Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-16T19:12:22.435Z Has data issue: false hasContentIssue false

49 - Ataxia telangiectasia

from Part VIII - Cerebellar degenerations

Published online by Cambridge University Press:  04 August 2010

M. Flint Beal
Affiliation:
Cornell University, New York
Anthony E. Lang
Affiliation:
University of Toronto
Albert C. Ludolph
Affiliation:
Universität Ulm, Germany
Richard A. Gatti
Affiliation:
Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
Tom O. Crawford
Affiliation:
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Alan S. Mandir
Affiliation:
Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Susan Perlman
Affiliation:
Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
Howard T. J. Mount
Affiliation:
CRND, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
Get access

Summary

Ataxia-telangiectasia (A-T) is an autosomal recessive disorder associated with abnormal function of the nervous, immune and endocrine systems. It was initially described by Syllaba and Henner (1926) and was more completely characterized by Boder and Sedgwick (1958), who also coined the name. The disorder is characterized by a progressive gait and truncal ataxia, immunodeficiency, thymic degeneration, chromosomal instability, predisposition to lymphoreticular malignancies and hypersensitivity to ionizing radiation (for review see Boder, 1985; Gatti et al., 1991; Sedgwick & Boder, 1991; Woods & Taylor, 1992; Gatti, 2002).

Early research into the genetic cause of A-T suggested the presence of as many as four different responsible genes since fusion of fibroblasts from various A-T patients were able to complement one another in radiation sensitivity assays (Jaspers et al., 1988). However, all four groups were subsequently found to have loss-of-function mutations in a single gene, named ATM (ataxia-telangiectasia mutated), located on chromosome 11q22.3 (Gatti et al., 1988; Savitsky et al., 1995).

The ATM protein is a serine/threonine kinase responsible for maintaining genomic integrity by triggering arrest of the cell cycle, increasing transcription of stress response genes, and repair of double strand breaks in DNA (Shiloh, 2003). Among the many identified substrates are p53, p53BP, MDM2, Chk2, nibrin, Mre11, H2AX, SMC1, Pin2/TRF1, FANCD2, MDC1, and BRCA1. A-T patients express a functionally deficient ATM message, with diminished or absent levels of ATM protein (Chun et al., 2003). How mutations in ATM result in radiation hypersensitivity or neuronal integrity remains unclear.

Type
Chapter
Information
Neurodegenerative Diseases
Neurobiology, Pathogenesis and Therapeutics
, pp. 738 - 748
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artuch, R., Aracil, A., Mas, A.et al. (2002). Friedreich's ataxia: idebenone treatment in early stage patients. Neuropediatrics, 33, 190–3CrossRefGoogle ScholarPubMed
Bakhshi, S., Cerosaletti, K. M., Concannon, P.et al. (2003). Medulloblastoma with adverse reaction to radiation therapy in Nijmegen Breakage Syndrome. J. Pediat. Hematol./Oncol., 25, 248–51CrossRefGoogle ScholarPubMed
Banin, S., Moyal, L., Shieh, S.-Y.et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281, 1675–7CrossRefGoogle ScholarPubMed
Barlow, C., Hirotsune, S., Paylor, R.et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell, 86, 159–71CrossRefGoogle ScholarPubMed
Barlow, C., Dennery, P. A., Shigenaga, M. K.et al. (1999). Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc. Natl Acad. Sci., USA, 96, 9915–19CrossRefGoogle ScholarPubMed
Barlow, C., Ribault-Barassin, C., Zwingman, T. A.et al. (2000). ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc. Natl Acad. Sci. USA, 97, 871–6CrossRefGoogle ScholarPubMed
Barzilai, A., Rotman, G. & Shiloh, Y. (2002). ATM deficiency and oxidative stress: a new dimension of defective response to DNA damage. DNA Repair (Amsterdam), 1, 3–25CrossRefGoogle ScholarPubMed
Bassing, C. H., Suh, H., Ferguson, D. O.et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell, 114, 359–70CrossRefGoogle ScholarPubMed
Becker-Catania, S. G., Chen, G., Hwang, M. J.et al. (2000). Ataxia-telangiectasia: phenotype/genotype studies of ATM protein expression, mutations, and radiosensitivity. Mol. Genet. Metab., 70, 122–33CrossRefGoogle ScholarPubMed
Bernstein, J. L., Teraoka, S., Haile, R. W.et al. (2003). Designing and implementing quality control for multi-center screening of mutations in the ATM gene among women with breast cancer. Hum. Mutat., 21, 542–50CrossRefGoogle ScholarPubMed
Boder, E. & Sedgwick, R. P. (1958). Ataxia-telangiectasia: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics, 21, 526–54Google ScholarPubMed
Boder, E. (1985). Ataxia-telangiectasia: an overview. In Ataxia-Telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood, ed. R. A. Gatti and M. Swift. New York: Alan R Liss Inc. pp. 1–63
Botez, M. I., Botez-Marquard, T., Elie, R., Pedraza, O. L., Goyette, K. & Lalonde, R. (1996). Amantadine hydrochloride treatment in heredodegenerative ataxias: a double blind study. J. Neurol. Neurosurg. Psychiatr., 61, 259–64CrossRefGoogle ScholarPubMed
Borghesani, P. R., Alt, F. W., Bottaro, A.et al. (2000). Abnormal development of Purkinje cells and lymphocytes in Atm mutant mice. Proc. Natl Acad. Sci., USA, 97, 3336–41CrossRefGoogle ScholarPubMed
Butch, A. W., Chun, H. H., Nahas, S. A. & Gatti, R. A. (2004). Immunoassay to measure ataxia–telangiectasia mutated protein in cellular lysates, Clin. Chem. 50, 2302–8CrossRefGoogle ScholarPubMed
Cabana, M. D., Crawford, T. O., Winkelstein, J. A., Christensen, J. R. & Lederman, H. M. (1998). Consequences of delayed diagnosis of ataxia-telangiectasia. Pediatrics, 102, 98–100CrossRefGoogle ScholarPubMed
Campbell, C., Mitui, M., Eng, L., Coutinho, G., Thorstenson, Y. & Gatti, R. A. (2003). ATM mutations on distinct SNP and STR haplotypes in ataxia-telangiectasia patients of differing ethnicities reveal ancestral founder effects. Hum. Mutat., 21, 80–85CrossRefGoogle ScholarPubMed
Canman, C. E., Lim, D.-S., Cimprich, K. A.et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 281, 1677–9CrossRefGoogle ScholarPubMed
Castellvi-Bel, S., Sheikhavandi, S., Telatar, M.et al. (1999). New mutations, polymorphisms, and rare variants in the ATM gene detected by a novel strategy. Hum. Mutat., 14, 156–623.0.CO;2-E>CrossRefGoogle Scholar
Chevenix-Trench, G., Spurdle, A. B., Gatei, M.et al. (2002). Dominant negative ATM mutations in breast cancer families. J. Natl Cancer Inst., 94, 205–15CrossRefGoogle Scholar
Chiesa, N., Barlow, C., Wynshaw-Boris, A., Strata, P. & Tempia, F. (2002). Atm-deficient mice Purkinje cells show age-dependent defects in calcium spike bursts and calcium currents. Neuroscience, 96, 575–83CrossRefGoogle Scholar
Chun, H. H., Castellvi-Bel, S., Wang, Z.et al. (2002). TCL-1, MTCP-1 and TML-1 gene expression profile in non-leukemic proliferations associated with ataxia-telangiectasia. Int. J. Cance., 97, 726–31CrossRefGoogle ScholarPubMed
Chun, H. H., Sun, X., Nahas, S. A.et al. (2003). Improved diagnostic testing for ataxia-telangiectasia by immunoblotting of nuclear lysates for ATM protein expression. Mol. Genet. Metab., 80, 437–43CrossRefGoogle ScholarPubMed
Concannon, P. & Gatti, R. A. (1997). Diversity of ATM gene mutations detected in patients with ataxia-telangiectasia. Hum. Mutat., 10, 100–73.0.CO;2-O>CrossRefGoogle ScholarPubMed
Concannon, P. (2002). ATM heterozygosity and cancer risk. Nat. Genet., 32, 89–90CrossRefGoogle ScholarPubMed
Coutinho, G., Mitui, M., Campbell, C.et al. (2004). Five haplotypes account for fifty-five percent of ATM mutations in Brazilian patients with ataxia-telangiectasia: seven new mutations. Am. J. Med. Genet., 126A (1), 33–40CrossRefGoogle ScholarPubMed
Crawford, T. O., Mandir, A. S., Lefton-Greif, M. A.et al. (2000). Quantitative neurologic assessment of ataxia-telangiectasia. Neurology, 54, 1505–9CrossRefGoogle ScholarPubMed
D'Ambrosio, R., Leone, M., Rosso, M. G., Mittino, D. & Brignolio, F. (1987). Disability and quality of life in hereditary ataxias: a self-administered postal questionnaire. Int. Disabil. Stud., 9, 10–14CrossRefGoogle ScholarPubMed
Edwards, M. J., Hargreaves, I. P., Heales, S. J., Jones, S. J., Ramachandran, V., Bhatia, K. P. & Sisodiya, S. (2002). N-acetylcysteine and Unverricht-Lundborg disease: variable response and possible side effects. Neurology, 59, 1447–9CrossRefGoogle ScholarPubMed
Eilam, R., Peter, Y., Elson, A.et al. (1998). Selective loss of dopaminergic nigro-striatal neurons in brains of Atm-deficient mice. Proc. Natl Acad. Sci., USA, 95, 12653–6CrossRefGoogle ScholarPubMed
Elson, A., Wang, Y., Daugherty, C. J.et al. (1996). Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc. Natl Acad. Sci., USA, 93, 13084–9CrossRefGoogle ScholarPubMed
Eng, L., Coutinho, G., Nahas, S.et al. (2004). Non-classical splicing mutations in the coding and non-coding regions of the ATM gene: maximum entropy estimates of splice junction strengths. Hum. Mutat., 23, 67–76CrossRefGoogle Scholar
Faulkner, M. A., Bertoni, J. M. & Lenz, T. L. (2003). Gabapentin for the treatment of tremor. Ann. Pharmacother., 37, 282–6CrossRefGoogle ScholarPubMed
FitzGerald, M. G., Bean, J. M., Hegde, S. R.et al. (1997). Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat. Genet., 15, 307–10CrossRefGoogle Scholar
Gatei, M., Shkedy, D., Khanna, K. K.et al. (2001). Ataxia-telangiectasia: chronic activation of damage-responsive functions is reduced by alpha-lipoic acid. Oncogene, 20, 289–94CrossRefGoogle ScholarPubMed
Gatti, R. A. (2002). Ataxia-telangiectasia. In The Genetic Basis of Human Cancer, ed. B. Vogelstein & K. W. Kinzler, New York: McGraw-Hill Inc. pp. 239–66
Gatti, R. A. & Good, R. A. (1971). Occurrence of malignancy in immunodeficiency diseases. Cancer, 28, 89–983.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Gatti, R. A. & Vinters, H. V. (1985). Cerebellar pathology in ataxia-telangiectasia. In Ataxia-Telangiectasia: Genetics, Neuropathology and Immunology of a Degenerative Disease of Childhood, ed. R. A. Gatti & M. Swift. New York: Alan R. Liss Inc. pp. 225–32
Gatti, R. A., Berkel, I., Boder, E.et al. (1988). Localization of an ataxia-telangiectasia gene to chromosome 11q22–23. Nature, 336, 577–80CrossRefGoogle ScholarPubMed
Gatti, R. A., Boder, E., Vinters, H. V., Sparkes, R. S., Norman, A. & Lange, K. (1991). Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis. Medicine, 70, 99–117CrossRefGoogle ScholarPubMed
Gatti, R. A., Tward, A. & Concannon, P. (1999). Cancer risk in ATM heterozygotes: a model of phenotypic and mechanistic differences between missense and truncating mutations. Mol. Genet. Metab., 69, 419–23CrossRefGoogle Scholar
Gilad, S., Chessa, L., Khosravi, R.et al. (1998). Genotype–phenotype relationships in ataxia-telangiectasia and variants. Am. J. Hum. Genet., 62, 551–61CrossRefGoogle ScholarPubMed
Gotoff, S. P., Amirmokri, E. & Liebner, E. J. (1967). Ataxia telangiectasia: neoplasia, untoward response to x-irradiation, and tuberous sclerosis. Am. J. Dis. Child., 114, 617–25CrossRefGoogle ScholarPubMed
Hiel, J. A., Weemaes, C., Heuvel, I. P.et al. (2000). (International NBS Study Group). Nijmegen Breakage Syndrome. Arch. Dis. Child., 82, 400–6Google Scholar
Hummel, T., Vasconcelos, M. L., Clemens, J. C., Fiswhilevich, Y., Vosshall, L. B. & Zipursky, S. L. (2003). Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron, 37, 221–31CrossRefGoogle ScholarPubMed
Huo, Y. K., Wang, Z., Hong, J.-H.et al. (1994). Radiosensitivity of ataxia-telangiectasia, X-linked agammaglobulinemia and related syndromes. Cancer Res., 54, 2544–7Google ScholarPubMed
Jaspers, N. G. L., Gatti, R. A., Baan, C., Linssen, P. C. M. L. & Bootsma, D. (1988). Genetic complementation analysis of ataxia-telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet. Cell. Genet., 49, 259–63CrossRefGoogle ScholarPubMed
Jauslin, M. L., Wirth, T., Meier, T. & Schoumacher, F. (2002). A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum. Mol. Genet., 11, 3055–63CrossRefGoogle ScholarPubMed
Kamsler, A., Daily, D., Hochman, A.et al. (2001). Increased oxidative stress in ataxia telangiectasia evidenced by alterations in redox state of brains from Atm-deficient mice. Cancer Res., 61, 1849–54Google ScholarPubMed
Lai, C.-H., Chun, H. H., Nahas, S. A.et al. (2004). Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons. Proc. Am. Acad. Sci., 101, 15676–81CrossRefGoogle ScholarPubMed
Lalonde, R., Joyal, C. C. & Botez, M. I. (1994). Exploration and motor coordination in dystonia musculorum mutant mice. Physiol. Behav., 56, 277–80CrossRefGoogle ScholarPubMed
Lewis, R. F., Ledereman, H. M. & Crawford, T. O. (1999). Oculomotor abnormalities in ataxia-telangiectasia. Ann. Neurol., 46, 287–953.0.CO;2-0>CrossRefGoogle ScholarPubMed
Marcelain, K., Navarrete, C. L, Bravo, M., Santos, M., Be, C. & Pincheira, J. (2002). Effect of vitamin E (DL-alpha-tocopherol) on the frequency of chromosomal damage in lymphocytes from patients with ataxia telangiectasia. Rev. Med. Chil., 130, 957–63Google ScholarPubMed
McConville, C. M., Stankovic, T.et al. (1996). Mutations associated with variant phenotypes in ataxia-telangiectasia. Am. J. Hum. Genet., 59, 320–30Google ScholarPubMed
Mitui, M., Campbell, C., Coutinho, G.et al. (2003). Independent mutational events are rare in the ATM gene: haplotype prescreening enhances mutation detection rate. Hum. Mutat., 22, 43–50CrossRefGoogle ScholarPubMed
Moreira, M. C., Barbot, C., Tachi, N.et al. (2001a). Homozygosity mapping of Portuguese and Japanese forms of ataxia-oculomotor apraxia to 9q13, and evidence for genetic heterogeneity. Am. J. hum. Genet., 68, 501–8CrossRefGoogle Scholar
Moreira, M., Barbot, C., Tachi, N.et al. (2001b). The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet., 29, 189–93CrossRefGoogle Scholar
Moreira, M.- C., Klur, S., Watanabe, M.et al. (2004). Senataxin, the ortholog of a yeast RNA helicasse, is mutant in ataxia-ocular apraxia 2. Nat. Genetic., 36, 225–7CrossRefGoogle ScholarPubMed
Mount, H. T. J., Wu, Y., Fluit, P., Bi, Q., Crawford, T. O. & Mandir, A. S. (2002). Parkinsonian features of ataxia-telangiectasia and of the Atm-deficient mouse. In Parkinson's Disease, ed. E. Ronken, L. Turski & G. van Scharrenburg, Amsterdam: IOS publishers, pp. 182–93
Mount, H. T. J., Martel, J.-C., Fluit, P.et al. (2004). Progressive sensorimotor impairment is not associated with reduced dopamine and high energy phosphate donors in a model of ataxia-telangiectasia. J. Neurochem., 88, 1449–54CrossRefGoogle ScholarPubMed
Nahas, S. A., Lai, C.-H., Gatti, R. A. SMC1 phosphorylation is independent of the Fanconi protein complex. Int. J. Radiat. Biol., in press
Notermans, N. C., Dijk, G. W., der, Graaf,, Y., Gijn, J. & Wokke, J. H. (1994). Measuring ataxia: quantification based on the standard neurological examination. J. Neurol. Neurosurg. Psychiatr., 57, 22–6CrossRefGoogle ScholarPubMed
Nowak-Wegrzyn, A., Winkelstein, J. A., Carson, K. A. & Lederman, H. M. (2004). Immunodeficiency and infections in ataxia telangiectasia. J. Pediat., 144, 505–11CrossRefGoogle ScholarPubMed
Pagani, F., Buratti, E., Stuani, C., Bendix, R., Dork, T. & Baralle, F. E. (2002). A new type of mutation causes a splicing defect in ATM. Nat. Genet., 30, 426–9CrossRefGoogle ScholarPubMed
Pitts, S. A., Kullar, H. S., Stankovic, T.et al. (2001). HMRE11: genomic structure and a null mutation identified in a transcript protected from nonsense-mediated mRNA decay. Hum. Mol. Genet., 10, 1155–62CrossRefGoogle Scholar
Quick, K. L. & Dugan, L. L. (2001). Superoxide stress identifies neurons at risk in a model of ataxia-telangiectasia. Ann. Neurol., 49, 627–35CrossRefGoogle Scholar
Saviozzi, S., Saluto, A., Taylor, A. M. R.et al. (2002). A late onset variant of ataxia-telangiectasia with a compound heterozygous genotype, A8030G/7481insA. J. Med. Genet., 39, 57–61CrossRefGoogle ScholarPubMed
Savitsky, K., Bar-Shira, A., Gilad, S.et al. (1995). A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science, 268, 1749–53CrossRefGoogle ScholarPubMed
Scott, S. P., Bendix, R., Chen, P., Clark, R., Dork, T. & Lavin, M. F. (2002). Missense mutations but not allelic variants alter the function of ATM by dominant interference in patients with breast cancer. Proc. Natl Acad. Sci., USA, 99, 925–30CrossRefGoogle Scholar
Sedgwick, R. P. & Boder, E. (1991). Ataxia-telangiectasia. In Handbook of Clinical Neurology, Vol 16(60), Hereditary Neuropathies and Spinocerebellar Atrophies, ed. J. M. B. V. de Jong. Amsterdam: Elsevier, pp. 347–423
Seliger, G. M. & Hornstein, A. (1989). Serotonin, fluoxetine, and pseudobulbar affect. Neurology, 39, 1400CrossRefGoogle ScholarPubMed
Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat. Rev./Cance., 3, 155–68CrossRefGoogle ScholarPubMed
Soares, H. D., Morgan, J. I. & McKinnon, P. J. (1998). Atm expression patterns suggest a contribution from the peripheral nervous system to the phenotype of ataxia-telangiectasia. Neuroscience, 86, 1045–54CrossRefGoogle ScholarPubMed
Sotelo, C. & Guenet, J. L. (1988). Pathological changes in the CNS of dystonia musculorum mutant mouse: an animal model for human spinocerebellar ataxia. Neuroscience, 27, 403–24CrossRefGoogle ScholarPubMed
Spector, B. D., Filipovich, A. H., Perry, G. S. & Kersey, J. H. (1982). Epidemiology of cancer in ataxia-telangiectasia. In Ataxia-Telangiectasia – Cellular and Molecular Link Between Cancer, Neuropathology and Immune Deficiency, ed. B. A. Bridges & D. G. Harnden. London: John Wiley, pp. 103–7
Spring, K., Ahangari, F., Scott, S. P.et al. (2002). Mice heterozygous for mutation in Atm, the gene involved in ataxia- telangiectasia, have heightened susceptibility to cancer. Nat. Genet., 32, 185–90CrossRefGoogle ScholarPubMed
Stankovic, T., Kidd, A. M. J., Sutcliffe, A.et al. (1998). ATM mutations and phenotypes in ataxia-telangiectasia families in the British Isles: expression of mutant ATM and the risk of leukemia, lymphoma, and breast cancer. Am. J. Hum. Genet., 62, 334–45CrossRefGoogle ScholarPubMed
Stewart, G. S., Maser, R. S., Stankovic, T.et al. (1999). The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell, 99, 577–87CrossRefGoogle ScholarPubMed
Stewart, G. S., Last, J. I. K., Stakovic, T.et al. (2001). Residual ataxia telangiectasia mutated protein function in cells from A-T patients, with 5762ins137 and 7271T>G mutations, showing a less severe phenotype. J. Biol. Chem., 276, 30103–41CrossRefGoogle Scholar
Su, Y. & Swift, M. (2000). Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann. Intern. Med., 133, 770–8CrossRefGoogle ScholarPubMed
Sun, X., Becker-Catania, S. G., Chun, H. H.et al. (2002). Early diagnosis of ataxia-telangiectasia using radiosensitivity testing. J. Pediat., 140, 732–5CrossRefGoogle ScholarPubMed
Swift, M., Sholman, L., Perry, M. & Chase, C. (1976). Malignant neoplasms in the families of patients with ataxia-telangiectasia. Cancer Res., 36, 209–15Google ScholarPubMed
Swift, M., Morrell, D., Cromartie, E., Chamberlin, A. R., Skolnick, M. H. & Bishop, D. T. (1986). The incidence and gene frequency of ataxia-telangiectasia in the United States. Am. J. Hum. Genet., 39, 573–83Google ScholarPubMed
Swift, M., Morrell, D., Massey, R. B. & Chase, C. L. (1991). Incidence of cancer in 161 families affected by ataxia-telangiectasia. N. Engl. J. Med., 325, 1831–6CrossRefGoogle ScholarPubMed
Syllaba, L. & Henner, K. (1926). Contribution a l'independane de l'athetose double idiopathique et congenitale. Rev. Neurol., 1, 541–6Google Scholar
Tavani, F., Zimmerman, R. A., Berry, G. T., Sullivan, K., Gatti, R. & Bingham, P. (2003). Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology, 45, 315–19CrossRefGoogle ScholarPubMed
Taylor, A. M. R., Harnden, D. G., Arlett, C. F.et al. (1975). Ataxia-telangiectasia: a human mutation with abnormal radiation sensitivity. Nature, 258, 427–9CrossRefGoogle ScholarPubMed
Telatar, M., Wang, Z., Udar, N.et al. (1996). Ataxia-telangiectasia: mutations in ATMcDNA detected by protein-truncation screening. Am. J. Hum. Genet., 59, 40–4Google ScholarPubMed
Telatar, M., Wang, Z., Castellvi-Bel, S.et al. (1998a). A model for ATM heterozygote identification in a large population: four founder-effect ATM mutations identify most of Costa Rican patients with ataxia telangiectasia. Mol. Genet. Metabol., 64, 36–43CrossRefGoogle Scholar
Telatar, M., Teraoka, S., Wang, Z.et al. (1998b). Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am. J. Hum. Genet., 62, 86–97CrossRefGoogle Scholar
Teraoka, S., Telatar, M., Becker-Catania, S.et al. (1999). Splicing defects in the ataxia-telangiectasia gene, ATM: underlying mutations and phenotypic consequences. Am. J. Hum. Genet., 64, 1617–31CrossRefGoogle Scholar
Thorstenson, Y. R., Shen, P., Tusher, V. G., Davis, R. W., Chu, G. & Oefner, P. J. (2001). Global analysis of ATM polymorphism reveals significant functional constraint. Am. J. Hum. Genet., 69, 396–412CrossRefGoogle ScholarPubMed
Trouillas, P., Xie, J., Adeleine, P.et al. (1997). Buspirone, a 5-hydroxytryptamine1A agonist, is active in cerebellar ataxia. Results of a double-blind drug placebo study in patients with cerebellar cortical atrophy. Arch. Neurol., 54, 749–52CrossRefGoogle ScholarPubMed
Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L. & Shiloh, Y. (2003). Requirement of the MRN complex for ATM activation by DNA damage. Embo J., 22, 5612–21CrossRefGoogle ScholarPubMed
Vinters, H. V., Gatti, R. A. & Rakic, P. (1985). Sequence of cellular events in cerebellar ontogeny relevant to expression of neuronal abnormalities in ataxia-telangiectasia. In Ataxia-Telangiectasia: Genetics, Neuropathology, and Immunology of a Degenerative Disease of Childhood, ed. R. A. Gatti & M. Swift. New York: Alan R Liss Inc. pp. 233–55
Woods, C. G. & Taylor, A. M. R. (1992). Ataxia telangiectasia in the British Isles: the clinical and laboratory features of 70 affected individuals. Quart. J. Med. New Serie., 298, 169–79Google Scholar
Xu, Y., Ashley, T., Brainerd, E. E., Bronson, R. T., Meyn, M. S. & Baltimore, D. (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev., 10, 2411–22CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Ataxia telangiectasia
    • By Richard A. Gatti, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Tom O. Crawford, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Alan S. Mandir, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Susan Perlman, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Howard T. J. Mount, CRND, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.050
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Ataxia telangiectasia
    • By Richard A. Gatti, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Tom O. Crawford, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Alan S. Mandir, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Susan Perlman, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Howard T. J. Mount, CRND, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.050
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Ataxia telangiectasia
    • By Richard A. Gatti, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Tom O. Crawford, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Alan S. Mandir, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA, Susan Perlman, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, Howard T. J. Mount, CRND, Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
  • M. Flint Beal, Cornell University, New York, Anthony E. Lang, University of Toronto, Albert C. Ludolph, Universität Ulm, Germany
  • Book: Neurodegenerative Diseases
  • Online publication: 04 August 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544873.050
Available formats
×