Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-01T04:40:17.170Z Has data issue: false hasContentIssue false

Section I - Pathophysiology of Pediatric Liver Disease

Published online by Cambridge University Press:  19 January 2021

Frederick J. Suchy
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Ronald J. Sokol
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
William F. Balistreri
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Jorge A. Bezerra
Affiliation:
Cincinnati Children’s Hospital Medical Center, Cincinnati
Cara L. Mack
Affiliation:
University of Colorado, Children’s Hospital Colorado, Aurora
Benjamin L. Shneider
Affiliation:
Texas Children’s Hospital, Houston
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

El Sebae, GK, et al. Single-cell murine genetic fate mapping reveals bipotential hepatoblasts and novel multi-organ endoderm progenitors. Development 2018; 145(19). Published online October 11, 2018. doi:10.1242/dev.168658Google Scholar
Tremblay, KD, Zaret, KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol 2005;280(1):8799.CrossRefGoogle ScholarPubMed
Angelo, JR, Tremblay, KD. Laser-mediated cell ablation during post-implantation mouse development. Dev Dyn 2013;242(10):1202–9.Google Scholar
Huppert, SS, Iwafuchi-Doi, M. Molecular regulation of mammalian hepatic architecture. Curr Top Dev Biol 2019;132:91136.CrossRefGoogle ScholarPubMed
Lemaigre, FP. Development of the intrahepatic and extrahepatic biliary tract: a framework for understanding congenital diseases. Annu Rev Pathol 2019;15:122.CrossRefGoogle Scholar
Schaub, JR, et al. De novo formation of the biliary system by TGF beta-mediated hepatocyte transdifferentiation. Nature 2018;557(7704):247–51.Google Scholar
Vestentoft, PS, et al. Three-dimensional reconstructions of intrahepatic bile duct tubulogenesis in human liver. BMC Dev Biol 2011;11:56.Google Scholar
Tanimizu, N, Miyajima, A. Molecular mechanism of liver development and regeneration. Int Rev Cytol 2007;259:148.Google Scholar
Deutsch, G, et al. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 2001;128(6):871–81.Google Scholar
Costa, RH, et al. Transcription factors in liver development, differentiation, and regeneration. Hepatology 2003;38(6):1331–47.Google Scholar
Bort, R, et al. Hex homeobox gene controls the transition of the endoderm to a pseudostratified, cell emergent epithelium for liver bud development. Dev Biol 2006;290(1):4456.Google Scholar
Sosa-Pineda, B, Wigle, JT, Oliver, G. Hepatocyte migration during liver development requires Prox1. Nat Genet 2000;25(3):254–5.Google Scholar
Gerard, C, Tys, J, Lemaigre, FP. Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Semin Cell Dev Biol 2017;66:4350.CrossRefGoogle ScholarPubMed
Wang, J, et al. FGF signaling is required for anterior but not posterior specification of the murine liver bud. Dev Dyn 2015;244(3):431–43.CrossRefGoogle Scholar
Parviz, F, et al. Hepatocyte nuclear factor 4 alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 2003;34(3):292–6.Google Scholar
Wandzioch, E, Zaret, KS. Dynamic signaling network for the specification of embryonic pancreas and liver progenitors. Science 2009;324(5935):1707–10.CrossRefGoogle Scholar
Rossi, JM, et al. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 2001;15(15):19982009.Google Scholar
Palaria, A, et al. Patterning of the hepato-pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 2018;68(1):274–88.Google Scholar
Shih, HP, et al. A gene regulatory network cooperatively controlled by Pdx1 and Sox9 governs lineage allocation of foregut progenitor cells. Cell Rep 2015;13(2):326–36.Google Scholar
Matsumoto, K, et al. Liver organogenesis promoted by endothelial cells prior to vascular function. Science 2001;294(5542):559–63.Google Scholar
Camp, JG, et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017;546(7659):533–8.Google Scholar
Han, S, et al. Endothelial cells instruct liver specification of embryonic stem cell-derived endoderm through endothelial VEGFR2 signaling and endoderm epigenetic modifications. Stem Cell Res 2018;30:163–70.Google Scholar
Planas-Paz, L, et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 2016;18(5):467–79.Google Scholar
Huch, M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013;494(7436):247–50.Google Scholar
Prior, N, et al. Lgr5(+) stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development 2019;146(12). Published online June 12, 2019. doi:10.1242/dev.174557Google Scholar
Su, X, et al. Single-cell RNA-Seq analysis reveals dynamic trajectories during mouse liver development. BMC Genomics 2017;18(1):946.Google Scholar
Tanimizu, N, et al. Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci 2003;116(Pt 9):1775–86.Google Scholar
Yang, L, et al. A single-cell transcriptomic analysis reveals precise pathways and regulatory mechanisms underlying hepatoblast differentiation. Hepatology 2017;66(5):13871401.Google Scholar
Ludtke, TH, et al. Tbx3 promotes liver bud expansion during mouse development by suppression of cholangiocyte differentiation. Hepatology 2009;49(3):969–78.Google Scholar
Schmelzer, E, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007;204(8):1973–87.Google Scholar
Segal, JM, et al. Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat Commun 2019;10(1):3350.Google Scholar
Aizarani, N, et al. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019;572(7768):199204.CrossRefGoogle ScholarPubMed
MacParland, SA, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018;9(1):4383.Google Scholar
Tarlow, BD, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014;15(5):605–18.Google Scholar
Antoniou, A, et al. Intrahepatic bile ducts develop according to a new mode of tubulogenesis regulated by the transcription factor SOX9. Gastroenterology 2009;136(7):2325–33.Google Scholar
Raynaud, P, et al. A classification of ductal plate malformations based on distinct pathogenic mechanisms of biliary dysmorphogenesis. Hepatology 2011;53(6):1959–66.Google Scholar
Benhamouche-Trouillet, S, et al. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 2018;145(9). Published online April 30, 2018. doi:10.1242/dev.162123Google Scholar
Takashima, Y, et al. Dynamic three-dimensional morphogenesis of intrahepatic bile ducts in mouse liver development. Hepatology 2015;61(3):1003–11.Google Scholar
Tanimizu, N, et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology 2016;64(1):175–88.Google Scholar
Van Eyken, P, et al. The development of the intrahepatic bile ducts in man: a keratin-immunohistochemical study. Hepatology 1988;8(6):1586–95.Google Scholar
Clotman, F, et al. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 2005;19(16):1849–54.Google Scholar
Takayama, K, et al. CCAAT/enhancer binding protein-mediated regulation of TGFbeta receptor 2 expression determines the hepatoblast fate decision. Development 2014;141(1):91100.Google Scholar
McDaniell, R, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006;79(1):169–73.CrossRefGoogle ScholarPubMed
Warthen, DM, et al. Jagged1 (JAG1) mutations in Alagille syndrome: increasing the mutation detection rate. Hum Mutat 2006;27(5):436–43.Google Scholar
Jeliazkova, P, et al. Canonical Notch2 signaling determines biliary cell fates of embryonic hepatoblasts and adult hepatocytes independent of Hes1. Hepatology 2013;57(6):2469–79.Google Scholar
Sparks, EE, et al. Notch signaling regulates formation of the three-dimensional architecture of intrahepatic bile ducts in mice. Hepatology 2010;51(4):1391–400.Google Scholar
Thakurdas, SM, et al. Jagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi). Hepatology 2016;63(2):550–65.CrossRefGoogle Scholar
Zong, Y, et al. Notch signaling controls liver development by regulating biliary differentiation. Development 2009;136(10):1727–39.Google Scholar
Yimlamai, D, et al. Hippo pathway activity influences liver cell fate. Cell 2014;157(6):1324–38.Google Scholar
Zhang, N, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell 2010;19(1):2738.CrossRefGoogle ScholarPubMed
Tchorz, JS, et al. Notch2 signaling promotes biliary epithelial cell fate specification and tubulogenesis during bile duct development in mice. Hepatology 2009;50(3):871–9.Google Scholar
Wu, N, et al. The Hippo signaling functions through the Notch signaling to regulate intrahepatic bile duct development in mammals. Lab Invest 2017;97(7):843–53.Google Scholar
Desmet, VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation.Hepatology 1992;16(4):1069–83.Google Scholar
Huppert, SS. A new set of classifications for ductal plate malformations. Hepatology 2011;53(6):1795–7.Google Scholar
Carpentier, R, et al. Embryonic ductal plate cells give rise to cholangiocytes, periportal hepatocytes, and adult liver progenitor cells. Gastroenterology 2011;141(4):1432–8, 1438 e1–4.Google Scholar

References

Greengard, O. Effects of hormones on development of fetal enzymes. Clin Pharmacol Ther 1973;14:721–6.Google Scholar
Hashimoto, K, Ogara, Y. Epigenetic switching and neonatal nutritional environment. Adv Exp Med Biol 2018;1012:1925.Google Scholar
Hay, WW Jr. Placental-fetal glucose exchange and fetal glucose metabolism. Trans Am Clin Climatol Assoc 2006;117:321–39; discussion 3940.Google Scholar
Duval, F, Dos Santos, E, Maury, B, et al. Adiponectin regulates glycogen metabolism at the human fetal-maternal interface. J Mol Endocrinol 2018;61:139–52.Google Scholar
James-Allan, LB, Arbet, J, Teal, SB, et al. Insulin stimulates GLUT4 trafficking to the syncytiotrophoblast basal plasma membrane in the human placenta. J Clin Endocrinol Metab 2019. pii: jc.2018–02778. doi: 10.1210/jc.2018-02778 [Epub ahead of print].Google Scholar
Yubero, P, Hondares, E, Carmona, MC, et al. The developmental regulation of peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression in the liver is partially dissociated from the control of gluconeogenesis and lipid catabolism. Endocrinology 2004;145:4268–77.Google Scholar
Vaughan, OR, Rosano, FJ, Powell, T, et al. Regulation of placental amino acid transport and fetal growth. Prog Mol Biol Transl Sci 2017;145:217–51.Google Scholar
Van den Akker, CH, van Goudoever, JB. Recent advances in our understanding of protein and amino acid metabolism in the human fetus. Curr Opin Clin Nutr 2010;13:7580.Google Scholar
van den Acer, CH, Schierbeek, H, Minderman, G, et al. Amino acid metabolism in the human fetus at term: leucine, valine, and methionine kinetics. Pediatr Res 2011;70:566–71.Google Scholar
Battaglia, FC. Glutamine and glutamate exchange between the fetal liver and the placenta. J Nutr 2000;130(4S Suppl):974S977S.Google Scholar
Shiojiri, N, Wada, JI, Tanaka, T, et al. Heterogeneous hepatocellular expression of glutamine synthetase in developing mouse liver and in testicular transplants of fetal liver. Lab Invest 1995;72:740–7.Google Scholar
Thomas, B, Gruca, LL, Bennett, C, et al. Metabolism of methionine in the newborn infant: response to the parenteral and enteral administration of nutrients. Pediatr Res 2008;64:381–6.Google Scholar
Bouckenooghe, T, Remacle, C, Reusens, B. Is taurine a functional nutrient? Curr Opin Clin Nutr 2006;9:728–33.Google Scholar
Ghio, A, Bertolotto, A, Resi, V, et al. Triglyceride metabolism in pregnancy. Adv Clin Chem 2011;55:133–53.Google Scholar
Herrera, E, Amusquivar, E, Lopez- Soldado, I, et al. Maternal lipid metabolism and placental lipid transfer. Horm Res 2006;65(Suppl 3):5964.Google Scholar
Lewis, RM, Wadsack, C, Desoye, G. Placental fatty acid transfer. Curr Opin Clin Nutr Metab Care 2018;21(2):7882. doi: 10.1097/MCO.0000000000000443.Google Scholar
Herrera, E, Lopez-Soldado, I, Limones, M, et al. Lipid metabolism during the perinatal phase, and its implications on postnatal development. Int J Vitam Nutr Res 2006;76:216–24.Google Scholar
Ehara, E, Kamei, Y, Yuan, X, et al. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal genes in the postnatal liver. Diabetes 2015;64:775–84.Google Scholar
Pegorier, JP, Prip-Buus, C, Duee, PH, et al. Hormonal control of fatty acid oxidation during the neonatal period. Diabetes Metab 1992;18:156–60.Google Scholar
Haggarty, P. Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr 2004;58:1559–70.Google Scholar
Hong, L, Rosenbaum, S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther 2014;19(4):262–76.Google Scholar
Leeder, JS, Kearns, GL, Spielberg, SP, et al. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol 2010;50:1377–87.Google Scholar
Vyhlidal, CA, Gaedigk, R, Leeder, JS. Nuclear receptor expression in fetal and pediatric liver: correlation with CYP3A expression. Drug Metab Dispos 2006;34:131–7.Google Scholar
Blake, MJ, Castro, L, Leeder, JS, et al. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonat Metab 2005;10:123–38.Google ScholarPubMed
Matalová, P, Urbánek, K, Anzenbacher, P. Specific features of pharmacokinetics in children. Drug Metab Rev 2016;48(1):70–9.Google Scholar
Zhang, J, Cashman, JR. Quantitative analysis of FMO gene mRNA levels in human tissues. Drug Metab Dispos 2006;34:1926.Google Scholar
Josephy, PD. Genetic variations in human glutathione transferase enzymes: significance for pharmacology and toxicology. Hum Genomics Proteomics 2010;2010:876940. Published June 13, 2010. doi: 10.4061/2010/876940Google Scholar
Hein, DW, Doll, MA, Fretland, AJ, et al. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 2000;9:2942.Google Scholar
Myllynen, P, Immonen, E, Kummu, M, Vahakangas, K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin Drug Metab Toxicol 2009;5:1483–99.Google Scholar
Han, LW, Gao, G, Mao, Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 2018;14:817–29.Google Scholar
Chen, HL, Liu, YJ, Feng, CH, et al. Developmental expression of canalicular transporter genes in human liver. J Hepatol 2005;43:472–7.Google Scholar
Arrese, M, Ananthananarayanan, M, Suchy, FJ. Hepatobiliary transport: molecular mechanisms of development and cholestasis. Pediatr Res 1998;44:141–7.Google Scholar
Colombo, C, Zuliani, G, Ronchi, M, et al. Biliary bile acid composition of the human fetus in early gestation. Pediatr Res 1987;21:197200.Google Scholar
Balistreri, WF, Heubi, JE, Suchy, FJ. Immaturity of the enterohepatic circulation in early life: factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 1983;2:346–54.Google Scholar
Watkins, JB, Ingall, D, Szczepanik, P, et al. Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technique. N Engl J Med 1973;288:431–4.Google Scholar
Watkins, JB, Szczepanik, P, Gould, JB, et al. Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology 1975;69:706–13.Google ScholarPubMed
Setchell, KD, Dumaswala, R, Colombo, C, et al. Hepatic bile acid metabolism during early development revealed from the analysis of human fetal gallbladder bile. J Biol Chem 1988;263:16637–44.Google Scholar
Suchy, FJ, Balistreri, WF, Heubi, JE, et al. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 1981;80:1037–41.Google Scholar
Itoh, S, Onishi, S, Isobe, K, et al. Foetomaternal relationships of serum bile acid pattern estimated by high-pressure liquid chromatography. Biochem J 1982;204:141–5.Google Scholar
Balistreri, WF. Immaturity of hepatic excretory function and the ontogeny of bile acid metabolism. J Pediatr Gastr Nutr 1983;2(Suppl 1):S207S214.Google Scholar
Klinger, W. Biotransformation of drugs and other xenobiotics during postnatal development. Pharmacol Ther 1982;16:377429.Google Scholar
Little, JM, Smallwood, RA, Lester, R, et al. Bile-salt metabolism in the primate fetus. Gastroenterology 1975;69:1315–20.Google Scholar
Bernstein, RB, Novy, MJ, Piasecki, GJ, et al. Bilirubin metabolism in the fetus. J Clin Invest 1969;48:1678–88.Google Scholar
Smallwood, RA, Lester, R, Plasecki, GJ, et al. Fetal bile salt metabolism. II. Hepatic excretion of endogenous bile salt and of a taurocholate load.J Clin Invest 1972;51:1388–97.Google ScholarPubMed
Tavoloni, N, Jones, MJ, Berk, PD. Postnatal development of bile secretory physiology in the dog. J Pediatr Gastroenterol Nutr 1985;4:256–67.Google Scholar
Mohan, P, Ling, SC, Watkins, JB. Ontogeny of hepatobiliary secretion: role of glutathione. Hepatology 1994;19:1504–12.CrossRefGoogle ScholarPubMed
Ho, ML, Chen, JY, Ling, UP, et al. Gallbladder volume and contractility in term and preterm neonates: normal values and clinical applications in ultrasonography. Acta Paediatr 1998;87:799804.Google Scholar
Jawaheer, G, Pierro, A, Lloyd, DA, et al. Gallbladder contractility in neonates: effects of parenteral and enteral feeding. Arch Dis Child Fetal 1995;72:F200F202.Google Scholar
Kaplan, GS, Bhutani, VK, Shaffer, TH, et al. Gallbladder mechanics in newborn piglets. Pediatr Res 1984;18:1181–4.Google Scholar
Suchy, FJ, Bucuvalas, JC, Goodrich, AL, et al. Taurocholate transport and Na+-K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. Am J Physiol 1986;251(5 Pt 1):G665C673.Google Scholar
Bellemann, P. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats. Biochem J 1981;198:475–83.Google Scholar
Belknap, WM, Zimmer-Nechemias, L, Suchy, FJ, Balistreri, WF. Bile acid efflux from suckling rat hepatocytes. Pediatr Res 1988;23:364–7.Google Scholar
Stolz, A, Sugiyama, Y, Kuhlenkamp, J, et al. Cytosolic bile acid binding protein in rat liver: radioimmunoassay, molecular forms, developmental characteristics and organ distribution. Hepatology 1986;6:433–9.Google Scholar
Hardikar, W, Ananthanarayanan, M, Suchy, FJ. Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. J Biol Chem 1995;270:20841–6.Google Scholar
Balasubramaniyan, N, Shahid, M, Suchy, FJ, et al. Multiple mechanisms of ontogenic regulation of nuclear receptors during rat liver development. Am J Physiol Gastriointest Liver Physiol 2005;288:G251G260.Google Scholar
Tomer, G, Ananthanarayanan, M, Weymann, A, et al. Differential developmental regulation of rat liver canalicular membrane transporters Bsep and Mrp2. Pediatr Res 2003;53:288–94.Google Scholar
Zinchuk, VS, Okada, T, Akimaru, K, et al. Asynchronous expression and colocalization of Bsep and Mrp2 during development of rat liver. Am J Phys – Gastr L. 2002;282:G540G548.Google Scholar
Wagner, M, Zollner, G, Trauner, M. Nuclear receptors in liver disease. Hepatology 2011;53:1023–34.Google Scholar

References

Balistreri, WF, Suchy, FJ, Farrell, MK, Heubi, JE. Pathologic versus physiologic cholestasis: elevated serum concentration of a secondary bile acid in the presence of hepatobiliary disease. J Pediatr 1981;98:399402.Google Scholar
Spivak, W, Grand, RJ. General configuration of cholestasis in the newborn. J Pediatr Gastroenterol Nutr 1983;2:381–92.Google Scholar
Yang, T, Khan, GJ, Wu, Z, Wang, X, Zhang, L, Jiang, Z. Bile acid homeostasis paradigm and its connotation with cholestatic liver diseases. Drug Discov Today 2019;24:112–28.Google Scholar
Popper, H. Cholestasis: the future of a past and present riddle. Hepatology 1981;1:187–91.Google Scholar
Hofmann, AF. Biliary secretion and excretion in health and disease: current concepts. Ann Hepatol 2007;6:1527.Google Scholar
Fickert, P, Wagner, M. Biliary bile acids in hepatobiliary injury – What is the link? J Hepatol 2017;67:619–31.Google Scholar
Lester, R. Physiologic cholestasis. Gastroenterology 1980;78:864–5.Google Scholar
Fawaz, R, Baumann, U, Ekong, U, Fischler, B, Hadzic, N, Mack, CL, McLin, VA, et al. Guideline for the evaluation of cholestatic jaundice in infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017;64:154–68.Google Scholar
Feldman, AG, Sokol, RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019;16:346–60.Google Scholar
Trauner, M, Fuchs, CD, Halilbasic, E, Paumgartner, G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017;65:13931404.Google Scholar
Tabibian, JH, Masyuk, AI, Masyuk, TV, O’Hara, SP, Larusso, NF. Physiology of cholangiocytes. Compr Physiol 2013;3:541–65.Google Scholar
Dawson, PA, Karpen, SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015;56:1085–99.Google Scholar
Jansen, PL, Ghallab, A, Vartak, N, Reif, R, Schaap, FG, Hampe, J, Hengstler, JG. The ascending pathophysiology of cholestatic liver disease. Hepatology 2017;65:722–38.Google Scholar
Li, J, Dawson, PA. Animal models to study bile acid metabolism. Biochim Biophys Acta Mol Basis Dis 2019;1865:895911.Google Scholar
Heubi, JE, Setchell, KDR, Bove, KE. Inborn errors of bile acid metabolism. Clin Liver Dis 2018;22:671–87.Google Scholar
Strautnieks, SS, Bull, LN, Knisely, AS, Kocoshis, SA, Dahl, N, Arnell, H, Sokal, E, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Gen 1998;20:233–8.Google Scholar
Borgstroem, B, Lundh, G, Hofmann, A. The site of absorption of conjugated bile salts in man. Gastroenterology 1963;45:229–38.Google Scholar
Wong, MH, Oelkers, P, Craddock, AL, Dawson, PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 1994;269:1340–7.Google Scholar
Dawson, PA, Hubbert, M, Haywood, J, Craddock, AL, Zerangue, N, Christian, WV, Ballatori, N. The heteromeric organic solute transporter alpha-beta, Ostalpha-Ostbeta, is an ileal basolateral bile acid transporter. J Biol Chem 2005;280:6960–8.Google Scholar
Hagenbuch, B, Lubbert, H, Stieger, B, Meier, PJ. Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem 1990;265:5357–60.Google Scholar
Orntoft, NW, Munk, OL, Frisch, K, Ott, P, Keiding, S, Sorensen, M. Hepatobiliary transport kinetics of the conjugated bile acid tracer (11)C-CSar quantified in healthy humans and patients by positron emission tomography. J Hepatol 2017;67:321–7.Google Scholar
Ridlon, JM, Harris, SC, Bhowmik, S, Kang, DJ, Hylemon, PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016;7:2239.Google Scholar
Yan, H, Zhong, G, Xu, G, He, W, Jing, Z, Gao, Z, Huang, Y, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012;1:e00049.Google Scholar
Hu, HH, Liu, J, Lin, YL, Luo, WS, Chu, YJ, Chang, CL, Jen, CL, et al. The rs2296651 (S267F) variant on NTCP (SLC10A1) is inversely associated with chronic hepatitis B and progression to cirrhosis and hepatocellular carcinoma in patients with chronic hepatitis B. Gut 2016;65:1514–21.Google Scholar
Li, W, Urban, S. Entry of hepatitis B and hepatitis D virus into hepatocytes: basic insights and clinical implications. J Hepatol 2016;64:S32S40.Google Scholar
Dawson, PA. Hepatic bile acid uptake in humans and mice: multiple pathways and expanding potential role for gut-liver signaling. Hepatology 2017;66:1384–6.Google Scholar
Slijepcevic, D, Roscam Abbing, RLP, Katafuchi, T, Blank, A, Donkers, JM, van Hoppe, S, de Waart, DR, et al. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice. Hepatology 2017;66:1631–43.Google Scholar
Slijepcevic, D, van de Graaf, SF. Bile acid uptake transporters as targets for therapy. Dig Dis 2017;35:251–8.Google Scholar
Vaz, FM, Paulusma, CC, Huidekoper, H, de Ru, M, Lim, C, Koster, J, Ho-Mok, K, et al. Sodium taurocholate cotransporting polypeptide (SLC10A1) deficiency: conjugated hypercholanemia without a clear clinical phenotype. Hepatology 2015;61:260–7.Google Scholar
Karpen, SJ, Dawson, PA. Not all (bile acids) who wander are lost: the first report of a patient with an isolated NTCP defect. Hepatology 2015;61:24–7.Google Scholar
Suchy, FJ, Ananthanarayanan, M. Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr 2006;43(Suppl1):S1016.Google Scholar
Stieger, B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metabolism Reviews 2010;42:437–45. http://dx.doi.org/10.3109/03602530903492004Google Scholar
Davit-Spraul, A, Fabre, M, Branchereau, S, Baussan, C, Gonzales, E, Stieger, B, Bernard, O, et al. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology 2010;51:1645–55.Google Scholar
Groen, A, Romero, MR, Kunne, C, Hoosdally, SJ, Dixon, PH, Wooding, C, Williamson, C, et al. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity. Gastroenterology 2011;141:1927–37.Google Scholar
Keitel, V, Nies, A, Brom, M, Hummel-Eisenbeiss, J, Spring, H, Keppler, D. A common Dubin-Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). Am J Physiol Gastrointest Liver Physiol 2003;284:G165–74.Google Scholar
Corpechot, C, Barbu, V, Chazouilleres, O, Broue, P, Girard, M, Roquelaure, B, Chretien, Y, et al. Genetic contribution of ABCC2 to Dubin-Johnson syndrome and inherited cholestatic disorders. Liver Int 2020;40:163–74.Google Scholar
Lazaridis, KN, LaRusso, NF. The cholangiopathies. Mayo Clin Proc 2015;90:791800.Google Scholar
Banales, JM, Huebert, RC, Karlsen, T, Strazzabosco, M, LaRusso, NF, Gores, GJ. Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 2019;16:269–81.Google Scholar
Fabris, L, Fiorotto, R, Spirli, C, Cadamuro, M, Mariotti, V, Perugorria, MJ, Banales, JM, et al. Pathobiology of inherited biliary diseases: a roadmap to understand acquired liver diseases. Nat Rev Gastroenterol Hepatol 2019;16:497511.Google Scholar
Beuers, U, Maroni, L, Elferink, RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol 2012;28:253–7.Google Scholar
Maillette de Buy Wenniger, LJ, Hohenester, S, Maroni, L, van Vliet, SJ, Oude Elferink, RP, Beuers, U. The cholangiocyte glycocalyx stabilizes the “biliary HCO3 umbrella”: an integrated line of defense against toxic bile acids. Dig Dis 2015;33:397407.Google Scholar
Masyuk, AI, Masyuk, TV, LaRusso, NF. Cholangiocyte primary cilia in liver health and disease. Dev Dyn 2008;237:2007–12.Google Scholar
Larusso, NF, Masyuk, TV. The role of cilia in the regulation of bile flow. Dig Dis 2011;29:612.Google Scholar
Perugorria, MJ, Masyuk, TV, Marin, JJ, Marzioni, M, Bujanda, L, LaRusso, NF, Banales, JM. Polycystic liver diseases: advanced insights into the molecular mechanisms. Nat Rev Gastroenterol Hepatol 2014;11:750–61.Google Scholar
Ghallab, A, Hofmann, U, Sezgin, S, Vartak, N, Hassan, R, Zaza, A, Godoy, P, et al. Bile microinfarcts in cholestasis are initiated by rupture of the apical hepatocyte membrane and cause shunting of bile to sinusoidal blood. Hepatology 2019;69:666–83.Google Scholar
Watkins, JB, Ingall, D, Szczepanik, P, Klein, PD, Lester, R. Bile-salt metabolism in the newborn. Measurement of pool size and synthesis by stable isotope technic. N Engl J Med 1973;288:431–4.Google Scholar
Suchy, FJ, Balistreri, WF, Heubi, JE, Searcy, JE, Levin, RS. Physiologic cholestasis: elevation of the primary serum bile acid concentrations in normal infants. Gastroenterology 1981;80:1037–41.Google Scholar
Balistreri, WF, Heubi, JE, Suchy, FJ. Immaturity of the enterohepatic circulation in early life: factors predisposing to “physiologic” maldigestion and cholestasis. J Pediatr Gastroenterol Nutr 1983;2:346–54.Google Scholar
Khandekar, G, Llewellyn, J, Kriegermeier, A, Waisbourd-Zinman, O, Johnson, N, Du, Y, Giwa, R, et al. Coordinated development of the mouse extrahepatic bile duct: implications for neonatal susceptibility to biliary injury. J Hepatol 2020;72:135–45.Google Scholar
Karpen, SJ, Trauner, M. The new therapeutic frontier–nuclear receptors and the liver. J Hepatol 2010;52:455–62.Google Scholar
Wagner, M, Zollner, G, Trauner, M. Nuclear receptors in liver disease. Hepatology 2011;53:1023–34.Google Scholar
Arab, JP, Karpen, SJ, Dawson, PA, Arrese, M, Trauner, M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology 2017;65:350–62.Google Scholar
Karpen, SJ, Trauner, M. The new therapeutic frontier–nuclear receptors and the liver. J Hepatol 2010;52:455–62.Google Scholar
Keitel, V, Droge, C, Haussinger, D. Targeting FXR in cholestasis. Handb Exp Pharmacol 2019;256:299324.Google Scholar
Keitel, V, Haussinger, D. Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis 2018;38:333–9.Google Scholar
Nevens, F, Andreone, P, Mazzella, G, Strasser, SI, Bowlus, C, Invernizzi, P, Drenth, JP, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med 2016;375:631–43.Google Scholar
Chen, XQ, Wang, LL, Shan, QW, Tang, Q, Deng, YN, Lian, SJ, Yun, X. A novel heterozygous NR1H4 termination codon mutation in idiopathic infantile cholestasis. World J Pediatr 2012;8:6771.Google Scholar
Gomez-Ospina, N, Potter, CJ, Xiao, R, Manickam, K, Kim, MS, Kim, KH, Shneider, BL, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun 2016;7:10713.Google Scholar
Karlsen, TH, Lammert, F, Thompson, RJ. Genetics of liver disease: from pathophysiology to clinical practice. J Hepatol 2015;62:S6S14.Google Scholar
Nicolaou, M, Andress, EJ, Zolnerciks, JK, Dixon, PH, Williamson, C, Linton, KJ. Canalicular ABC transporters and liver disease. J Pathol 2012;226:300–15.Google Scholar
Grammatikopoulos, T, Sambrotta, M, Strautnieks, S, Foskett, P, Knisely, AS, Wagner, B, Deheragoda, M, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol 2016;65:1179–87.Google Scholar
Maddirevula, S, Alhebbi, H, Alqahtani, A, Algoufi, T, Alsaif, HS, Ibrahim, N, Abdulwahab, F, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med 2019;21:1164–72.Google Scholar
Unlusoy Aksu, A, Das, SK, Nelson-Williams, C, Jain, D, Ozbay Hosnut, F, Evirgen Sahin, G, Lifton, RP, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis. Hepatol Commun 2019;3:471–7.Google Scholar
Sultan, M, Rao, A, Elpeleg, O, Vaz, FM, Abu Libdeh, BY, Karpen, SJ, Dawson, PA. Organic solute transporter-beta (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 2018;68:590–98.Google Scholar
Berauer, JP, Mezina, AI, Okou, DT, Sabo, A, Muzny, DM, Gibbs, RA, Hegde, MR, et al. Identification of polycystic kidney disease 1 like 1 gene variants in children with biliary atresia splenic malformation syndrome. Hepatology 2019;70:899910.Google Scholar
Shagrani, M, Burkholder, J, Broering, D, Abouelhoda, M, Faquih, T, El-Kalioby, M, Subhani, SN, et al. Genetic profiling of children with advanced cholestatic liver disease. Clin Genet 2017;92:5261.Google Scholar
Nicastro, E, D’Antiga, L. Next generation sequencing in pediatric hepatology and liver transplantation. Liver Transpl 2018;24:282–93.Google Scholar
Osler, W. (1901). Principles and Practice of Medicine (p. 550). New York: Appleton and Company.Google Scholar
Kosters, A, Karpen, SJ. The role of inflammation in cholestasis: clinical and basic aspects. Semin Liver Dis 2010;30:186–94.Google Scholar
Dunham, EC. Septicemia in the new-born. Am J Dis Child 1933;45:229–53.Google Scholar
Utili, R, Abernathy, C, Zimmerman, H. Endotoxin effects on the liver. Life Sci 1977;20:553–68.Google Scholar
Tacke, F, Luedde, T, Trautwein, C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009;36:412.Google Scholar
Strnad, P, Tacke, F, Koch, A, Trautwein, C. Liver – guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 2017;14:5566.Google Scholar
Moshage, H. Cytokines and the hepatic acute phase response. J Pathol 1997;181:257–66.Google Scholar
Padda, MS, Sanchez, M, Akhtar, AJ, Boyer, JL. Drug-induced cholestasis. Hepatology 2011;53:1377–87.Google Scholar
Hoofnagle, JH, Bjornsson, ES. Drug-induced liver injury – types and phenotypes. N Engl J Med 2019;381:264–73.Google Scholar
Woolbright, BL, Jaeschke, H. Mechanisms of inflammatory liver injury and drug-induced hepatotoxicity. Curr Pharmacol Rep 2018;4:346–57.Google Scholar
Kearns, G, Abdel-Rahman, S, Alander, S, Blowey, D, Leeder, J, Kauffman, R. Developmental pharmacology – drug disposition, action, and therapy in infants and children. N Engl J Med 2003;349:1157–67.Google Scholar
Zollner, G, Wagner, M, Trauner, M. Nuclear receptors as drug targets in cholestasis and drug-induced hepatotoxicity. Pharmacol Ther 2010;126:228–43.Google Scholar
Trauner, M, Baghdasaryan, A, Claudel, T, Fickert, P, Halilbasic, E, Moustafa, T, Zollner, G. Targeting nuclear bile acid receptors for liver disease. Dig Dis 2011;29:98102.Google Scholar
Carter, BA, Karpen, SJ. Intestinal failure-associated liver disease: management and treatment strategies past, present, and future. Semin Liver Dis 2007;27:251–8.Google Scholar
Lee, WS, Sokol, RJ. Intestinal microbiota, lipids, and the pathogenesis of intestinal failure-associated liver disease. J Pediatr 2015;167:519–26.Google Scholar
El Kasmi, KC, Vue, PM, Anderson, AL, Devereaux, MW, Ghosh, S, Balasubramaniyan, N, Fillon, SA, et al. Macrophage-derived IL-1beta/NF-kappaB signaling mediates parenteral nutrition-associated cholestasis. Nat Commun 2018;9:1393.Google Scholar
Rochling, FA, Catron, HA. Intestinal failure-associated liver disease: causes, manifestations and therapies. Curr Opin Gastroenterol 2019;35:126–33.Google Scholar
Pironi, L, Sasdelli, AS. Intestinal failure-associated liver disease. Clin Liver Dis 2019;23:279–91.Google Scholar
Josephson, J, Turner, JM, Field, CJ, Wizzard, PR, Nation, PN, Sergi, C, Ball, RO, et al. Parenteral soy oil and fish oil emulsions: impact of dose restriction on bile flow and brain size of parenteral nutrition-fed neonatal piglets. JPEN J Parenter Enteral Nutr 2015;39:677–87.Google Scholar
Koelfat, KVK, Schaap, FG, Hodin, C, Visschers, RGJ, Svavarsson, BI, Lenicek, M, Shiri-Sverdlov, R, et al. Parenteral nutrition dysregulates bile salt homeostasis in a rat model of parenteral nutrition-associated liver disease. Clin Nutr 2017;36:1403–10.Google Scholar
Mutanen, A, Lohi, J, Heikkila, P, Jalanko, H, Pakarinen, MP. Liver inflammation relates to decreased canalicular bile transporter expression in pediatric onset intestinal failure. Ann Surg 2018:268(2):332–9.Google Scholar
Lam, CKL, Church, PC, Haliburton, B, Chambers, K, Martincevic, I, Vresk, L, Courtney-Martin, G, et al. Long-term exposure of children to a mixed lipid emulsion is less hepatotoxic than soybean-based lipid emulsion. J Pediatr Gastroenterol Nutr 2018;66:501–4.Google Scholar
Carter, BA, Taylor, OA, Prendergast, DR, Zimmerman, TL, Von Furstenberg, R, Moore, DD, Karpen, SJ. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr Res 2007;62:301–6.Google Scholar
Isaac, DM, Alzaben, AS, Mazurak, VC, Yap, J, Wizzard, PR, Nation, PN, Zhao, YY, et al. Mixed lipid, fish oil and soybean oil parenteral lipids impact cholestasis, hepatic phytosterol and lipid composition. J Pediatr Gastroenterol Nutr 2019;68:861–7.Google Scholar
Rochling, FA, Catron, HA. Intestinal failure-associated liver disease: causes, manifestations and therapies. Curr Opin Gastroenterol 2019;35:126–33.Google Scholar
Fuchs, CD, Schwabl, P, Reiberger, T, Trauner, M. Liver capsule: FXR agonists against liver disease. Hepatology 2016;64:1773.Google Scholar
Pradhan-Sundd, T, Zhou, L, Vats, R, Jiang, A, Molina, L, Singh, S, Poddar, M, et al. Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology 2018;67:2320–37.Google Scholar
Pradhan-Sundd, T, Monga, SP. Blood-bile barrier: morphology, regulation, and pathophysiology. Gene Expr 2019;19:6987.Google Scholar
Hofmann, AF. Inappropriate ileal conservation of bile acids in cholestatic liver disease: homeostasis gone awry. Gut 2003;52:1239–41.Google Scholar
Miethke, AG, Zhang, W, Simmons, J, Taylor, AE, Shi, T, Shanmukhappa, SK, Karns, R, et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology 2016;63:512–23.Google Scholar
Fuchs, CD, Paumgartner, G, Mlitz, V, Kunczer, V, Halilbasic, E, Leditznig, N, Wahlstrom, A, et al. Colesevelam attenuates cholestatic liver and bile duct injury in Mdr2(-/-) mice by modulating composition, signalling and excretion of faecal bile acids. Gut 2018;67:1683–91.Google Scholar
Poupon, R. ASBT inhibitors in cholangiopathies – Good for mice, good for men? J Hepatol 2016;64:537–8.Google Scholar
Karpen, SJ. Novel bile acid therapies for liver disease. Gastroenterol Hepatol 2018;14:117–19.Google Scholar
Hakim, A, Zhang, X, DeLisle, A, Oral, EA, Dykas, D, Drzewiecki, K, Assis, DN, et al. Clinical utility of genomic analysis in adults with idiopathic liver disease. J Hepatol 2019;70:1214–21.Google Scholar
Schaap, FG, Trauner, M, Jansen, PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 2014;11:5567.Google Scholar

References

Narkewicz, MR, Horslen, S, Hardison, RM, Shneider, BL, Rodriguez-Baez, N, Alonso, EM, Ng, VL, et al. A learning collaborative approach increases specificity of diagnosis of acute liver failure in pediatric patients. Clin Gastroenterol Hepatol 2018;16:1801–10 e1803.Google Scholar
Squires, JE, McKiernan, P, Squires, RH. Acute liver failure: an update. Clin Liver Dis 2018;22:773805.Google Scholar
Kim, WR, Lake, JR, Smith, JM, Skeans, MA, Schladt, DP, Edwards, EB, Harper, AM, et al. OPTN/SRTR 2013 Annual Data Report: liver. Am J Transplant 2015;15(Suppl 2):128.Google Scholar
Ng, VL, Li, R, Loomes, KM, Leonis, MA, Rudnick, DA, Belle, SH, Squires, RH, et al. Outcomes of children with and without hepatic encephalopathy from the Pediatric Acute Liver Failure Study Group. J Pediatr Gastroenterol Nutr 2016;63:357–64.Google Scholar
Squires, RH Jr., Shneider, BL, Bucuvalas, J, Alonso, E, Sokol, RJ, Narkewicz, MR, Dhawan, A, et al. Acute liver failure in children: the first 348 patients in the pediatric acute liver failure study group. J Pediatr 2006;148:652–8.Google Scholar
Alonso, EM, Horslen, SP, Behrens, EM, Doo, E. Pediatric acute liver failure of undetermined cause: a research workshop. Hepatology 2017;65:1026–37.Google Scholar
Alam, S, Khanna, R, Sood, V, Lal, BB, Rawat, D. Profile and outcome of the first 109 cases of paediatric acute liver failure at a specialized paediatric liver unit in India. Liver Int 2017;37:1508–14.Google Scholar
Tannuri, AC, Porta, G, Kazue Miura, I, Santos, MM, Moreira Dde, A, de Rezende, NM, Miyatani, HT, et al. Pediatric acute liver failure in Brazil: is living donor liver transplantation the best choice for treatment? Liver Transpl 2016;22:1006–13.Google Scholar
Narkewicz, MR, Dell Olio, D, Karpen, SJ, Murray, KF, Schwarz, K, Yazigi, N, Zhang, S, et al. Pattern of diagnostic evaluation for the causes of pediatric acute liver failure: an opportunity for quality improvement. J Pediatr 2009;155:801–6 e801.Google Scholar
Schwarz, KB, Dell Olio, D, Lobritto, SJ, Lopez, MJ, Rodriguez-Baez, N, Yazigi, NA, Belle, SH, et al. Analysis of viral testing in nonacetaminophen pediatric acute liver failure. J Pediatr Gastroenterol Nutr 2014;59:616–23.Google Scholar
Valencia, CA, Wang, X, Wang, J, Peters, A, Simmons, JR, Moran, MC, Mathur, A, et al. Deep sequencing reveals novel genetic variants in children with acute liver failure and tissue evidence of impaired energy metabolism. PLoS One 2016;11:e0156738.Google Scholar
Vilarinho, S, Choi, M, Jain, D, Malhotra, A, Kulkarni, S, Pashankar, D, Phatak, U, et al. Individual exome analysis in diagnosis and management of paediatric liver failure of indeterminate aetiology. J Hepatol 2014;61:1056–63.Google Scholar
Azhar, N, Ziraldo, C, Barclay, D, Rudnick, DA, Squires, RH, Vodovotz, Y. Pediatric Acute Liver Failure Study Group. Analysis of serum inflammatory mediators identifies unique dynamic networks associated with death and spontaneous survival in pediatric acute liver failure. PLoS One 2013;8:e78202.Google Scholar
Zamora, R, Vodovotz, Y, Mi, Q, Barclay, D, Yin, J, Horslen, S, Rudnick, D, et al. Data-driven modeling for precision medicine in pediatric acute liver failure. Mol Med 2017;22:821–9.Google Scholar
Bucuvalas, J, Filipovich, L, Yazigi, N, Narkewicz, MR, Ng, V, Belle, SH, Zhang, S, et al. Immunophenotype predicts outcome in pediatric acute liver failure. J Pediatr Gastroenterol Nutr 2013;56:311–15.Google Scholar
McKenzie, RB, Berquist, WE, Nadeau, KC, Louie, CY, Chen, SF, Sibley, RK, Glader, BE, et al. Novel protocol including liver biopsy to identify and treat CD8+ T-cell predominant acute hepatitis and liver failure. Pediatr Transplant 2014;18:503–9.Google Scholar
Chapin, CA, Burn, T, Meijome, T, Loomes, KM, Melin-Aldana, H, Kreiger, PA, Whitington, PF, et al. Indeterminate pediatric acute liver failure is uniquely characterized by a CD103(+) CD8(+) T-cell infiltrate. Hepatology 2018;68:10871100.Google Scholar
Chapin, CA, Horslen, SP, Squires, JE, Lin, H, Blondet, N, Mohammad, S, Alonso, EM. Corticosteroid therapy for indeterminate pediatric acute liver failure and aplastic anemia with acute hepatitis. J Pediatr 2019;208:23–9.Google Scholar
Li, R, Belle, SH, Horslen, S, Chen, LW, Zhang, S, Squires, RH. Pediatric Acute Liver Failure Study Group. Clinical course among cases of acute liver failure of indeterminate diagnosis. J Pediatr 2016;171:163–70 e161–163.Google Scholar
Squires, JE, Rudnick, DA, Hardison, RM, Horslen, S, Ng, VL, Alonso, EM, Belle, SH, et al. Liver transplant listing in pediatric acute liver failure: practices and participant characteristics. Hepatology 2018;68:2338–47.Google Scholar
Ramachandran, A, Jaeschke, H. Acetaminophen hepatotoxicity. Semin Liver Dis 2019; 39(2):221–34.Google Scholar
Lee, WM. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J Hepatol 2017;67:1324–31.Google Scholar
Rumack, BH. Acetaminophen overdose in children and adolescents. Pediatr Clin North Am 1986;33:691701.Google Scholar
Zamora, R, Barclay, D, Yin, J, Alonso, EM, Leonis, MA, Mi, Q, Billiar, TR, et al. HMGB1 is a central driver of dynamic pro-inflammatory networks in pediatric acute liver failure induced by acetaminophen. Sci Rep 2019;9:5971.Google Scholar
Saito, C, Zwingmann, C, Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 2010;51:246–54.Google Scholar
Heubi, JE, Barbacci, MB, Zimmerman, HJ. Therapeutic misadventures with acetaminophen: hepatoxicity after multiple doses in children. J Pediatr 1998;132:22–7.Google Scholar
Court, MH, Freytsis, M, Wang, X, Peter, I, Guillemette, C, Hazarika, S, Duan, SX, et al. The UDP-glucuronosyltransferase (UGT) 1 A polymorphism c.2042C>G (rs8330) is associated with increased human liver acetaminophen glucuronidation, increased UGT1A exon 5a/5b splice variant mRNA ratio, and decreased risk of unintentional acetaminophen-induced acute liver failure. J Pharmacol Exp Ther 2013;345: 297307.Google Scholar
Linakis, MW, Cook, SF, Kumar, SS, Liu, X, Wilkins, DG, Gaedigk, R, Gaedigk, A, et al. Polymorphic expression of UGT1A9 is associated with variable acetaminophen glucuronidation in neonates: a population pharmacokinetic and pharmacogenetic study. Clin Pharmacokinet 2018;57:1325–36.Google Scholar
James, LP, Alonso, EM, Hynan, LS, Hinson, JA, Davern, TJ, Lee, WM, Squires, RH, et al. Detection of acetaminophen protein adducts in children with acute liver failure of indeterminate cause. Pediatrics 2006;118:e676681.Google Scholar
Alonso, EM, James, LP, Zhang, S, Squires, RH, Pediatric Acute Liver Failure Study Group. Acetaminophen adducts detected in serum of pediatric patients with acute liver failure. J Pediatr Gastroenterol Nutr 2015;61:102–7.Google Scholar
Devarbhavi, H, Patil, M, Reddy, VV, Singh, R, Joseph, T, Ganga, D. Drug-induced acute liver failure in children and adults: results of a single-centre study of 128 patients. Liver Int 2018;38:1322–9.Google Scholar
Amin, MD, Harpavat, S, Leung, DH. Drug-induced liver injury in children. Curr Opin Pediatr 2015;27:625–33.Google Scholar
Narkewicz, MR, Horslen, S, Belle, SH, Rudnick, DA, Ng, VL, Rosenthal, P, Romero, R, et al. Prevalence and significance of autoantibodies in children with acute liver failure. J Pediatr Gastroenterol Nutr 2017;64:210–17.Google Scholar
Stravitz, RT, Lefkowitch, JH, Fontana, RJ, Gershwin, ME, Leung, PS, Sterling, RK, Manns, MP, et al. Autoimmune acute liver failure: proposed clinical and histological criteria. Hepatology 2011;53:517–26.Google Scholar
Chinn, IK, Eckstein, OS, Peckham-Gregory, EC, Goldberg, BR, Forbes, LR, Nicholas, SK, Mace, EM, et al. Genetic and mechanistic diversity in pediatric hemophagocytic lymphohistiocytosis. Blood 2018;132:89100.Google Scholar
Chandrakasan, S, Filipovich, AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr 2013;163:1253–9.Google Scholar
Picard, C, Bobby Gaspar, H, Al-Herz, W, Bousfiha, A, Casanova, JL, Chatila, T, Crow, YJ, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 2018;38:96128.Google Scholar
Grunebaum, E, Avitzur, Y. Liver-associated immune abnormalities. Autoimmun Rev 2019;18:1520.Google Scholar
Taylor, SA, Whitington, PF. Neonatal acute liver failure. Liver Transpl 2016;22:677–85.Google Scholar
Whitington, PF. Gestational alloimmune liver disease and neonatal hemochromatosis. Semin Liver Dis 2012;32:325–32.Google Scholar
Sundaram, SS, Alonso, EM, Narkewicz, MR, Zhang, S, Squires, RH. Pediatric Acute Liver Failure Study Group. Characterization and outcomes of young infants with acute liver failure. J Pediatr 2011;159:813–18 e811.Google Scholar
Li, H, Byers, HM, Diaz-Kuan, A, Vos, MB, Hall, PL, Tortorelli, S, Singh, R, et al. Acute liver failure in neonates with undiagnosed hereditary fructose intolerance due to exposure from widely available infant formulas. Mol Genet Metab 2018;123:428–32.Google Scholar
Staufner, C, Haack, TB, Kopke, MG, Straub, BK, Kolker, S, Thiel, C, Freisinger, P, et al. Recurrent acute liver failure due to NBAS deficiency: phenotypic spectrum, disease mechanisms, and therapeutic concepts. J Inherit Metab Dis 2016;39:316.Google Scholar
Squires, RH, Ng, V, Romero, R, Ekong, U, Hardikar, W, Emre, S, Mazariegos, GV. Evaluation of the pediatric patient for liver transplantation: 2014 practice guideline by the American Association for the Study of Liver Diseases, American Society of Transplantation and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. Hepatology 2014;60:362–98.Google Scholar
Parikh, S, Karaa, A, Goldstein, A, Ng, YS, Gorman, G, Feigenbaum, A, Christodoulou, J, et al. Solid organ transplantation in primary mitochondrial disease: proceed with caution. Mol Genet Metab 2016;118:178–84.Google Scholar
Feldman, AG, Sokol, RJ, Hardison, RM, Alonso, EM, Squires, RH, Narkewicz, MR. Pediatric Acute Liver Failure Study Group. Lactate and lactate: pyruvate ratio in the diagnosis and outcomes of pediatric acute liver failure. J Pediatr 2017;182:217–22 e213.Google Scholar
Casey, JP, Slattery, S, Cotter, M, Monavari, AA, Knerr, I, Hughes, J, Treacy, EP, et al. Clinical and genetic characterisation of infantile liver failure syndrome type 1, due to recessive mutations in LARS. J Inherit Metab Dis 2015;38:1085–92.Google Scholar
Shneider, BL, Rinaldo, P, Emre, S, Bucuvalas, J, Squires, R, Narkewicz, M, Gondolesi, G, et al. Abnormal concentrations of esterified carnitine in bile: a feature of pediatric acute liver failure with poor prognosis. Hepatology 2005;41:717–21.Google Scholar
Faghfoury, H, Baruteau, J, de Baulny, HO, Haberle, J, Schulze, A. Transient fulminant liver failure as an initial presentation in citrullinemia type I. Mol Genet Metab 2011;102:413–17.Google Scholar
Gallagher, RC, Lam, C, Wong, D, Cederbaum, S, Sokol, RJ. Significant hepatic involvement in patients with ornithine transcarbamylase deficiency. J Pediatr 2014;164:720–5 e726.Google Scholar
Korman, JD, Volenberg, I, Balko, J, Webster, J, Schiodt, FV, Squires, RH Jr., Fontana, RJ, et al. Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests. Hepatology 2008;48:1167–74.Google Scholar
Pandit, A, Mathew, LG, Bavdekar, A, Mehta, S, Ramakrishnan, G, Datta, S, Liu, YF. Hepatotropic viruses as etiological agents of acute liver failure and related-outcomes among children in India: a retrospective hospital-based study. BMC Res Notes 2015;8:381.Google Scholar
Poddar, U, Thapa, BR, Prasad, A, Singh, K. Changing spectrum of sporadic acute viral hepatitis in Indian children. J Trop Pediatr 2002;48:210–13.Google Scholar
Safadi, R, Or, R, Ilan, Y, Naparstek, E, Nagler, A, Klein, A, Ketzinel-Gilaad, M, et al. Lack of known hepatitis virus in hepatitis-associated aplastic anemia and outcome after bone marrow transplantation. Bone Marrow Transplant 2001;27:183–90.Google Scholar
Phillips, MJ, Blendis, LM, Poucell, S, Offterson, J, Petric, M, Roberts, E, Levy, GA, et al. Syncytial giant-cell hepatitis. Sporadic hepatitis with distinctive pathological features, a severe clinical course, and paramyxoviral features. N Engl J Med 1991;324:455–60.Google Scholar
Ojetti, V, Fini, L, Zileri Dal Verme, L, Migneco, A, Pola, P, Gasbarrini, A. Acute cryptogenic liver failure in an untreated coeliac patient: a case report. Eur J Gastroenterol Hepatol 2005;17:1119–21.Google Scholar
Heymann, F, Tacke, F. Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016;13:88110.Google Scholar
Ramachandran, A, Jaeschke, H. Acetaminophen hepatotoxicity. Semin Liver Dis 2019;39:221–34.Google Scholar
Real, M, Barnhill, MS, Higley, C, Rosenberg, J, Lewis, JH. Drug-induced liver injury: highlights of the recent literature. Drug Saf 2019;42:365–87.Google Scholar
Mi, Q, Li, NY, Ziraldo, C, Ghuma, A, Mikheev, M, Squires, R, Okonkwo, DO, et al. Translational systems biology of inflammation: potential applications to personalized medicine. Per Med 2010;7:549–59.Google Scholar
Zamora, R, Vodovotz, Y, Mi, Q, Barclay, D, Yin, J, Horslen, S, Rudnick, D, et al. Data-driven modeling for precision medicine in pediatric acute liver failure. Mol Med 2016;22:821–9.Google Scholar
Possamai, LA, Thursz, MR, Wendon, JA, Antoniades, CG. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure. J Hepatol 2014;61:439–45.Google Scholar
Stout, RD, Jiang, C, Matta, B, Tietzel, I, Watkins, SK, Suttles, J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005;175:342–9.Google Scholar
Antoniades, CG, Berry, PA, Wendon, JA, Vergani, D. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol 2008;49:845–61.Google Scholar
Rolando, N, Wade, J, Davalos, M, Wendon, J, Philpott-Howard, J, Williams, R. The systemic inflammatory response syndrome in acute liver failure. Hepatology 2000;32:734–9.Google Scholar
Michalopoulos, GK. Principles of liver regeneration and growth homeostasis. Compr Physiol 2013;3:485513.Google Scholar
Huang, J, Schriefer, AE, Cliften, PF, Dietzen, D, Kulkarni, S, Sing, S, Monga, SP, et al. Postponing the hypoglycemic response to partial hepatectomy delays mouse liver regeneration. Am J Pathol 2016;186:587–99.Google Scholar
Rudnick, DA, Dietzen, DJ, Turmelle, YP, Shepherd, R, Zhang, S, Belle, SH, Squires, R, et al. Serum alpha-NH-butyric acid may predict spontaneous survival in pediatric acute liver failure. Pediatr Transplant 2009;13:223–30.Google Scholar
Chapin, CA, Mohammad, S, Bass, LM, Taylor, SA, Kelly, S, Alonso, EM. Liver biopsy can be safely performed in pediatric acute liver failure to aid in diagnosis and management. J Pediatr Gastroenterol Nutr 2018;67:441–5.Google Scholar
Alonso, EM, Sokol, RJ, Hart, J, Tyson, RW, Narkewicz, MR, Whitington, PF. Fulminant hepatitis associated with centrilobular hepatic necrosis in young children. J Pediatr 1995;127:888–94.Google Scholar
Squires, RH Jr. Acute liver failure in children. Semin Liver Dis 2008;28:153–66.Google Scholar
Hussain, E, Grimason, M, Goldstein, J, Smith, CM, Alonso, E, Whitington, PF, Wainwright, MS. EEG abnormalities are associated with increased risk of transplant or poor outcome in children with acute liver failure. J Pediatr Gastroenterol Nutr 2014;58:449–56.Google Scholar
Press, CA, Morgan, L, Mills, M, Stack, CV, Goldstein, JL, Alonso, EM, Wainwright, MS. Spectral electroencephalogram analysis for the evaluation of encephalopathy grade in children with acute liver failure. Pediatr Crit Care Med 2017;18:6472.Google Scholar
Kamat, P, Kunde, S, Vos, M, Vats, A, Gupta, N, Heffron, T, Romero, R, et al. Invasive intracranial pressure monitoring is a useful adjunct in the management of severe hepatic encephalopathy associated with pediatric acute liver failure. Pediatr Crit Care Med 2012;13:e3338.Google Scholar
Srivastava, A, Yadav, SK, Borkar, VV, Yadav, A, Yachha, SK, Thomas, MA, Rathore, RK, et al. Serial evaluation of children with ALF with advanced MRI, serum proinflammatory cytokines, thiamine, and cognition assessment. J Pediatr Gastroenterol Nutr 2012;55:580–6.Google Scholar
Shawcross, DL, Wendon, JA. The neurological manifestations of acute liver failure. Neurochem Int 2012;60:662–71.Google Scholar
Kawada, PS, Bruce, A, Massicotte, P, Bauman, M, Yap, J. Coagulopathy in children with liver disease. J Pediatr Gastroenterol Nutr 2017;65:603–7.Google Scholar
Lisman, T, Stravitz, RT. Rebalanced hemostasis in patients with acute liver failure. Semin Thromb Hemost 2015;41:468–73.Google Scholar
Barton, CA. Treatment of coagulopathy related to hepatic insufficiency. Crit Care Med 2016;44:1927–33.Google Scholar
Stravitz, RT, Lisman, T, Luketic, VA, Sterling, RK, Puri, P, Fuchs, M, Ibrahim, A, et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J Hepatol 2012;56:129–36.Google Scholar
Patel, KR, Bertuch, A, Sasa, GS, Himes, RW, Wu, H. Features of hepatitis in hepatitis-associated aplastic anemia: clinical and histopathologic study. J Pediatr Gastroenterol Nutr 2017;64:e7e12.Google Scholar
Molina, RA, Katzir, L, Rhee, C, Ingram-Drake, L, Moore, T, Krogstad, P, Martin, MG. Early evidence of bone marrow dysfunction in children with indeterminate fulminant hepatic failure who ultimately develop aplastic anemia. Am J Transplant 2004;4:1656–61.Google Scholar
Leventhal, TM, Liu, KD. What a nephrologist needs to know about acute liver failure. Adv Chronic Kidney Dis 2015;22:376–81.Google Scholar
Jain, V, Dhawan, A. Extracorporeal liver support systems in paediatric liver failure. J Pediatr Gastroenterol Nutr 2017;64:855–63.Google Scholar
Kiss, JE, Berman, D, Van Thiel, D. Effective removal of copper by plasma exchange in fulminant Wilson’s disease. Transfusion 1998;38:327–31.Google Scholar
Singer, AL, Olthoff, KM, Kim, H, Rand, E, Zamir, G, Shaked, A. Role of plasmapheresis in the management of acute hepatic failure in children. Ann Surg 2001;234:418–24.Google Scholar
Larsen, FS, Schmidt, LE, Bernsmeier, C, Rasmussen, A, Isoniemi, H, Patel, VC, Triantafyllou, E, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol 2016;64:6978.Google Scholar
Hanish, SI, Stein, DM, Scalea, JR, Essien, EO, Thurman, P, Hutson, WR, Bartlett, ST, et al. Molecular adsorbent recirculating system effectively replaces hepatic function in severe acute liver failure. Ann Surg 2017;266:677–84.Google Scholar
Lexmond, WS, Van Dael, CM, Scheenstra, R, Goorhuis, JF, Sieders, E, Verkade, HJ, Van Rheenen, PF, et al. Experience with molecular adsorbent recirculating system treatment in 20 children listed for high-urgency liver transplantation. Liver Transpl 2015;21:369–80.Google Scholar
Lu, BR, Zhang, S, Narkewicz, MR, Belle, SH, Squires, RH, Sokol, RJ. Pediatric Acute Liver Failure Study Group. Evaluation of the liver injury unit scoring system to predict survival in a multinational study of pediatric acute liver failure. J Pediatr 2013;162:1010–16 e1011–14.Google Scholar
Sundaram, V, Shneider, BL, Dhawan, A, Ng, VL, Im, K, Belle, S, Squires, RH. King’s College Hospital Criteria for non-acetaminophen induced acute liver failure in an international cohort of children. J Pediatr 2013;162:319–23 e311.Google Scholar
Rajanayagam, J, Frank, E, Shepherd, RW, Lewindon, PJ. Artificial neural network is highly predictive of outcome in paediatric acute liver failure. Pediatr Transplant 2013;17:535–42.Google Scholar
Kumar, R, Shalimar, Sharma H, Goyal, R, Kumar, A, Khanal, S, Prakash, S, et al. Prospective derivation and validation of early dynamic model for predicting outcome in patients with acute liver failure. Gut 2012;61:1068–75.Google Scholar
Deep, A, Stewart, CE, Dhawan, A, Douiri, A. Effect of continuous renal replacement therapy on outcome in pediatric acute liver failure. Crit Care Med 2016;44:1910–19.Google Scholar
Lutfi, R, Abulebda, K, Nitu, ME, Molleston, JP, Bozic, MA, Subbarao, G. Intensive care management of pediatric acute liver failure. J Pediatr Gastroenterol Nutr 2017;64:660–70.Google Scholar
Mack, CL, Ferrario, M, Abecassis, M, Whitington, PF, Superina, RA, Alonso, EM. Living donor liver transplantation for children with liver failure and concurrent multiple organ system failure. Liver Transpl 2001;7:890–5.Google Scholar
Ciria, R, Davila, D, Heaton, N. Auxiliary liver transplantation in children. Curr Opin Organ Transplant 2011;16:489–93.Google Scholar
Sorensen, LG, Neighbors, K, Zhang, S, Limbers, CA, Varni, JW, Ng, VL, Squires, RH, et al. Neuropsychological functioning and health-related quality of life: pediatric acute liver failure study group results. J Pediatr Gastroenterol Nutr 2015;60:7583.Google Scholar
Squires, JE, Soltys, KA, McKiernan, P, Squires, RH, Strom, SC, Fox, IJ, Clinical hepatocyte, Soto-Gutierrez A transplantation: what is next? Curr Transplant Rep 2017;4:280–9.Google Scholar
Psacharopoulos, HT, Mowat, AP, Davies, M, Portmann, B, Silk, DB, Williams, R. Fulminant hepatic failure in childhood: an analysis of 31 cases. Arch Dis Child 1980;55:252–8.Google Scholar
Mondragon, R, Mieli-Vergani, G, Heaton, ND, Mowat, AP, Vougas, V, Williams, R, Tan, KC. Liver transplantation for fulminant liver failure in children. Transpl Int 1992;5(Suppl 1):S206–8.Google Scholar

Bibliography

Garcia-Tsao, G, Friedman, S, Iredale, J, Pinzani, M. Now there are many (stages) where before there was one: in search of a pathophysiological classification of cirrhosis. Hepatology 2010;51(4):1445–9.Google Scholar
Pinzani, M, Rombouts, K. Liver fibrosis: from the bench to clinical targets. Dig Liver Dis. 2004;36(4):231–42.Google Scholar
Hernandez-Gea, V, Friedman, SL. Pathogenesis of liver fibrosis. Annu Rev Pathol 2011;6(1):425–56.Google Scholar
Wells, RG. Cellular sources of extracellular matrix in hepatic fibrosis. Clin Liver Dis 2008;12(4):759–68.Google Scholar
Wells, RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008;47(4):1394–400.Google Scholar
Yoon, YJ, Friedman, SL, Lee, YA. Antifibrotic therapies: where are we now? Semin Liver Dis 2016;36(1):8798.Google Scholar
Manka, P, Zeller, A, Syn, W-K. Fibrosis in chronic liver disease: an update on diagnostic and treatment modalities. Drugs 2019;79(9):903–27.Google Scholar
Riehle, KJ, Dan, YY, Campbell, JS, Fausto, N. New concepts in liver regeneration. J Gastroenterol Hepatol 2011;26 Suppl 1(2):203–12.Google Scholar
Satapathy, SK, Bernstein, D. Dermatologic disorders and the liver. Clin Liver Dis 2011;15(1):165–82.Google Scholar
Sussman, NL, Kochar, R, Fallon, MB. Pulmonary complications in cirrhosis. Curr Opin Organ Transplant 2011;16(3):281–8.Google Scholar
Swanson, KL, Wiesner, RH, Krowka, MJ. Natural history of hepatopulmonary syndrome: impact of liver transplantation. Hepatology 2005;41(5):1122–9.Google Scholar
Ridaura-Sanz, C, Mejía-Hernández, C, López-Corella, E. Portopulmonary hypertension in children. A study in pediatric autopsies. Arch Med Res 2009;40(7):635–9.Google Scholar
Mukhtar, NA, Fix, OK. Portopulmonary hypertension. J Clin Gastroenterol 2011;45(8):703–10.Google Scholar
Savale, L, O’Callaghan, DS, Magnier, R, Le Pavec, J, Hervé, P, Jaïs, X, et al. Current management approaches to portopulmonary hypertension. Int J Clin Pract Suppl 2011;65(169):1118.Google Scholar
Laving, A, Khanna, A, Rubin, L, Ing, F, Dohil, R, Lavine, JE. Successful liver transplantation in a child with severe portopulmonary hypertension treated with epoprostenol. J Pediatr Gastroenterol Nutr 2005;41(4):466–8.Google Scholar
Maheshwari, A, Thuluvath, PJ. Endocrine diseases and the liver. Clin Liver Dis 2011;15(1):5567.Google Scholar
Foerster, BR, Conklin, LS, Petrou, M, Barker, PB, Schwarz, KB. Minimal hepatic encephalopathy in children: evaluation with proton MR spectroscopy. Am J Neuroradiol 2009;30(8):1610–13.Google Scholar
Bonnel, AR, Bunchorntavakul, C, Reddy, KR. Immune dysfunction and infections in patients with cirrhosis. Clin Gastroenterol Hepatol 2011;9(9):727–38.Google Scholar
Ginès, P, Schrier, RW. Renal failure in cirrhosis. N Engl J Med 2009;361(13):1279–90.Google Scholar
Utterson, EC, Shepherd, RW, Sokol, RJ, Bucuvalas, J, Magee, JC, McDiarmid, SV, et al. Biliary atresia: clinical profiles, risk factors, and outcomes of 755 patients listed for liver transplantation. J Pediatr 2005;147(2):180–5.Google Scholar
Wibaux, C, Legroux-Gerot, I, Dharancy, S, Boleslawski, E, Declerck, N, Canva, V, et al. Assessing bone status in patients awaiting liver transplantation. Joint Bone Spine 2011;78(4):387–91.Google Scholar
Schilsky, ML, Ala, A. Genetic testing for Wilson disease: availability and utility. Curr Gastroenterol Rep 2010;12(1):5761.Google Scholar
Sakka, SG. Assessing liver function. Curr Opin Crit Care 2007;13(2):207–14.Google Scholar
Ohwada, S, Kawate, S, Hamada, K, Yamada, T, Sunose, Y, Tsutsumi, H, et al. Perioperative real-time monitoring of indocyanine green clearance by pulse spectrophotometry predicts remnant liver functional reserve in resection of hepatocellular carcinoma. Br J Surg 2006;93(3):339–46.Google Scholar
Blüthner, E, Bednarsch, J, Pape, U-F, Karber, M, Maasberg, S, Gerlach, UA, et al. Advanced liver function assessment in patients with intestinal failure on long-term parenteral nutrition. Clin Nutr 2020;39(2):540–7.Google Scholar
Kamath, PS, Wiesner, RH, Malinchoc, M, Kremers, W, Therneau, TM, Kosberg, CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001;33(2):464–70.Google Scholar
McDiarmid, SV, Anand, R, Lindblad, AS. Principal Investigators and Institutions of the Studies of Pediatric Liver Transplantation (SPLIT) Research Group. Development of a pediatric end-stage liver disease score to predict poor outcome in children awaiting liver transplantation. Transplantation 2002;74(2):173–81.Google Scholar
Chang, C-CH, Bryce, CL, Shneider, BL, Yabes, JG, Ren, Y, Zenarosa, GL, et al. Accuracy of the pediatric end-stage liver disease score in estimating pretransplant mortality among pediatric liver transplant candidates. JAMA Pediatr 2018;172(11):1070–7.Google Scholar
Tripodi, A, Mannucci, PM. The coagulopathy of chronic liver disease. N Engl J Med 2011;365(2):147–56.Google Scholar
Giefer, MJ, Murray, KF, Colletti, RB. Pathophysiology, diagnosis, and management of pediatric ascites. J Pediatr Gastroenterol Nutr 2011;52(5):503–13.Google Scholar
Bertino, F, Hawkins, CM, Shivaram, G, Gill, AE, Lungren, MP, Reposar, A, et al. Technical feasibility and clinical effectiveness of transjugular intrahepatic portosystemic shunt creation in pediatric and adolescent patients. J Vasc Interv Radiol 2019;30(2):178–86.Google Scholar
Ghannam, JS, Cline, MR, Hage, AN, Chick, JFB, Srinivasa, RN, Dasika, NL, et al. Technical success and outcomes in pediatric patients undergoing transjugular intrahepatic portosystemic shunt placement: a 20-year experience. Pediatr Radiol 2019;49(1):128–35.Google Scholar
Slowik, V, Monroe, EJ, Friedman, SD, Hsu, EK, Horslen, S. Pressure gradients, laboratory changes, and outcomes with transjugular intrahepatic portosystemic shunts in pediatric portal hypertension. Pediatric Transplantation 2019;23(3):e13387.Google Scholar
Koulaouzidis, A, Bhat, S, Saeed, AA. Spontaneous bacterial peritonitis. World J Gastroenterol 2009;15(9):1042–9.Google Scholar
Haghighat, M, Dehghani, SM, Alborzi, A, Imanieh, MH, Pourabbas, B, Kalani, M. Organisms causing spontaneous bacterial peritonitis in children with liver disease and ascites in Southern Iran. World J Gastroenterol 2006;12(36):5890–2.Google Scholar
Căruntu, FA, Benea, L. Spontaneous bacterial peritonitis: pathogenesis, diagnosis, treatment. J Gastrointestin Liver Dis 2006;15(1):51–6.Google Scholar
Vieira, SMG, Schwengber, FP, Melere, M, Ceza, MR, Souza, M, Kieling, CO. The first episode of spontaneous bacterial peritonitis is a threat event in children with end-stage liver disease. Eur J Gastroenterol Hepatol 2018;30(3):323–7.Google Scholar
Arroyo, V, Fernandez, J, Ginès, P. Pathogenesis and treatment of hepatorenal syndrome. Semin Liver Dis 2008;28(1):8195.Google Scholar
Salerno, F, Gerbes, A, Ginès, P, Wong, F, Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007;56(9):1310–18.Google Scholar
Grangé, JD, Amiot, X. Nitric oxide and renal function in cirrhotic patients with ascites: from physiopathology to practice. Eur J Gastroenterol Hepatol 2004;16(6):567–70.Google Scholar
Rasaratnam, B, Kaye, D, Jennings, G, Dudley, F, Chin-Dusting, J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. A randomized trial. Ann Intern Med 2003;139(3):186–93.Google Scholar
Gonwa, TA, McBride, MA, Anderson, K, Mai, ML, Wadei, H, Ahsan, N. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: where will MELD lead us? Am J Transplant 2006;6(11):2651–9.Google Scholar
Capling, RK, Bastani, B. The clinical course of patients with type 1 hepatorenal syndrome maintained on hemodialysis. Ren Fail 2004;26(5):563–8.Google Scholar
Mas, A. Hepatic encephalopathy: from pathophysiology to treatment. Digestion 2006;73 Suppl 1(1):8693.Google Scholar
Stewart, CA, Smith, GE. Minimal hepatic encephalopathy. Nat Clin Pract Gastroenterol Hepatol 2007;4(12):677–85.Google Scholar
Ross, BD, Jacobson, S, Villamil, F, Korula, J, Kreis, R, Ernst, T, et al. Subclinical hepatic encephalopathy: proton MR spectroscopic abnormalities. Radiology 1994;193(2):457–63.Google Scholar
Charlton, CP, Buchanan, E, Holden, CE, Preece, MA, Green, A, Booth, IW, et al. Intensive enteral feeding in advanced cirrhosis: reversal of malnutrition without precipitation of hepatic encephalopathy. Arch Dis Child 1992;67(5):603–7.Google Scholar
Morgan, MY, Blei, A, Grüngreiff, K, Jalan, R, Kircheis, G, Marchesini, G, et al. The treatment of hepatic encephalopathy. Metab Brain Dis 2007;22(3–4):389405.Google Scholar
Bass, NM, Mullen, KD, Sanyal, A, Poordad, F, Neff, G, Leevy, CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med 2010;362(12):1071–81.Google Scholar

References

Teckman, JH, Rosenthal, P, Abel, R, Bass, LM, Michail, S, Murray, KF, Rudnick, DA, et al. Baseline analysis of a young alpha-1-antitrypsin deficiency liver disease cohort reveals frequent portal hypertension. J Pediatr Gastroenterol Nutr 2015;61:94101.Google Scholar
D’Antiga, L, Betalli, P, De Angelis, P, Davenport, M, Di Giorgio, A, McKiernan, PJ, McLin, V, et al. Interobserver agreement on endoscopic classification of oesophageal varices in children. J Pediatr Gastroenterol Nutr 2015;61:176–81.Google Scholar
Koot, BG, Alders, M, Verheij, J, Beuers, U, Cobben, JM. A de novo mutation in KCNN3 associated with autosomal dominant idiopathic non-cirrhotic portal hypertension. J Hepatol 2016;64:974–7.Google Scholar
Duche, M, Ducot, B, Ackermann, O, Guerin, F, Jacquemin, E, Bernard, O. Portal hypertension in children: high-risk varices, primary prophylaxis and consequences of bleeding. J Hepatol 2017;66:320–7.Google Scholar
Cardey, J, Le Gall, C, Michaud, L, Dabadie, A, Talbotec, C, Bellaiche, M, Lamireau, T, et al. Screening of esophageal varices in children using esophageal capsule endoscopy: a multicenter prospective study. Endoscopy 2019;51:1017.Google Scholar
Shneider, BL, Bosch, J, de Franchis, R, Emre, SH, Groszmann, RJ, Ling, SC, Lorenz, JM, et al. Portal hypertension in children: expert pediatric opinion on the report of the Baveno v Consensus Workshop on Methodology of Diagnosis and Therapy in Portal Hypertension. Pediatr Transplant 2012;16:426–37.Google Scholar
Fernandez, M. Molecular pathophysiology of portal hypertension. Hepatology 2015;61:1406–15.Google Scholar
McConnell, M, Iwakiri, Y. Biology of portal hypertension. Hepatol Int 2018;12:1123.Google Scholar
Konigshofer, P, Brusilovskaya, K, Schwabl, P, Reiberger, T. Animal models of portal hypertension. Biochim Biophys Acta Mol Basis Dis 2019;1865:1019–30.Google Scholar
Kowalski, HJ, Abelmann, WH. The cardiac output at rest in Laennec’s cirrhosis. J Clin Invest 1953;32:1025–33.Google Scholar
Valla, DC. Budd-Chiari syndrome/hepatic venous outflow tract obstruction. Hepatol Int 2018;12:168–80.Google Scholar
Gentil-Kocher, S, Bernard, O, Brunelle, F, Hadchouel, M, Maillard, JN, Valayer, J, Hay, JM, et al. Budd-Chiari syndrome in children: report of 22 cases. J Pediatr 1988;113:30–8.Google Scholar
Nobre, S, Khanna, R, Bab, N, Kyrana, E, Height, S, Karani, J, Kane, P, et al. Primary Budd-Chiari syndrome in children: King’s College Hospital Experience. J Pediatr Gastroenterol Nutr 2017;65:93–6.Google Scholar
Franceschet, I, Zanetto, A, Ferrarese, A, Burra, P, Senzolo, M. Therapeutic approaches for portal biliopathy: a systematic review. World J Gastroenterol 2016;22:9909–20.Google Scholar
Thompson, RJ, Taylor, MA, McKie, LD, Diamond, T. Sinistral portal hypertension. Ulster Med J 2006;75:175–7.Google Scholar
Miga, D, Sokol, RJ, Mackenzie, T, Narkewicz, MR, Smith, D, Karrer, FM. Survival after first esophageal variceal hemorrhage in patients with biliary atresia. J Pediatr 2001;139:291–6.Google Scholar
D’Amico, G, De Franchis, R. Upper digestive bleeding in cirrhosis. Post-therapeutic outcome and prognostic indicators. Hepatology 2003;38:599612.Google Scholar
Etzion, O, Koh, C, Heller, T. Noncirrhotic portal hypertension: an overview. Clin Liver Dis 2015;6:72–4.Google Scholar
Sood, V, Lal, BB, Khanna, R, Rawat, D, Bihari, C, Alam, S. Noncirrhotic portal fibrosis in pediatric population. J Pediatr Gastroenterol Nutr 2017;64:748–53.Google Scholar
Besmond, C, Valla, D, Hubert, L, Poirier, K, Grosse, B, Guettier, C, Bernard, O, et al. Mutations in the novel gene FOPV are associated with familial autosomal dominant and non-familial obliterative portal venopathy. Liver Int 2018;38:358–64.Google Scholar
Arab, JP, Barrera, F, Arrese, M. Bile acids and portal hypertension. Ann Hepatol 2017;16:s83s86.Google Scholar
Eblimit, Z, Thevananther, S, Karpen, SJ, Taegtmeyer, H, Moore, DD, Adorini, L, Penny, DJ, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther 2018;36:e12462.Google Scholar
Desai, MS, Mathur, B, Eblimit, Z, Vasquez, H, Taegtmeyer, H, Karpen, SJ, Penny, DJ, et al. Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology 2017;65:189201.Google Scholar
Gorgis, NM, Kennedy, C, Lam, F, Thompson, K, Coss-Bu, J, Akcan Arikan, A, Nguyen, T, et al. Clinical consequences of cardiomyopathy in children with biliary atresia requiring liver transplantation. Hepatology 2019;69:1206–18.Google Scholar
Tripathi, D, Hayes, PC. The role of carvedilol in the management of portal hypertension. Eur J Gastroenterol Hepatol 2010;22:905–11.Google Scholar
Howard, ER, Stringer, MD, Mowat, AP. Assessment of injection sclerotherapy in the management of 152 children with oesophageal varices. Br J Surg 1988;75:404–8.Google Scholar
Mitra, SK, Kumar, V, Datta, DV, Rao, PN, Sandhu, K, Singh, GK, Sodhi, JS, et al. Extrahepatic portal hypertension: a review of 70 cases. J Pediatr Surg 1978;13:51–7.Google Scholar
Webb, LJ, Sherlock, S. The aetiology, presentation and natural history of extra-hepatic portal venous obstruction. Q J Med 1979;48:627–39.Google Scholar
Waisbourd-Zinman, O, Shah, A, Lin, HC, Rand, EB. Splenic rupture in children with portal hypertension. J Pediatr Gastroenterol Nutr 2018;66:447–50.Google Scholar
Lee, WS, Wong, SY, Ivy, DD, Sokol, RJ. Hepatopulmonary syndrome and portopulmonary hypertension in children: recent advances in diagnosis and management. J Pediatr 2018;196:1421 e11.Google Scholar
Abrams, GA, Jaffe, CC, Hoffer, PB, Binder, HJ, Fallon, MB. Diagnostic utility of contrast echocardiography and lung perfusion scan in patients with hepatopulmonary syndrome. Gastroenterology 1995;109:1283–8.Google Scholar
Yonemura, T, Yoshibayashi, M, Uemoto, S, Inomata, Y, Tanaka, K, Furusho, K. Intrapulmonary shunting in biliary atresia before and after living-related liver transplantation. Br J Surg 1999;86:1139–43.Google Scholar
Barbe, T, Losay, J, Grimon, G, Devictor, D, Sardet, A, Gauthier, F, Houssin, D, et al. Pulmonary arteriovenous shunting in children with liver disease. J Pediatr 1995;126:571–9.Google Scholar
Hoerning, A, Raub, S, Neudorf, U, Muntjes, C, Kathemann, S, Lainka, E, Stehling, F, et al. Pulse oximetry is insufficient for timely diagnosis of hepatopulmonary syndrome in children with liver cirrhosis. J Pediatr 2014;164:546–52 e541–2.Google Scholar
Cartin-Ceba, R, Krowka, MJ. Portopulmonary hypertension. Clin Liver Dis 2014;18:421–38.Google Scholar
Ecochard-Dugelay, E, Lambert, V, Schleich, JM, Duche, M, Jacquemin, E, Bernard, O. Portopulmonary hypertension in liver disease presenting in childhood: study of fourteen patients and literature review. J Pediatr Gastroenterol Nutr 2015;61:346–54.Google Scholar
AbuHalimeh, B, Krowka, MJ, Tonelli, AR. Treatment barriers in portopulmonary hypertension. Hepatology 2019;69:431–43.Google Scholar
Yousef, N, Habes, D, Ackermann, O, Durand, P, Bernard, O, Jacquemin, E. Hepatorenal syndrome: diagnosis and effect of terlipressin therapy in 4 pediatric patients. J Pediatr Gastroenterol Nutr 2010;51:100–2.Google Scholar
Deep, A, Saxena, R, Jose, B. Acute kidney injury in children with chronic liver disease. Pediatr Nephrol 2019;34:4559.Google Scholar
Mack, CL, Zelko, FA, Lokar, J, Superina, R, Alonso, EM, Blei, AT, Whitington, PF. Surgically restoring portal blood flow to the liver in children with primary extrahepatic portal vein thrombosis improves fluid neurocognitive ability. Pediatrics 2006;117:e405–12.Google Scholar
Srivastava, A, Chaturvedi, S, Gupta, RK, Malik, R, Mathias, A, Jagannathan, NR, Jain, S, et al. Minimal hepatic encephalopathy in children with chronic liver disease: prevalence, pathogenesis and magnetic resonance-based diagnosis. J Hepatol 2017;66:528–36.Google Scholar
D’Amico, G, Morabito, A, D’Amico, M, Pasta, L, Malizia, G, Rebora, P, Valsecchi, MG. Clinical states of cirrhosis and competing risks. J Hepatol 2018;68:563–76.Google Scholar
Sarin, SK, Agarwal, SR. Extrahepatic portal vein obstruction. Semin Liver Dis 2002;22:4358.Google Scholar
Shneider, BL, de Ville de Goyet, J, Leung, DH, Srivastava, A, Ling, SC, Duche, M, McKiernan, P, et al. Primary prophylaxis of variceal bleeding in children and the role of MesoRex Bypass: summary of the Baveno VI Pediatric Satellite Symposium.Hepatology 2016;63:1368–80.Google Scholar
Bezerra, JA, Wells, RG, Mack, CL, Karpen, SJ, Hoofnagle, JH, Doo, E, Sokol, RJ. Biliary atresia: clinical and research challenges for the twenty-first century. Hepatology 2018;68:1163–73.Google Scholar
Kasai, M, Okamoto, A, Ohi, R, Yabe, K, Matsumura, Y. Changes of portal vein pressure and intrahepatic blood vessels after surgery for biliary atresia. J Pediatr Surg 1981;16:152–9.Google Scholar
Shneider, BL, Abel, B, Haber, B, Karpen, SJ, Magee, JC, Romero, R, Schwarz, K, et al. Portal hypertension in children and young adults with biliary atresia. J Pediatr Gastroenterol Nutr 2012;55:567–73.Google Scholar
Miga, D, Sokol, R, MacKenzie, T, Narkewicz, M, Smith, D, Karrer, F. Survival after first esophageal variceal hemorrhage in patients with biliary atresia. J Pediatr 2001;139:291–6.Google Scholar
van Wessel, DB, Witt, M, Bax, N, Verkade, HJ, Scheenstra, R, de Kleine, RH, Hulscher, JB. Variceal bleeds in patients with biliary atresia. Eur J Pediatr Surg 2018;28:439–44.Google Scholar
Gana, JC, Turner, D, Mieli-Vergani, G, Davenport, M, Miloh, T, Avitzur, Y, Yap, J, et al. A clinical prediction rule and platelet count predict esophageal varices in children. Gastroenterology 2011;141:2009–16.Google Scholar
Bass, LM, Shneider, BL, Henn, L, Goodrich, NP, Magee, JC, Childhood liver disease research. Clinically evident portal hypertension: an operational research definition for future investigations in the pediatric population. J Pediatr Gastroenterol Nutr 2019;68:763–7.Google Scholar
de Franchis, R, Baveno, VIF. Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension. J Hepatol 2015;63:743–52.Google Scholar
Kim, DW, Yoon, HM, Jung, AY, Lee, JS, Oh, SH, Kim, KM, Cho, YA. Diagnostic performance of ultrasound elastography for evaluating portal hypertension in children: a systematic review and meta-analysis. J Ultrasound Med 2019;38:747–59.Google Scholar
Yokoyama, S, Ishigami, M, Honda, T, Kuzuya, T, Ishizu, Y, Ito, T, Hirooka, Y, et al. Spleen stiffness by 2-D shear wave elastography is the most accurate predictor of high-risk esophagogastric varices in children with biliary atresia. Hepatol Res 2019;49:1162–8.Google Scholar
Sokal, EM, Van Hoorebeeck, N, Van Obbergh, L, Otte, JB, Buts, JP. Upper gastro-intestinal tract bleeding in cirrhotic children candidates for liver transplantation. Eur J Pediatr 1992;151:326–8.Google Scholar
Bosch, J, Abraldes, JG, Berzigotti, A, Garcia-Pagan, JC. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol 2009;6:573–82.Google Scholar
Miraglia, R, Luca, A, Maruzzelli, L, Spada, M, Riva, S, Caruso, S, Maggiore, G, et al. Measurement of hepatic vein pressure gradient in children with chronic liver diseases. J Hepatol 2010;53:624–9.Google Scholar
Garcia-Tsao, G, Abraldes, JG, Berzigotti, A, Bosch, J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology 2017;65:310–35.Google Scholar
Sharma, M, Singh, S, Desai, V, Shah, VH, Kamath, PS, Murad, MH, Simonetto, DA. Comparison of therapies for primary prevention of esophageal variceal bleeding: a systematic review and network meta-analysis. Hepatology 2019;69:1657–75.Google Scholar
Ling, SC, Walters, T, McKiernan, PJ, Schwarz, KB, Garcia-Tsao, G, Shneider, BL. Primary prophylaxis of variceal hemorrhage in children with portal hypertension: a framework for future research. J Pediatr Gastroenterol Nutr 2011;52:254–61.Google Scholar
Goncalves, ME, Cardoso, SR, Maksoud, JG. Prophylactic sclerotherapy in children with esophageal varices: long-term results of a controlled prospective randomized trial. J Pediatr Surg 2000;35:401–5.Google Scholar
Zargar, SA, Javid, G, Khan, BA, Yattoo, GN, Shah, AH, Gulzar, GM, Singh, J, et al. Endoscopic ligation compared with sclerotherapy for bleeding esophageal varices in children with extrahepatic portal venous obstruction. Hepatology 2002;36:666–72.Google Scholar
Carneiro de Moura, M, Chen, S, Kamath, BM, Ng, VL, Ling, SC. Acute variceal bleeding causes significant morbidity. J Pediatr Gastroenterol Nutr 2018;67:371–6.Google Scholar
Colli, A, Gana, JC, Yap, J, Adams-Webber, T, Rashkovan, N, Ling, SC, Casazza, G. Platelet count, spleen length, and platelet count-to-spleen length ratio for the diagnosis of oesophageal varices in people with chronic liver disease or portal vein thrombosis. Cochrane Database Syst Rev 2017;4:CD008759.Google Scholar
Zacharias, AP, Jeyaraj, R, Hobolth, L, Bendtsen, F, Gluud, LL, Morgan, MY. Carvedilol versus traditional, non-selective beta-blockers for adults with cirrhosis and gastroesophageal varices. Cochrane Database Syst Rev 2018;10:CD011510.Google Scholar
Shashidhar, H, Langhans, N, Grand, RJ. Propranalol in prevention of portal hypertensive hemorrhage in children: a pilot study. J Pediatr Gastroenterol Nutr 1999;29:1217.Google Scholar
Samanta, T, Purkait, R, Sarkar, M, Misra, A, Ganguly, S. Effectiveness of beta blockers in primary prophylaxis of variceal bleeding in children with portal hypertension. Trop Gastroenterol 2011;32:299303.Google Scholar
Pimenta, JR, Ferreira, AR, Bittencourt, PF, Resende, CB, Fagundes, ED, Silva, IM. Evaluation of primary prophylaxis with propranolol and elastic band ligation in variceal bleeding in cirrhotic children and adolescents. Arq Gastroenterol 2016;53:257–61.Google Scholar
Shashidhar, H, Langhans, N, Grand, RJ. Propranolol in prevention of portal hypertensive hemorrhage in children: a pilot study. J Pediatr Gastroenterol Nutr 1999;29:1217.Google Scholar
Tripodi, A, Primignani, M, Mannucci, PM, Caldwell, SH. Changing concepts of cirrhotic coagulopathy. Am J Gastroenterol 2017;112:274–81.Google Scholar
O’Leary, JG, Greenberg, CS, Patton, HM, Caldwell, SH. AGA clinical practice update: coagulation in cirrhosis. Gastroenterology 2019;157:3443 e31.Google Scholar
Eroglu, Y, Emerick, KM, Whitingon, PF, Alonso, EM. Octreotide therapy for control of acute gastrointestinal bleeding in children. J Pediatr Gastroenterol Nutr 2004;38:41–7.Google Scholar
Jayakumar, S, Odulaja, A, Patel, S, Davenport, M, Ade-Ajayi, N. Surviving Sengstaken. J Pediatr Surg 2015;50:1142–6.Google Scholar
Leung, DH, Narkewicz, MR. Cystic fibrosis-related cirrhosis. J Cyst Fibros 2017;16 (Suppl 2):S50S61.Google Scholar
Srinath, A, Shneider, BL. Congenital hepatic fibrosis and autosomal recessive polycystic kidney disease. J Pediatr Gastroenterol Nutr 2012;54:580–7.Google Scholar
McKiernan, PJ, Beath, SV, Davison, SM. A prospective study of endoscopic esophageal variceal ligation using a multiband ligator. J Pediatr Gastroenterol Nutr 2002;34:207–11.Google Scholar
Oh, SH, Kim, SJ, Rhee, KW, Kim, KM. Endoscopic cyanoacrylate injection for the treatment of gastric varices in children. World J Gastroenterol 2015;21:2719–24.CrossRefGoogle ScholarPubMed
Emre, S, Dugan, C, Frankenberg, T, Hudgins, LC, Gagliardi, R, Artis, AT, Rodriguez-Laiz, G, et al. Surgical portosystemic shunts and the Rex bypass in children: a single-centre experience. HPB 2009;11:252–7.Google Scholar
Guerin, F, Charre, L, Jasienski, S, Duche, M, Franchiabella, S, Bernard, O, Jacquemin, E, et al. The efficacy of surgical shunts to treat severe portal hypertension after a Kasai procedure for biliary atresia. J Pediatr Surg 2019;54:531–6.Google Scholar
Lemoine, C, Lokar, J, McColley, SA, Alonso, EM, Superina, R. Cystic fibrosis and portal hypertension: distal splenorenal shunt can prevent the need for future liver transplant. J Pediatr Surg 2019;54:1076–82.Google Scholar
Superina, R, Shneider, B, Emre, S, Sarin, SK, de Ville de Goyet, J. Surgical guidelines for the management of extra-hepatic portal vein obstruction. Pediatric Transplantation 2006;10:908–13.Google Scholar
Carollo, V, Marrone, G, Cortis, K, Mamone, G, Caruso, S, Milazzo, M, Maruzzelli, L, et al. Multimodality imaging of the Meso-Rex bypass. Abdom Radiol 2019;44:1379–94.Google Scholar
Heyman, MB, LaBerge, JM, Somberg, KA, Rosenthal, P, Mudge, C, Ring, EJ, Snyder, JD. Transjugular intrahepatic portosystemic shunts (TIPS) in children. J Pediatr 1997;131:914–19.Google Scholar
Lorenz, JM. Placement of transjugular intrahepatic portosystemic shunts in children. Tech Vasc Interv Radiol 2008;11:235–40.Google Scholar
Vo, NJ, Shivaram, G, Andrews, RT, Vaidya, S, Healey, PJ, Horslen, SP. Midterm follow-up of transjugular intrahepatic portosystemic shunts using polytetrafluoroethylene endografts in children. J Vasc Interv Radiol 2012;23:919–24.Google Scholar

References

Adams, PC, Arthur, MJ, Boyer, TD, DeLeve, LD, Di Bisceglie, AM, Hall, M, Seeff, L. Screening in liver disease: report of an AASLD clinical workshop. Hepatology 2004;39(5):1204–12. doi:10.1002/hep.20169Google Scholar
Adeli, K, Higgins, V, Trajcevski, K, White-Al Habeeb, N. The Canadian laboratory initiative on pediatric reference intervals: A CALIPER white paper. Crit Rev Clin Lab Sci 2017;54(6):358413.Google Scholar
Agarwal, B, Wright, G, Gatt, A, Riddell, A, Vemala, V, Mallett, S, Burroughs, A. Evaluation of coagulation abnormalities in acute liver failure. J Hepatol 2012;57(4):780–6. doi:10.1016/j.jhep.2012.06.020Google Scholar
Ahn, H, Li, CS, Wang, W. Sickle cell hepatopathy: clinical presentation, treatment, and outcome in pediatric and adult patients. Pediatr Blood Cancer 2005;45(2):184–90. doi:10.1002/pbc.20317CrossRefGoogle ScholarPubMed
Bamford, KF, Harris, H, Luffman, JE, Robson, EB, Cleghorn, TE Serum-alkaline-phosphatase and the abo blood-groups. Lancet 1965;1(7384):530–1.Google Scholar
Banks, BM, Pineda, EP, Goldbarg, JA, Rutenburg, AM. Clinical value of serum leucine aminopeptidase determinations. N Engl J Med 1960;263:1277–81. doi:10.1056/NEJM196012222632503Google Scholar
Berman, DH, Leventhal, RI, Gavaler, JS, Cadoff, EM, Van Thiel, DH. Clinical differentiation of fulminant Wilsonian hepatitis from other causes of hepatic failure. Gastroenterology 1991;100(4):1129–34. doi:S0016508591001348Google Scholar
Burra, P, Masier, A. Dynamic tests to study liver function. Eur Rev Med Pharmacol Sci 2004;8(1):1921.Google Scholar
Bussler, S, et al. New pediatric percentiles of liver enzyme serum levels. Hepatology 2017;68:1319–30.Google Scholar
Cabrera-Abreu, JC, Green, A. Gamma-glutamyltransferase: value of its measurement in paediatrics. Ann Clin Biochem 2002;39(Pt 1):22–5.Google Scholar
Chambers, JC, Zhang, W, Sehmi, J, Li, X, Wass, MN, Van der Harst, P, Kooner, JS. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat Genet 2011;43(11):1131–8.CrossRefGoogle ScholarPubMed
Ciobanu, AO, Gherasim, L. Ischemic hepatitis – intercorrelated pathology. Maedica 2018;13(1):511.Google Scholar
Croffie, JM, Gupta, SK, Chong, SK, Fitzgerald, JF. Tyrosinemia type 1 should be suspected in infants with severe coagulopathy even in the absence of other signs of liver failure. Pediatrics 1999;103(3):675–8.Google Scholar
Dasarathy, S, Mookerjee, RP, Rackayova, V, Rangroo Thrane, V, Vairappan, B, Ott, P, Rose, CF. Ammonia toxicity: from head to toe? Metab Brain Dis 2017;32(2):529–38. doi:10.1007/s11011-016-9938-3Google Scholar
Deutsch, J, Fritsch, G, Golles, J, Semmelrock, HJ. Effects of anticonvulsive drugs on the activity of gammaglutamyltransferase and aminotransferases in serum. J Pediatr Gastroenterol Nutr 1986;5(4):542–8.Google Scholar
Di Ciaula, A, Garruti, G, Lunardi Baccetto, R, Molina-Molina, E, Bonfrate, L, Wang, DQ, Portincasa, P. Bile acid physiology. Ann Hepatol 2017;16(Suppl. 1):s3105, s4s14. doi:10.5604/01.3001.0010.5493Google Scholar
Diehl, AM, Potter, J, Boitnott, J, Van Duyn, MA, Herlong, HF, Mezey, E. Relationship between pyridoxal 5′-phosphate deficiency and aminotransferase levels in alcoholic hepatitis. Gastroenterology 1984;86(4):632–6. doi:S0016508584000809Google Scholar
Dixon, JL, Ginsberg, HN. Hepatic synthesis of lipoproteins and apolipoproteins. Semin Liver Dis 1992;12(4):364–72. doi:10.1055/s-2008-1040406Google Scholar
Ebrahimi, A, Rahim, F. Crigler-Najjar syndrome: current perspectives and the application of clinical genetics. Endocr Metab Immune Disord Drug Targets 2018;18(3):201–11. doi:10.2174/1871530318666171213153130Google Scholar
Ekong, UD, et al. Long-term outcomes of de novo autoimmune hepatitis in pediatric liver transplant recipients. Pediatr Transplant 2017;21(6):e12945. https://doi.org/10.1111/petr.12945Google Scholar
Eymann, A, Cacchiarelli, N, Alonso, G, Llera, J. Benign transient hyperphosphatasemia of infancy. A common benign scenario, a big concern for a pediatrician. J Pediatr Endocrinol Metab 2010;23(9):927–30.Google Scholar
Farre, C, Esteve, M, Curcoy, A, Cabre, E, Arranz, E, Amat, LL, Garcia-Tornel, S. Hypertransaminasemia in pediatric celiac disease patients and its prevalence as a diagnostic clue. Am J Gastroenterol 2002;97(12):3176–81. doi:10.1111/j.1572-0241.2002.07127Google Scholar
Fawaz, R, Baumann, U, Ekong, U, Fischler, B, Hadzic, N, Mack, CL, Karpen, SJ. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2017;64(1):154–68. doi:10.1097/mpg.0000000000001334Google Scholar
Feldman, AG, Sokol, RJ. Neonatal cholestasis: emerging molecular diagnostics and potential novel therapeutics. Nat Rev Gastroenterol Hepatol 2019;16(6):346–60. doi:10.1038/s41575-019-0132-zGoogle Scholar
Fellin, R, Manzato, E. Lipoprotein-X fifty years after its original discovery. Nutr Metab Cardiovasc Dis 2019;29(1):48. doi:10.1016/j.numecd.2018.09.006Google Scholar
Fujiwara, R, Haag, M, Schaeffeler, E, Nies, AT, Zanger, UM, Schwab, M. Systemic regulation of bilirubin homeostasis: potential benefits of hyperbilirubinemia. Hepatology 2018;67(4):1609–19. doi:10.1002/hep.29599Google Scholar
Furuya, KN, Durie, PR, Roberts, EA, Soldin, SJ, Verjee, Z, Yung-Jato, L, Ellis, L. Glycine conjugation of para-aminobenzoic acid (PABA): a quantitative test of liver function. Clin Biochem 1995;28(5):531–40. doi:0009-9120(95)00040-GGoogle Scholar
Harrison, MF. The misunderstood coagulopathy of liver disease: a review for the acute setting. West J Emerg Med 2018;19(5):863–71. doi:10.5811/westjem.2018.7.37893Google Scholar
Heubi, JE, Setchell, KDR., Bove, KE. Inborn errors of bile acid metabolism. Clin Liver Dis 2018;22(4):671–87. doi:10.1016/j.cld.2018.06.006Google Scholar
Hill, PG, Sammons, HG. An assessment of 5′-nucleotidase as a liver-function test. Q J Med 1967;36(144):457–68.Google Scholar
Hoofnagle, JH, Bjornsson, ES. Drug-induced liver injury – types and phenotypes. N Engl J Med 2019;381(3):264–73. doi:10.1056/NEJMra1816149Google Scholar
Iorio, R, Sepe, A, Giannattasio, A, Cirillo, F, Vegnente, A. Hypertransaminasemia in childhood as a marker of genetic liver disorders. J Gastroenterol 2005;40(8):820–6. doi:10.1007/s00535-005-1635-7Google Scholar
Kaplan, MM. Alkaline phosphatase. Gastroenterology 1972;62(3):452–68.Google Scholar
Kawada, PS, Bruce, A, Massicotte, P, Bauman, M, Yap, J. Coagulopathy in children with liver disease. J Pediatr Gastroenterol Nutr 2017;65(6):603–7. doi:10.1097/mpg.0000000000001721Google Scholar
Keller, MS, Coln, CE, Trimble, JA, Green, MC, Weber, TR. The utility of routine trauma laboratories in pediatric trauma resuscitations. Am J Surg 2004;188(6):671–8.Google Scholar
Kohli, R, Cortes, M, Heaton, ND, Dhawan, A. Liver transplantation in children: state of the art and future perspectives. Arch Dis Child 2018;103(2): 192–8. doi:10.1136/archdischild-2015-310023Google Scholar
Kohse, KP. KIGGS – the German survey on children’s health as database for reference intervals and beyond. Circ Biochem 2014;47:742–3.Google Scholar
Krawczyk, M, Mullenbach, R, Weber, SN, Zimmer, V, Lammert, F. Genome-wide association studies and genetic risk assessment of liver diseases. Nat Rev Gastroenterol Hepatol 2010;7(12):669–81.Google Scholar
Kunutsor, SK. Gamma-glutamyltransferase: friend or foe within? Liver Int 2016;36(12):1723–34. doi:10.1111/liv.13221Google Scholar
Kwo, PY, Cohen, SM, Lim, JK. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am J Gastroenterol 2017;112(1):1835. doi:10.1038/ajg.2016.517Google Scholar
Lebel, S, Nakamachi, Y, Hemming, A, Verjee, Z, Phillips, MJ, Furuya, KN. Glycine conjugation of para-aminobenzoic acid (PABA): a pilot study of a novel prognostic test in acute liver failure in children. J Pediatr Gastroenterol Nutr 2003;36(1):6271.Google Scholar
Lee, GJ, Boyle, B, Ediger, T, Hill, I. Hypertransaminasemia in newly diagnosed pediatric patients with celiac disease. J Pediatr Gastroenterol Nutr 2016;63(3):340–3. doi:10.1097/mpg.0000000000001153Google Scholar
Li, X, Wang, D, Yang, C, Zhou, Q, Zhuoga, SL, Wang, LQ, Yao, HX, Zhang, Q, Ai, Q, Yang, CX, Xu, JC. Establishment of age- and gender-specific pediatric reference intervals for liver function tests in healthy Han children. World J Pediatr 2018;14(2):151–9. doi: 10.1007/s12519-018-0126CrossRefGoogle ScholarPubMed
Lightsey, JM, Rockey, DC. Current concepts in ischemic hepatitis. Curr Opin Gastroenterol 2017;33(3):158–63. doi:10.1097/mog.0000000000000355Google Scholar
Lisman, T, Porte, RJ. Rebalanced hemostasis in patients with liver disease: evidence and clinical consequences. Blood 2010;116(6):878–85. doi:blood-2010-02-261891Google Scholar
Lontie, JF, Dubois, DY, Malmendier, CL, Mathe, D, Adam, R, Gigou, M, Bismuth, H. Plasma lipids and apolipoproteins in end-stage liver disease. Clin Chim Acta 1990;195(1–2):93–6.Google Scholar
Maggiore, G, Bernard, O, Hadchouel, M, Lemonnier, A, Alagille, D. Diagnostic value of serum gamma-glutamyl transpeptidase activity in liver diseases in children. J Pediatr Gastroenterol Nutr 1991;12(1):21–6.Google Scholar
Mencin, AA, Lavine, JE.. Nonalcoholic fatty liver disease in children. Curr Opin Clin Nutr Metab Care 2011;14(2):151–7. doi:10.1097/MCO.0b013e328342baecGoogle Scholar
Miller, JP. Dyslipoproteinaemia of liver disease. Baillieres Clin Endocrinol Metab 1990;4(4):807–32.Google Scholar
Nicastro, E, D’Antiga, L. Next generation sequencing in pediatric hepatology and liver transplantation. Liver Transplantation 2018;24(2):282–93.CrossRefGoogle Scholar
Newsome, PN, Cramb, R, Davison, S, et al. Guidelines on the management of abnormal liver blood tests. Gut 2018;67:619.Google Scholar
O’Leary, JG, Greenberg, CS, Patton, HM, Caldwell, SH. AGA clinical practice update: coagulation in cirrhosis. Gastroenterology 2019;157(1): 3443.e31. doi:10.1053/j.gastro.2019.03.070Google Scholar
Orlando, R, Palatini, P. The effect of age on plasma MEGX concentrations. Br J Clin Pharmacol 1997;44(2):206–8.Google Scholar
Poustchi, H, George, J, Esmaili, S, Esna-Ashari, F, Ardalan, G, Sepanlou, SG, Alavian, SM. Gender differences in healthy ranges for serum alanine aminotransferase levels in adolescence. PLoS One 2011;6(6):e21178. doi: 10.1371/journal.pone.0021178Google Scholar
Rosenthal, P, Haight, M. Aminotransferase as a prognostic index in infants with liver disease. Clin Chem 1990;36(2):3468.Google Scholar
Schwimmer, JB, Dunn, W, Norman, GJ, Pardee, PE, Middleton, MS, Kerkar, N, Sirlin, CB. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease. Gastroenterology 2010;138(4):1357–64, 1364 e13511352.Google Scholar
Seidel, D. Lipoproteins in liver disease. J Clin Chem Clin Biochem 1987;25(9):541–51.Google Scholar
Setchell KD, O’Connell NC. (2018). Bile acid synthesis and metabolism. In Kleinman RE, Goulet OJ, Mieli-Vergani G, Sanderson IR, Sherman PM, Shneider BL (Eds.), Walker’s Pediatric Gastrointestinal Disease: Physiology, Diagnosis, Management, 6th Edition. PMPH USA, Ltd.Google Scholar
Sharma, U, Pal, D, Prasad, R. Alkaline phosphatase: an overview. Indian J Clin Biochem 2014;29(3):269–78. doi:10.1007/s12291-013-0408Google Scholar
Stirnadel-Farrant, HA, Galwey, N, Bains, C, Yancey, C, Hunt, CM. Children’s liver chemistries vary with age and gender and require customized pediatric reference ranges. Regul Toxicol Pharmacol 2015;73(1):349–55. doi: 10.1016/j.yrtph.2015.07.013Google Scholar
Sookoian, S, Pirola, CJ. Liver enzymes, metabolomics and genome-wide association studies: from systems biology to personalized medicine. World J Gastroenterol 2015;21(3):711–25. doi:10.3748/wjg.v21.i3.711Google Scholar
Solez, K, et al. The bridge between transplantation and regenerative medicine: beginning a new Banff classification of tissue engineering pathology. Am J Transplant 2018;18(2):321–7. doi: 10.1111/ajt.14610Google Scholar
Spinella, R, Sawhney, R, Jalan, R. Albumin in chronic liver disease: structure, functions and therapeutic implications. Hepatol Int 2016;10(1):124–32. doi:10.1007/s12072-015-9665-6Google Scholar
Squires, JE, McKiernan, P. Molecular mechanisms in pediatric cholestasis. Gastroenterol Clin North Am 2018;47(4):921–37. doi:10.1016/j.gtc.2018.07.014Google Scholar
Squires, JE, McKiernan, P, Squires, RH. Acute liver failure: an update. Clin Liver Dis 2018;22(4):773805. doi:10.1016/j.cld.2018.06.009Google Scholar
Tate, JR, et al. Harmonising adult and paediatric reference intervals in Australia and New Zealand: an evidence-based approach for establishing a first panel of chemistry analytes. Clin Biochem Rev 2014;35(4):213–35.Google Scholar
Tanaka, E, Inomata, S, Yasuhara, H. The clinical importance of conventional and quantitative liver function tests in liver transplantation. J Clin Pharm Ther 2000;25(6):411–19.Google Scholar
Teitelbaum, JE, Laskowski, A, Barrows, FP. Benign transient hyperphosphatasemia in infants and children: a prospective cohort. J Pediatr Endocrinol Metab 2011;24(5–6):351–3.Google Scholar
Trauner, M, Fuchs, CD, Halilbasic, E, Paumgartner, G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017;65(4):13931404. doi:10.1002/hep.28991Google Scholar
Tripodi, A, Primignani, M, Mannucci, PM, Caldwell, SH. Changing concepts of cirrhotic coagulopathy. Am J Gastroenterol 2017;112(2):274–81. doi:10.1038/ajg.2016.498Google Scholar
van der Woerd, WL, van Mil, SW, Stapelbroek, JM, Klomp, LW, van de Graaf, SF, Houwen, RH. Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol 2010;24(5):541–53.Google Scholar
Vos, MB, Abrams, SH, Barlow, SE, Caprio, S, Daniels, SR, Kohli, R, Xanthakos, SA. NASPGHAN Clinical Practice Guideline for the Diagnosis and Treatment of Non-alcoholic Fatty Liver Disease in Children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J Pediatr Gastroenterol Nutr 2017;64(2):319–34. doi:10.1097/mpg.0000000000001482Google Scholar
Wagner, M, Zollner, G, Trauner, M. New molecular insights into the mechanisms of cholestasis. J Hepatol 2009;51(3):565–80.Google Scholar
Weiss, JS, Gautam, A, Lauff, JJ, Sundberg, MW, Jatlow, P, Boyer, JL, Seligson, D. The clinical importance of a protein-bound fraction of serum bilirubin in patients with hyperbilirubinemia. N Engl J Med 1983;309(3):147–50. doi:10.1056/NEJM198307213090305Google Scholar
Wijdicks, EF. Hepatic encephalopathy. N Engl J Med 2016;375(17):1660–70. doi:10.1056/NEJMra1600561Google Scholar
Zierk, J, Arzideh, F, Haeckel, R, Cario, H, Fruhwald, MC, Gross, HJ, Rauh, M. Pediatric reference intervals for alkaline phosphatase. Clin Chem Lab Med 2017;55(1):102–10. doi:10.1515/cclm-2016-0318Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×