S., Mirman, D., & Buxbaum, L. J. (2012a). A combination of thematic and similarity-based semantic processes confers resistance to deficit following left hemisphere stroke. Frontiers in Human Neuroscience, 6, 106.Google Scholar
Kalénine, S., Mirman, D., Middleton, E. L., & Buxbaum, L. J. (2012b). Temporal dynamics of activation of thematic and functional knowledge during conceptual processing of manipulable artifacts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1274.Google Scholar
Kamio, Y., & Toichi, M. (2000). Dual access to semantics in autism: Is pictorial access superior to verbal access? The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(7), 859867.Google Scholar
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276.Google Scholar
Knight, V., McKissick, B. R., & Saunders, A. (2013). A review of technology-based interventions to teach academic skills to students with autism spectrum disorder. Journal of Autism and Developmental Disorders, 43(11), 26282648.Google Scholar
Kousta, S.-T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The representation of abstract words: Why emotion matters. Journal of Experimental Psychology: General, 140(1), 14.Google Scholar
Kunda, M., & Goel, A. K. (2011). Thinking in pictures as a cognitive account of autism. Journal of Autism and Developmental Disorders, 41(9), 11571177.Google Scholar
Langland-Hassan, P., Faries, F. R., Gatyas, M., Dietz, A., & Richardson, M. J. (2021). Assessing abstract thought and its relation to language with a new nonverbal paradigm: Evidence from aphasia. Cognition, 211, 104622.Google Scholar
Lemer, C., Dehaene, S., Spelke, E., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41(14), 19421958.Google Scholar
Leslie, A. M., & Thaiss, L. (1992). Domain specificity in conceptual development: Neuropsychological evidence from autism. Cognition, 43(3), 225251.Google Scholar
Levinson, S. C. (1983). Pragmatics. Cambridge University Press.Google Scholar
Liebenthal, E., Desai, R. H., Humphries, C., Sabri, M., & Desai, A. (2014). The functional organization of the left STS: A large scale meta-analysis of PET and fMRI studies of healthy adults. Frontiers in Neuroscience, 8, 289. https://doi.org/10.3389/fnins.2014.00289CrossRefGoogle ScholarPubMed
Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: Numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33(6), 1400.Google Scholar
Lindemann, O., Alipour, A., & Fischer, M. H. (2011). Finger counting habits in Middle Eastern and Western individuals: An online survey. Journal of Cross-Cultural Psychology, 42(4), 566578.Google Scholar
Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60R62.Google Scholar
Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting is easier while experiencing a congruent motion. PLoS ONE, 8(5), e64500. https://doi.org/10.1371/journal.pone.0064500Google Scholar
Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 11871194. https://doi.org/10.1016/j.cortex.2012.06.006Google Scholar
Lysaker, P. H., Carcione, A., Dimaggio, G., Johannesen, J. K., Nicolò, G., Procacci, M., & Semerari, A. (2005). Metacognition amidst narratives of self and illness in schizophrenia: Associations with neurocognition, symptoms, insight and quality of life. Acta Psychiatrica Scandinavica, 112(1), 6471.Google Scholar
Mahon, B., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology-Paris, 102(1–3), 5970.Google Scholar
Mazzuca, C., Lugli, L., Nicoletti, R., & Borghi, A. M. (2018). Abstract, emotional and concrete concepts and the activation of mouth-hand effectors. PeerJ, 6, e5987.Google Scholar
Mazzuca, C., & Santarelli, M. (2022). Making it abstract, making it contestable: Politicization at the intersection of political and cognitive science. Review of Philosophy and Psychology, 1–22.Google Scholar
Mellem, M. S., Jasmin, K. M., Peng, C., & Martin, A. (2016). Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia, 89, 217224. https://doi.org/10.1016/j.neuropsychologia.2016.06.019CrossRefGoogle Scholar
Minor, K. S., Bonfils, K. A., Luther, L., Firmin, R. L., Kukla, M., MacLain, V. R., … Salyers, M. P. (2015). Lexical analysis in schizophrenia: How emotion and social word use informs our understanding of clinical presentation. Journal of Psychiatric Research, 64, 7478.Google Scholar
Minshew, N. J., Meyer, J., & Goldstein, G. (2002). Abstract reasoning in autism: A disassociation between concept formation and concept identification. Neuropsychology, 16(3), 327334. https://doi.org/10.1037/0894-4105.16.3.327CrossRefGoogle Scholar
Molesworth, C. J., Bowler, D. M., & Hampton, J. A. (2008). When prototypes are not best: Judgments made by children with autism. Journal of Autism and Developmental Disorders, 38(9), 17211730. https://doi.org/10.1007/s10803–008-0557-7Google Scholar
Moretto, G., & Di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188(4), 505515.Google Scholar
Moseley, R. L., Shtyrov, Y., Mohr, B., Lombardo, M. V., Baron-Cohen, S., & Pulvermüller, F. (2015). Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory. NeuroImage, 104, 413422.Google Scholar
Nagels, A., Kircher, T., Grosvald, M., Steines, M., & Straube, B. (2019). Evidence for gesture-speech mismatch detection impairments in schizophrenia. Psychiatry Research, 273, 1521.Google Scholar
Narzisi, A. (2020). The challenging heterogeneity of autism: Editorial. Brain Sciences Special Issue: Advances in Autism Research, 10(12), 948.Google Scholar
Nedergaard, J., Wallentin, M., & Lupyan, G. (2022). Verbal interference paradigms: A systematic review investigating the role of language in cognition, Psychonomic Bulletin & Review. doi: 10.3758/s13423-022-02144-7Google Scholar
Negen, J., & Sarnecka, B. W. (2009). Young children’s number-word knowledge predicts their performance on a nonlinguistic number task. Proceedings of the 31st Annual Meeting of the Cognitive Science Society. https://escholarship.org/uc/item/1q03q75zGoogle Scholar
Negen, J., & Sarnecka, B. W. (2012). Number-concept acquisition and general vocabulary development. Child Development, 83(6), 20192027. https://doi.org/10.1111/j.1467-8624.2012.01815.xGoogle Scholar
Niedenthal, P. M., Augustinova, M., Rychlowska, M., Droit-Volet, S., Zinner, L., Knafo, A., & Brauer, M. (2012). Negative relations between pacifier use and emotional competence. Basic and Applied Social Psychology, 34(5), 387394.Google Scholar
Noppeney, U., & Price, C. J. (2004). Retrieval of abstract semantics. NeuroImage, 22(1), 164170. https://doi.org/10.1016/j.neuroimage.2003.12.010Google Scholar
Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: A review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123133.CrossRefGoogle ScholarPubMed
Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179217.Google Scholar
Paivio, A. (1990). Mental representations: A dual coding approach. Oxford University Press.CrossRefGoogle Scholar
Parola, A., Berardinelli, L., & Bosco, F. M. (2018). Cognitive abilities and theory of mind in explaining communicative-pragmatic disorders in patients with schizophrenia. Psychiatry Research, 260, 144151.Google Scholar
Perani, D., Cappa, S. F., Schnur, T., Tettamanti, M., Collina, S., Rosa, M. M., & Fazio, F. (1999). The neural correlates of verb and noun processing. A PET study. Brain, 122 ( Pt. 12), 23372344.Google Scholar
Petrolini, V., Jorba, M., & Vicente, A. (2020). The role of inner speech in executive functioning tasks: Schizophrenia with auditory verbal hallucinations and autistic spectrum conditions as case studies. Frontiers in Psychology, 2452, 11.Google Scholar
Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499503.Google Scholar
Plaisted, K. C. (2001). Reduced Generalization in Autism: An Alternative to Weak Central Coherence. In Burack, J. A., Charman, T., Yirmiya, N., & Zelazo, P. R., eds., The development of autism: Perspectives from theory and research. Erlbaum, pp. 149169.Google Scholar
Pobric, G., Lambon Ralph, M. A., & Zahn, R. (2016). Hemispheric specialization within the superior anterior temporal cortex for social and nonsocial concepts. Journal of Cognitive Neuroscience, 28(3), 351360. https://doi.org/10.1162/jocn_a_00902Google Scholar
Prinz, J. J. (2012). Beyond human nature: How culture and experience shape our lives. Penguin UK.Google Scholar
Ralph, M. A. L., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42.Google Scholar
Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5, 147. https://doi.org/10.3389/fnhum.2011.00147Google Scholar
Rice, G. E., Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2018). Concrete versus abstract forms of social concept: An fMRI comparison of knowledge about people versus social terms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0136Google ScholarPubMed
Rizzolatti, G., & Fabbri-Destro, M. (2010). Mirror neurons: From discovery to autism. Experimental Brain Research, 200(3), 223237. https://doi.org/10.1007/s00221–009-2002-3CrossRefGoogle ScholarPubMed
Rochester, S. (2013). Crazy talk: A study of the discourse of schizophrenic speakers. Springer Science & Business Media.Google Scholar
Roehr, B. (2013). American Psychiatric Association explains DSM-5. BMJ, 346.Google Scholar
Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: RTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 16091624.Google Scholar
Sabsevitz, D. S., Medler, D. A., Seidenberg, M., & Binder, J. R. (2005). Modulation of the semantic system by word imageability. NeuroImage, 27(1), 188200. https://doi.org/10.1016/j.neuroimage.2005.04.012Google Scholar
Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F. (2013). Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Frontiers in Human Neuroscience, 7, 125. https://doi.org/10.3389/fnhum.2013.00125Google Scholar
Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684693.Google Scholar
Schwanenflugel, P. J., & Stowe, R. W. (1989). Context availability and the processing of abstract and concrete words in sentences. Reading Research Quarterly, 114–126.Google Scholar
Scorolli, C., & Borghi, A. M. (2007). Sentence comprehension and action: Effector specific modulation of the motor system. Brain Research, 1130(1), 119124. https://doi.org/10.1016/j.brainres.2006.10.033Google Scholar
Shallice, T., & Cooper, R. P. (2013). Is there a semantic system for abstract words? Frontiers in Human Neuroscience, 7, 175. https://doi.org/10.3389/fnhum.2013.00175Google Scholar
Shea, N. (2018). Metacognition and abstract concepts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1752). https://doi.org/10.1098/rstb.2017.0133Google Scholar
Shea, N., Boldt, A., Bang, D., Yeung, N., Heyes, C., & Frith, C. D. (2014). Supra-personal cognitive control and metacognition. Trends in Cognitive Sciences, 18(4), 186193. https://doi.org/10.1016/j.tics.2014.01.006Google Scholar
Shulman, C., Yirmiya, N., & Greenbaum, C. W. (1995). From categorization to classification: A comparison among individuals with autism, mental retardation, and normal development. Journal of Abnormal Psychology, 104(4), 601609. https://doi.org/10.1037/0021-843X.104.4.601Google Scholar
Siegal, M., & Blades, M. (2003). Language and auditory processing in autism. Trends in Cognitive Sciences, 7(9), 378380.Google Scholar
Simmons, W. K., Reddish, M., Bellgowan, P. S., & Martin, A. (2010). The selectivity and functional connectivity of the anterior temporal lobes. Cerebral Cortex, 20(4), 813825.CrossRefGoogle ScholarPubMed
Sloutsky, V. M. (2010). From perceptual categories to concepts: What develops? Cognitive Science, 34(7), 12441286.Google Scholar
Slusser, E., Ribner, A., & Shusterman, A. (2019). Language counts: Early language mediates the relationship between parent education and children’s math ability. Developmental Science, 22(3), e12773. https://doi.org/10.1111/desc.12773Google Scholar
Snyder, H. R., Kaiser, R. H., Warren, S. L., & Heller, W. (2015). Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clinical Psychological Science, 3(2), 301330.Google Scholar
Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E., & Goldin-Meadow, S. (2011). Number without a language model. Proceedings of the National Academy of Sciences, 108(8), 31633168.Google Scholar
Stoianov, I., Kramer, P., Umiltà, C., & Zorzi, M. (2008). Visuospatial priming of the mental number line. Cognition, 106(2), 770779.Google Scholar
Swaab, T. Y., Boudewyn, M. A., Long, D. L., Luck, S. J., Kring, A. M., Ragland, J. D., … Solomon, M. (2013). Spared and impaired spoken discourse processing in schizophrenia: Effects of local and global language context. Journal of Neuroscience, 33(39), 1557815587.Google Scholar
Tager-Flusberg, H. (1985). Basic level and superordinate level categorization by autistic, mentally retarded, and normal children. Journal of Experimental Child Psychology, 40(3), 450469.Google Scholar
Tager-Flusberg, H. (1992). Autistic children’s talk about psychological states: Deficits in the early acquisition of a theory of mind. Child Development, 63(1), 161172. https://doi.org/10.2307/1130910CrossRefGoogle ScholarPubMed
Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., … Liu, Y. (2006). Arithmetic processing in the brain shaped by cultures. Proceedings of the National Academy of Sciences, 103(28), 1077510780. https://doi.org/10.1073/pnas.0604416103Google Scholar
Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 31393148.Google Scholar
Vicente, A. (2014). The comparator account on thought insertion, alien voices and inner speech: Some open questions. Phenomenology and the Cognitive Sciences, 13(2), 335353.CrossRefGoogle Scholar
Vigliocco, G., Kousta, S.-T., Della Rosa, P. A., Vinson, D. P., Tettamanti, M., Devlin, J. T., & Cappa, S. F. (2013). The neural representation of abstract words: The role of emotion. Cerebral Cortex, 24(7), 17671777.Google Scholar
Vigliocco, G., Ponari, M., & Norbury, C. (2018). Learning and processing abstract words and concepts: Insights from typical and atypical development. Topics in Cognitive Science, 10(3), 533549.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts and their multiple dimensions. Language and Cognition, 11(3), 403430.Google Scholar
Villani, C., Lugli, L., Liuzza, M. T., Nicoletti, R., & Borghi, A. M. (2021). Sensorimotor and interoceptive dimensions in concrete and abstract concepts. Journal of Memory and Language, 116, 104173.Google Scholar
Vladusich, T., Olu-Lafe, O., Kim, D.-S., Tager-Flusberg, H., & Grossberg, S. (2010). Prototypical category learning in high-functioning autism. Autism Research, 3(5), 226236. https://doi.org/10.1002/aur.148Google Scholar
Wang, J., Conder, J. A., Blitzer, D. N., & Shinkareva, S. V. (2010). Neural representation of abstract and concrete concepts: A meta-analysis of neuroimaging studies. Human Brain Mapping, 31(10), 14591468. https://doi.org/10.1002/hbm.20950Google Scholar
Wang, X., Wu, W., Ling, Z., Xu, Y., Fang, Y., Wang, X., … Bi, Y. (2017). Organizational principles of abstract words in the human brain. Cerebral Cortex, 1–14. https://doi.org/10.1093/cercor/bhx283Google Scholar
Williams, D. M., Peng, C., & Wallace, G. L. (2016). Verbal thinking and inner speech use in autism spectrum disorder. Neuropsychology Review, 26(4), 394419. https://doi.org/10.1007/s11065–016-9328-yCrossRefGoogle ScholarPubMed
Wilson-Mendenhall, C. D., Barrett, L. F., & Barsalou, L. W. (2013). Neural evidence that human emotions share core affective properties. Psychological Science, 24(6), 947956. https://doi.org/10.1177/0956797612464242Google Scholar
Winter, B., Marghetis, T., & Matlock, T. (2015). Of magnitudes and metaphors: Explaining cognitive interactions between space, time, and number. Cortex, 64, 209224. https://doi.org/10.1016/j.cortex.2014.10.015Google Scholar
Winter, B., & Matlock, T. (2017). Primary metaphors are both cultural and embodied. In Hampe, B., ed., Metaphor: Embodied cognition and discourse, Cambridge University Press, pp. 99115.Google Scholar
Woodin, G., & Winter, B. (2018). Placing abstract concepts in space: Quantity, time and emotional valence. Frontiers in Psychology, 2169, 114.Google Scholar
Woodin, G., Winter, B., Perlman, M., Littlemore, J., & Matlock, T. (2020). “Tiny numbers” are actually tiny: Evidence from gestures in the TV News Archive. PLoS ONE, 15(11), e0242142.Google Scholar
Zalla, T., Daprati, E., Sav, A.-M., Chaste, P., Nico, D., & Leboyer, M. (2010). Memory for self-performed actions in individuals with Asperger syndrome. PLoS ONE, 5(10), e13370. https://doi.org/10.1371/journal.pone.0013370Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×