Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-10-31T23:09:41.420Z Has data issue: false hasContentIssue false

6 - Functional consequences of chemokine receptor dimerization

from PART II - OLIGOMERIZATION OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Mario Mellado
Affiliation:
Centro Nacional de Biotecnologia
Carlos Martínez-A
Affiliation:
Centro Nacional de Biotecnologia
José Miguel Rodríguez-Frade
Affiliation:
Centro Nacional de Biotecnologia
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 111 - 124
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baggiolini, M.Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).CrossRefGoogle ScholarPubMed
Allen, S.J., Crown, S.E. & Handel, T.M.Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25, 787–820 (2007).CrossRefGoogle ScholarPubMed
Charo, I.F. & Ransohoff, R.M.The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354, 610–621 (2006).CrossRefGoogle ScholarPubMed
Gerard, C. & Rollins, B.J.Chemokines and disease. Nat Immunol 2, 108–115 (2001).CrossRefGoogle ScholarPubMed
Viola, A. & Luster, A.D.Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48, 171–197 (2008).CrossRefGoogle ScholarPubMed
Alcami, A.Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3, 36–50 (2003).CrossRefGoogle ScholarPubMed
Horuk, R.Chemokine receptor antagonists: overcoming developmental hurdles. Nat Rev Drug Discov 8, 23–33 (2009).CrossRefGoogle ScholarPubMed
Zlotnik, A. & Yoshie, O.Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).CrossRefGoogle ScholarPubMed
Witt, D.P. & Lander, A.D.Differential binding of chemokines to glycosaminoglycan subpopulations. Curr Biol 4, 394–400 (1994).CrossRefGoogle ScholarPubMed
Proudfoot, A.E.et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A 100, 1885–1890 (2003).CrossRefGoogle ScholarPubMed
Mellado, M., Serrano, A., Martinez, C. & Rodriguez-Frade, J.M.G protein-coupled receptor dimerization and signaling. Methods Mol Biol 332, 141–157 (2006).Google ScholarPubMed
Clore, G.M. & Gronenborn, A.M.Three-dimensional structures of alpha and beta chemokines. FASEB J 9, 57–62 (1995).CrossRefGoogle ScholarPubMed
Nesmelova, I.V., Sham, Y., Gao, J. & Mayo, K.H.CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. J Biol Chem 283, 24155–24166 (2008).CrossRefGoogle ScholarPubMed
Clark-Lewis, I.et al. Structure-activity relationships of chemokines. J Leukoc Biol 57, 703–711 (1995).CrossRefGoogle ScholarPubMed
Rajarathnam, K.et al. Neutrophil activation by monomeric interleukin-8. Science 264, 90–92 (1994).CrossRefGoogle ScholarPubMed
Paavola, C.D.et al. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273, 33157–33165 (1998).CrossRefGoogle ScholarPubMed
Laurence, J.S., Blanpain, C., Burgner, J.W., Parmentier, M. & LiWang, P.J.CC chemokine MIP-1 beta can function as a monomer and depends on Phe13 for receptor binding. Biochemistry 39, 3401–3409 (2000).CrossRefGoogle ScholarPubMed
Campanella, G.S.et al. Oligomerization of CXCL10 is necessary for endothelial cell presentation and in vivo activity. J Immunol 177, 6991–6998 (2006).CrossRefGoogle ScholarPubMed
Czaplewski, L.G.et al. Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. J Biol Chem 274, 16077–16084 (1999).CrossRefGoogle ScholarPubMed
Veldkamp, C.T.et al. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1, ra4 (2008).CrossRefGoogle ScholarPubMed
Nesmelova, I.V.et al. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J Biol Chem 280, 4948–4958 (2005).CrossRefGoogle ScholarPubMed
Paoletti, S.et al. A rich chemokine environment strongly enhances leukocyte migration and activities. Blood 105, 3405–3412 (2005).CrossRefGoogle ScholarPubMed
Issafras, H.et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277, 34666–34673 (2002).CrossRefGoogle ScholarPubMed
Graham, G.J. and Nibbs, R. J. Chemokine receptors: A structural overview, in The chemokine receptors. (ed. Harrison, J.K. and Lukacs, N.W.) 31–54 (Humana, Totowa, N.J.; 2007).Google Scholar
Bokoch, G.M.Chemoattractant signaling and leukocyte activation. Blood 86, 1649–1660 (1995).Google ScholarPubMed
Palczewski, K.et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000).CrossRefGoogle ScholarPubMed
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J.P. & Landau, E.M.X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science 277, 1676–1681 (1997).CrossRefGoogle ScholarPubMed
Rasmussen, S.G.et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).CrossRefGoogle ScholarPubMed
Rodriguez-Frade, J.M.et al. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc Natl Acad Sci U S A 96, 3628–3633 (1999).CrossRefGoogle ScholarPubMed
Zlotnik, A., Yoshie, O. & Nomiyama, H.The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7, 243 (2006).CrossRefGoogle ScholarPubMed
Comerford, I. & Nibbs, R.J.Post-translational control of chemokines: a role for decoy receptors?Immunol Lett 96, 163–174 (2005).CrossRefGoogle ScholarPubMed
Contento, R.L.et al. CXCR4-CCR5: a couple modulating T cell functions. Proc Natl Acad Sci USA 105, 10101–10106 (2008).CrossRefGoogle ScholarPubMed
Wong, M.M. & Fish, E.N.Chemokines: attractive mediators of the immune response. Semin Immunol 15, 5–14 (2003).CrossRefGoogle ScholarPubMed
Milligan, G.G protein-coupled receptor dimerization: function and ligand pharmacology. Mol Pharmacol 66, 1–7 (2004).CrossRefGoogle ScholarPubMed
Barnes, P.J.Receptor heterodimerization: a new level of cross-talk. J Clin Invest 116, 1210–1212 (2006).CrossRefGoogle ScholarPubMed
Terrillon, S. & Bouvier, M.Roles of G-protein-coupled receptor dimerization. EMBO Rep 5, 30–34 (2004).CrossRefGoogle ScholarPubMed
Vila-Coro, A.J.et al. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. Faseb J 13, 1699–1710 (1999).CrossRefGoogle ScholarPubMed
Mellado, M.et al. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. Embo J 20, 2497–2507 (2001).CrossRefGoogle ScholarPubMed
Nieto, M.et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J Exp Med 186, 153–158 (1997).CrossRefGoogle Scholar
Neel, N.F., Schutyser, E., Sai, J., Fan, G.H. & Richmond, A.Chemokine receptor internalization and intracellular trafficking. Cytokine Growth Factor Rev 16, 637–658 (2005).CrossRefGoogle ScholarPubMed
Vila-Coro, A.J., Mellado, M., Martin de Ana, A., Martinez, A.C. & Rodriguez-Frade, J.M.Characterization of RANTES- and aminooxypentane-RANTES-triggered desensitization signals reveals differences in recruitment of the G protein-coupled receptor complex. J Immunol 163, 3037–3044 (1999).Google ScholarPubMed
Babcock, G.J., Farzan, M. & Sodroski, J.Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 278, 3378–3385 (2003).CrossRefGoogle ScholarPubMed
Trettel, F.et al. Ligand-independent CXCR2 dimerization. J Biol Chem 278, 40980–40988 (2003).CrossRefGoogle ScholarPubMed
Vila-Coro, A.J.et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc Natl Acad Sci USA 97, 3388–3393 (2000).CrossRefGoogle ScholarPubMed
Toth, P.T., Ren, D. & Miller, R.J.Regulation of CXCR4 receptor dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther 310, 8–17 (2004).CrossRefGoogle ScholarPubMed
Rodriguez-Frade, J.M., Mellado, M. & Martinez-A., C.Chemokine receptor dimerization: two are better than one. Trends Immunol 22, 612–617 (2001).CrossRefGoogle ScholarPubMed
Pello, O.M.et al. Ligand stabilization of CXCR4/delta-opioid receptor heterodimers reveals a mechanism for immune response regulation. Eur J Immunol 38, 537–549 (2008).CrossRefGoogle ScholarPubMed
Szabo, I.et al. Selective inactivation of CCR5 and decreased infectivity of R5 HIV-1 strains mediated by opioid-induced heterologous desensitization. J Leukoc Biol 74, 1074–1082 (2003).CrossRefGoogle ScholarPubMed
El-Asmar, L.et al. Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67, 460–469 (2005).CrossRefGoogle ScholarPubMed
Benkirane, M., Jin, D.Y., Chun, R.F., Koup, R.A. & Jeang, K.T.Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem 272, 30603–30606 (1997).CrossRefGoogle ScholarPubMed
Lee, B.et al. Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol 72, 7450–7458 (1998).Google ScholarPubMed
Hernanz-Falcon, P.et al. Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5, 216–223 (2004).CrossRefGoogle ScholarPubMed
Wang, J., He, L., Combs, C.A., Roderiquez, G. & Norcross, M.A.Dimerization of CXCR4 in living malignant cells: control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol Cancer Ther 5, 2474–2483 (2006).CrossRefGoogle ScholarPubMed
Jares-Erijman, E.A. & Jovin, T.M.FRET imaging. Nat Biotechnol 21, 1387–1395 (2003).CrossRefGoogle ScholarPubMed
Pfleger, K.D.G., Seeber, R.M.a. & Eidne, K.A.Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nature protocols 1, 337–345 (2006).CrossRefGoogle ScholarPubMed
Appelbe, S. & Milligan, G. Chapter 10. Hetero-oligomerization of chemokine receptors. Methods Enzymol 461, 207–225 (2009).CrossRefGoogle ScholarPubMed
Rodriguez-Frade, J., Munoz, L.M. & Mellado, M. Chapter 5. Multiple approaches to the study of chemokine receptor homo- and heterodimerization. Methods Enzymol 461, 105–122 (2009).CrossRefGoogle Scholar
Rodriguez-Frade, J.M.et al. Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. Embo J 23, 66–76 (2004).CrossRefGoogle ScholarPubMed
Wilson, S., Wilkinson, G. & Milligan, G.The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem 280, 28663–28674 (2005).CrossRefGoogle ScholarPubMed
Percherancier, Y.et al. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280, 9895–9903 (2005).CrossRefGoogle ScholarPubMed
Guan, E., Wang, J. & Norcross, M.A.Amino-terminal processing of MIP-1beta/CCL4 by CD26/dipeptidyl-peptidase IV. J Cell Biochem 92, 53–64 (2004).CrossRefGoogle ScholarPubMed
Sierro, F.et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc Natl Acad Sci USA 104, 14759–14764 (2007).CrossRefGoogle ScholarPubMed
Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F. & Lagane, B.CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113, 6085–6093 (2009).CrossRefGoogle ScholarPubMed
Soede, R.D., Zeelenberg, I.S., Wijnands, Y.M., Kamp, M. & Roos, E.Stromal cell-derived factor-1-induced LFA-1 activation during in vivo migration of T cell hybridoma cells requires Gq/11, RhoA, and myosin, as well as Gi and Cdc42. J Immunol 166, 4293–4301 (2001).CrossRefGoogle ScholarPubMed
Mellado, M.et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J Immunol 161, 805–813 (1998).Google ScholarPubMed
Vlahakis, S.R.et al. G protein-coupled chemokine receptors induce both survival and apoptotic signaling pathways. J Immunol 169, 5546–5554 (2002).CrossRefGoogle Scholar
Prado, G.N.et al. Chemokine signaling specificity: essential role for the N-terminal domain of chemokine receptors. Biochemistry 46, 8961–8968 (2007).CrossRefGoogle ScholarPubMed
Nguyen, D.H. & Taub, D.CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol 168, 4121–4126 (2002).CrossRefGoogle ScholarPubMed
Nguyen, D.H. & Taub, D.Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 99, 4298–4306 (2002).CrossRefGoogle ScholarPubMed
Mañes, S., Lacalle, R.A., Gómez-Mouton, C. and Martínez-A.., C.From rafts to crafts: membrane asymmetry in living cells. Trends Immunol 24, 319–325 (2003).CrossRefGoogle Scholar
Chelli, M. & Alizon, M.Determinants of the trans-dominant negative effect of truncated forms of the CCR5 chemokine receptor. J Biol Chem 276, 46975–46982 (2001).CrossRefGoogle ScholarPubMed
Limatola, C.et al. Expression of AMPA-type glutamate receptors in HEK cells and cerebellar granule neurons impairs CXCL2-mediated chemotaxis. J Neuroimmunol 134, 61–71 (2003).CrossRefGoogle ScholarPubMed
Szabo, I.et al. Heterologous desensitization of opioid receptors by chemokines inhibits chemotaxis and enhances the perception of pain. Proc Natl Acad Sci USA 99, 10276–10281 (2002).CrossRefGoogle ScholarPubMed
Ernst, O.P., Gramse, V., Kolbe, M., Hofmann, K.P. & Heck, M.Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci USA 104, 10859–10864 (2007).CrossRefGoogle ScholarPubMed
Kroeger, K.M., Hanyaloglu, A.C., Seeber, R.M., Miles, L.E. & Eidne, K.A.Constitutive and agonist-dependent homo-oligomerization of the thyrotropin-releasing hormone receptor. Detection in living cells using bioluminescence resonance energy transfer. J Biol Chem 276, 12736–12743 (2001).CrossRefGoogle ScholarPubMed
Ayoub, M.A.et al. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem 277, 21522–21528 (2002).CrossRefGoogle ScholarPubMed
Koenen, R.R.et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15, 97–103 (2009).CrossRefGoogle ScholarPubMed
Minneman, K.P.Heterodimerization and surface localization of G protein coupled receptors. Biochem Pharmacol 73, 1043–1050 (2007).CrossRefGoogle ScholarPubMed
Salahpour, A.et al. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279, 33390–33397 (2004).CrossRefGoogle ScholarPubMed
Springael, J.Y . et al. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol 69, 1652–1661 (2006).CrossRefGoogle ScholarPubMed
Franco, R.et al. G-protein-coupled receptor heteromers: function and ligand pharmacology. Br J Pharmacol 153 Suppl 1, S90–98 (2008).CrossRefGoogle ScholarPubMed
Finley, M.J.et al. Bi-directional heterologous desensitization between the major HIV-1 co-receptor CXCR4 and the kappa-opioid receptor. J Neuroimmunol 197, 114–123 (2008).CrossRefGoogle ScholarPubMed
Wells, T.N., Power, C.A., Shaw, J.P. & Proudfoot, A.E.Chemokine blockers – therapeutics in the making?Trends Pharmacol Sci 27, 41–47 (2006).CrossRefGoogle Scholar
Elsner, J.et al. Differential activation of CC chemokine receptors by AOP-RANTES. J Biol Chem 275, 7787–7794 (2000).CrossRefGoogle ScholarPubMed
Elsner, J.et al. The CC chemokine antagonist Met-RANTES inhibits eosinophil effector functions through the chemokine receptors CCR1 and CCR3. Eur J Immunol 27, 2892–2898 (1997).CrossRefGoogle ScholarPubMed
Liang, Z.et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64, 4302–4308 (2004).CrossRefGoogle ScholarPubMed
Dragic, T.et al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci USA 97, 5639–5644 (2000).CrossRefGoogle ScholarPubMed
Muller, A.et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).CrossRefGoogle ScholarPubMed
Hendrix, C.W.et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 44, 1667–1673 (2000).CrossRefGoogle ScholarPubMed
Huang, S.et al. Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol 161, 125–134 (2002).CrossRefGoogle ScholarPubMed
Mellado, M., Martin de Ana, A., Gomez, L., Martinez, C. & Rodriguez-Frade, J.M.Chemokine receptor 2 blockade prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther 324, 769–775 (2008).CrossRefGoogle Scholar
Deruaz, M.et al. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205, 2019–2031 (2008).CrossRefGoogle ScholarPubMed
Reckless, J. & Grainger, D.J.Identification of oligopeptide sequences which inhibit migration induced by a wide range of chemokines. Biochem J 340 (Pt 3), 803–811 (1999).CrossRefGoogle ScholarPubMed
Kledal, T.N.et al. A broad-spectrum chemokine antagonist encoded by Kaposi's sarcoma-associated herpesvirus. Science 277, 1656–1659 (1997).CrossRefGoogle ScholarPubMed
Johnson, Z., Proudfoot, A.E. & Handel, T.M.Interaction of chemokines and glycosaminoglycans: a new twist in the regulation of chemokine function with opportunities for therapeutic intervention. Cytokine Growth Factor Rev 16, 625–636 (2005).CrossRefGoogle ScholarPubMed
Johnson, Z.et al. Interference with heparin binding and oligomerization creates a novel anti-inflammatory strategy targeting the chemokine system. J Immunol 173, 5776–5785 (2004).CrossRefGoogle ScholarPubMed
Chen, J.D., Bai, X., Yang, A.G., Cong, Y. & Chen, S.Y.Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med 3, 1110–1116 (1997).CrossRefGoogle ScholarPubMed
Yang, A.G., Zhang, X., Torti, F. & Chen, S.Y.Anti-HIV type 1 activity of wild-type and functional defective RANTES intrakine in primary human lymphocytes. Hum Gene Ther 9, 2005–2018 (1998).CrossRefGoogle ScholarPubMed
Pello, O.M.et al. SOCS up-regulation mobilizes autologous stem cells through CXCR4 blockade. Blood 108, 3928–3937 (2006).CrossRefGoogle ScholarPubMed
Soriano, S.F.et al. Functional inactivation of CXC chemokine receptor 4-mediated responses through SOCS3 up-regulation. J Exp Med 196, 311–321 (2002).CrossRefGoogle ScholarPubMed
Chakera, A., Seeber, R.M., John, A.Ee, Eidne, K.A. & Greaves, D.R.The duffy antigen/receptor for chemokines exists in an oligomeric form in living cells and functionally antagonizes CCR5 signaling through hetero-oligomerization. Mol Pharmacol. 73:1362–1370 (2008).CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×