Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-18T17:01:23.715Z Has data issue: false hasContentIssue false

3 - Coding Efficiency and the Metabolic Cost of Sensory and Neural Information

from Part One - Biological Networks

Published online by Cambridge University Press:  04 May 2010

Roland Baddeley
Affiliation:
University of Oxford
Peter Hancock
Affiliation:
University of Stirling
Peter Földiák
Affiliation:
University of St Andrews, Scotland
Get access

Summary

Introduction

This chapter examines coding efficiency in the light of our recent analysis of the metabolic costs of neural information. We start by reviewing the relevance of coding efficiency, as illustrated by work on the blowfly retina, and subsequently on mammalian visual systems. We then present the first results from a new endeavour, again in the blowfly retina. We demonstrate that the acquisition and transmission of information demands a high metabolic price. To encode and transmit a single bit of information costs a blowfly photo-receptor or a retinal interneuron millions of ATP molecules, but the cost of transmission across a single chemical synapse is significantly less. This difference suggests a fundamental relationship between bandwidth, signal-to-noise ratio and metabolic cost in neurons that favours sparse coding by making it more economical to send bits through a channel of low capacity. We also consider different modes of neural signalling. Action potentials appear to be as costly as analogue codes and this suggests that a major reason for employing action potentials over short distances in the central nervous system is the suppression of synaptic noise in convergent circuits. Our derivation of the relationship between energy expended and the useful work done by a neural system leads us to explore the molecular basis of coding. We suggest that the representation of information by arrays of protein molecules is relatively cheap – it is transmission through cellular systems that makes information costly. Finally, we demonstrate that the cost of fuelling and maintaining the retina makes significant demands on a blowfly's energy budget.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×