Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-17T03:34:35.233Z Has data issue: false hasContentIssue false

Chapter 11 - Human Immunodeficiency Virus

Published online by Cambridge University Press:  27 July 2018

Jacobus Donders
Affiliation:
Mary Free Bed Rehabilitation Hospital
Scott J. Hunter
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, S., Wolters, P., & Brouwers, P. (2009). Youth with HIV/AIDS: Neurobehavioral consequences. In Paul, R. H., Sacktor, N., Valcour, V., & Tashima, K. T. (Eds.), HIV and the brain: New challenges in the modern era (pp. 187211). New York, NY: Humana Press.CrossRefGoogle Scholar
Al-Khindi, T., Zakzanis, K. K., & van Gorp, W. G. (2011). Does antiretroviral therapy improve HIV-associated cognitive impairment? A quantitative review of the literature. Journal of the International Neuropsychological Society, 17, 956969.CrossRefGoogle ScholarPubMed
Ances, B. M., Ortega, M., Vaida, F., Heaps, J., & Paul, R. (2012). Independent effects of HIV, aging, and HAART on brain volumetric measures. Journal of Acquired Immune Deficiency Syndromes, 59, 469477.CrossRefGoogle ScholarPubMed
Antinori, A., Arendt, G., Becker, J. T., Brew, B. J., Byrd, D. A., Cherner, M., … Wojna, V. E. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69, 17891799.CrossRefGoogle ScholarPubMed
Bayley, N. B. (2006). Bayley Scales of Infant and Toddler Development (3rd ed.). San Antonio, TX: Pearson Assessment.Google Scholar
Berkman, N. D., Sheridan, S. L., Donahue, K. E., Halpern, D. J., & Crotty, K. (2011). Low health literacy and health outcomes: An updated systematic review. Annals of Internal Medicine, 155, 97107.CrossRefGoogle ScholarPubMed
Boivin, M. J., Nakasujja, N., Sikorskii, A., Opoka, R. B. & Giordani, B. (2016). A randomized controlled trial to evalute if computerized cognitive rehabilitation improves neurocognition in Ugandan children with HIV. AIDS Research and Human Retroviruses, 32, 743755.CrossRefGoogle Scholar
Brandt, C. P., Sheppard, D. P., Zvolensky, M. J., Morgan, E. E., Atkinson, J. H., & Woods, S. P. (2016). Does age influence the frequency of anxiety symptoms and disorders in HIV disease? Journal of HIV and Social Services, 15, 380403.CrossRefGoogle ScholarPubMed
Bryant, V. E., Whitehead, N. E., Burrell, L. E., Dotson, V. M., Cook, R. L., Malloy, P., … Cohen, R. A. (2015). Depression and apathy among people living with HIV: Implications for treatment of HIV associated neurocognitive disorders. AIDS and Behavior, 19, 14301437. http://doi.org/10.1007/s10461-014-0970-1CrossRefGoogle ScholarPubMed
Buchanan, D., Kee, R., Sadowski, L.S., & Garcia, D. (2009). The health impact of supportive housing for HIV-positive homeless patients: A randomized controlled trial. American Journal of Public Health, 99, S675S680. doi: 10.2105/AJPH.2008.137810.CrossRefGoogle ScholarPubMed
Casaletto, K. B., Umlauf, A., Moore, D. J., Woods, S. P., Scott, J. C., & Heaton, R. K. (2016). Abbreviated goal management training shows preliminary evidence as a neurorehabilitation tool for HIV-associated neurocognitive disorders among substance users. The Clinical Neuropsychologist, 30, 107130.CrossRefGoogle ScholarPubMed
Cherner, M., Cysique, L., Heaton, R. K., Marcotte, T. D., Ellis, R. J., Masliah, E. … the HNRC Group. (2007). Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. Journal of NeuroVirology, 13, 2328.CrossRefGoogle ScholarPubMed
Cohen, S., Caan, M. W., Mutsaerts, H. J., Scherpbier, H. J., Kuijpers, T. W., Reiss, P., … Pajkrt, D. (2016). Cerebral injury in perinatally HIV-infected children compared to matched healthy controls. Neurology, 86, 1927. doi:10.1212/wnl.0000000000002209.CrossRefGoogle ScholarPubMed
Coplan, J., Contello, K. A., Cunningham, C. K., Weiner, L. B., Dye, T. D., Roberge, L., … Kirkwood, K. (1998). Early language development in children exposed to or infected with human immunodeficiency virus. Pediatrics, 102, e8.CrossRefGoogle ScholarPubMed
Crowell, C. S., Huo, Y., Tassiopoulos, K., Malee, K. M., Yogev, R., Hazra, R., … Muller, W. J. (2015). Early viral suppression improves neurocognitive outcomes in HIV-infected children. AIDS, 29, 295304.CrossRefGoogle ScholarPubMed
Crowell, C. S., Malee, K. M., Yogev, R., & Muller, W. J. (2014). Neurologic disease in HIV-infected children and the impact of combination antiretroviral therapy. Review of Medical Virology, 24, 316331. doi: 10.1002/rmv.1793CrossRefGoogle ScholarPubMed
Ellis, R. J., Calero, P., & Stockin, M. D. (2009). HIV infection and the central nervous system: A primer. Neuropsychology Review, 19, 144151.CrossRefGoogle ScholarPubMed
Ellis, R., Langford, D., & Masliah, E. (2007). HIV and antiretroviral therapy in the brain: Neuronal injury and repair. Nature Reviews Neuroscience, 8, 3344.CrossRefGoogle ScholarPubMed
Ettenhofer, M. L., Foley, J., Castellon, S. A., & Hinkin, C. H. (2010). Reciprocal prediction of medication adherence and neurocognition in HIV/AIDS. Neurology, 74(15), 12171222.CrossRefGoogle ScholarPubMed
Ezeamama, A. E., Kizza, F. N., Zalwango, S. K., Nkwata, A. K., Zhang, M., Rivera, M. L., … Whalen, C. C. (2016). Perinatal HIV status and executive function during school-age and adolescence: A comparative study of long-term cognitive capacity among children from a high HIV prevalence setting. Medicine (Baltimore), 95, e3438. doi: 10.1097/md.0000000000003438CrossRefGoogle ScholarPubMed
Foley, J. M., Ettenhofer, M. L., Kim, M. S., Behdin, N., Castellon, S. A., & Hinkin, C. H. (2012). Cognitive reserve as a protective factor in older HIV-positive patients at risk for cognitive decline. Applied Neuropsychology. Adult, 19, 1625. http://doi.org/10.1080/09084282.2011.595601CrossRefGoogle ScholarPubMed
Foley, J. M., Gooding, A. L., Thames, A. D., Ettenhofer, M. L., Kim, M. S., Castellon, S. A., … Hinkin, C. H. (2013). Visuospatial and attentional abilities predict driving simulator performance among older HIV-infected adults. American Journal of Alzheimer’s Disease and Other Dementias, 28, 185194. http://doi.org/10.1177/1533317512473192CrossRefGoogle ScholarPubMed
Garvie, P. A., Zeldow, B., Malee, K., Nichols, S. L., Wilkins, M. L., Smith, R. E., … PHACS. (2013). Concordance of cognitive and academic achievement outcomes in youth with perinatal HIV exposure. Paper presented at the National Conference on Pediatric Psychology (NCPP), New Orleans, LA.Google Scholar
Gongvatana, A., Woods, S. P., Taylor, M. J., Vigil, O., Grant, I., & the HNRC Group. (2007). Semantic clustering inefficiency in HIV-associated dementia. Journal of Neuropsychiatry and Clinical Neurosciences, 19, 3642.CrossRefGoogle ScholarPubMed
Heaton, R. K., Franklin, D. R., Deutsch, R., Letendre, S., Ellis, R. J., Casaletto, K., … Teshome, M. (2015). Neurocognitive change in the era of HIV combination antiretroviral therapy: The longitudinal CHARTER study. Clinical Infectious Diseases, 60, 473480. http://doi.org/10.1093/cid/ciu862CrossRefGoogle ScholarPubMed
Henry J. Kaiser Family Foundation. (2017). The Global HIV/AIDS Epidemic Fact Sheet. Retrieved from http://kff.org/global-health-policy/fact-sheet/the-global-hivaids-epidemic/Google Scholar
Herting, M. M., Uban, K. A., Williams, P. L., Gautam, P., Huo, Y., Malee, K., … Sowell, E. R. (2015). Default mode connectivity in youth with perinatally acquired HIV. Medicine (Baltimore), 94, e1417. doi: 10.1097/md.0000000000001417CrossRefGoogle ScholarPubMed
Hinkin, C. H., Castellon, S. A., Durvasala, R. S., Hardy, D. J., Lam, M. N., Mason, K. I., … Stefaniak, M. (2002). Medication adherence among HIV+ adults: Effects of cognitive dysfunction and regimen complexity. Neurology, 59, 19441950.CrossRefGoogle ScholarPubMed
Hoare, J., Ransford, G. L., Phillips, N., Amos, T., Donald, K., & Stein, D. J. (2014). Systematic review of neuroimaging studies in vertically transmitted HIV positive children and adolescents. Metabolic Brain Disorders, 29, 221229. doi: 10.1007/s11011-013-9456-5CrossRefGoogle ScholarPubMed
Hunter, S. J., & Sparrow, E. P. (2012). Executive function and dysfunction: Identification, assessment, and treatment. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Iudicello, J. E., Woods, S. P., Parsons, T. D., Moran, L. M., Carey, C. L., & Grant, I. (2007). Verbal fluency in HIV infection: A meta-analytic review. Journal of the International Neuropsychological Society, 13(01), 183189.CrossRefGoogle ScholarPubMed
Jacks, A., Wainwright, D., Salazar, L., Grimes, R., York, M., Strutt, A. M.Hasbun, R. (2015). Neurocognitive deficits increase risk of poor retention in care among older adults with newly diagnosed HIV infection. AIDS, 29(13), 17111714.CrossRefGoogle ScholarPubMed
Jahanshad, N., Couture, M. C., Prasitsuebsai, W., Nir, T. M., Aurpibul, L., Thompson, P. M., … Valcour, V. G. (2015). Brain imaging and neurodevelopment in HIV-uninfected Thai children born to HIV-infected mothers. Pediatric Infectious Disease Journal, 34, e211216.CrossRefGoogle ScholarPubMed
Joint United Nations Programme on HIV/AIDS. (2016). Global AIDS Update 2016. NY: UNAIDS. Retrieved from: http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdfGoogle Scholar
Kacanek, D., Angelidou, K., Williams, P. L., Chernoff, M., Gadow, K. D., & Nachman, S. (2015). Psychiatric symptoms and antiretroviral nonadherence in US youth with perinatal HIV: A longitudinal study. AIDS, 29, 12271237. doi: 10.1097/qad.0000000000000697CrossRefGoogle ScholarPubMed
Kapetanovic, S., Griner, R., Zeldow, B., Nichols, S., Leister, E., Gelbard, H. A., … Williams, P. L. (2014). Biomarkers and neurodevelopment in perinatally HIV-infected or exposed youth: a structural equation model analysis. AIDS, 28, 355364. doi: 10.1097/qad.0000000000000072CrossRefGoogle ScholarPubMed
Le Doare, K., Bland, R., & Newell, M. L. (2012). Neurodevelopment in children born to HIV-infected mothers by infection and treatment status. Pediatrics, 130, e13261344.CrossRefGoogle ScholarPubMed
Lemey, P., Pybus, O. G., Wang, B., Saksena, N. K., Salemi, M., & Vandamme, A. M. (2003) Tracing the origin and history of the HIV-2 epidemic. Proceedings of the National Academy of Science, 100, 65886592. doi:10.1073/pnas.0936469100CrossRefGoogle ScholarPubMed
Linn, K., Fay, A., Meddles, K., Isbell, S., Lin, P. N., Thair, C., … Mar, S. S. (2015). HIV-related cognitive impairment of orphans in Myanmar with vertically transmitted HIV taking antiretroviral therapy. Pediatric Neurology, 53, 485490. doi: 10.1016/j.pediatrneurol.2015.08.004CrossRefGoogle ScholarPubMed
Llorente, A. M., Brouwers, P., Leighty, R., Malee, K., Smith, R., Harris, L., … Chase, C. (2014). An analysis of select emerging executive skills in perinatally HIV-1-infected children. Applied Neuropsychology: Child, 3, 1025. doi: 10.1080/21622965.2012.686853CrossRefGoogle ScholarPubMed
Louw, K. A., Ipser, J., Phillips, N., & Hoare, J. (2016). Correlates of emotional and behavioural problems in children with perinatally acquired HIV in Cape Town, South Africa. AIDS Care, 28, 842850. doi: 10.1080/09540121.2016.1140892CrossRefGoogle ScholarPubMed
Malee, K., Williams, P. L., Montepiedra, G., Nichols, S., Sirois, P. A., Storm, D., … Kammerer, B. (2009). The role of cognitive functioning in medication adherence of children and adolescents with HIV infection. Journal of Pediatric Psychology, 34, 164175. doi: 10.1093/jpepsy/jsn068CrossRefGoogle ScholarPubMed
Malee, K. M., Smith, R. A., & Mellins, C. A. (2016). Brain and cognitive development among US youth with perinatally acquired human immunodeficiency virus infection. Journal of the Pediatric Infectious Diseases Society, 5(Suppl 1), S1S5. doi:10.1093/jpids/piwo41CrossRefGoogle ScholarPubMed
Malee, K. M., Tassiopoulos, K., Huo, Y., Siberry, G., Williams, P. L., Hazra, R., … Mellins, C. A. (2011). Mental health functioning among children and adolescents with perinatal HIV infection and perinatal HIV exposure. AIDS Care, 23, 15331544. doi: 10.1080/09540121.2011.575120CrossRefGoogle ScholarPubMed
Martin, S. C., Wolters, P. L., Toledo-Tamula, M. A., Zeichner, S. L., Hazra, R., & Civitello, L. (2006). Cognitive functioning in school-aged children with vertically acquired HIV infection being treated with highly active antiretroviral therapy (HAART). Developmental Neuropsychology, 30, 633657. doi: 10.1207/s15326942dn3002_1CrossRefGoogle ScholarPubMed
Mellins, C. A., Brackis-Cott, E., Dolezal, C., & Abrams, E. J. (2006). Psychiatric disorders in youth with perinatally acquired Human Immunodeficiency Virus infection. The Pediatric Infectious Disease Journal, 25, 432437. doi: 10.1097/01.inf.0000217372.10385.2aCrossRefGoogle ScholarPubMed
Mellins, C. A., & Malee, K. M. (2013). Understanding the mental health of youth living with perinatal HIV infection: Lessons learned and current challenges. Journal of the International AIDS Society, 16, 18593.CrossRefGoogle ScholarPubMed
Morgan, E. E., Iudicello, J. E., Weber, E., Duarte, N. A., Riggs, K. P., Delano-Wood, L., … the HNRP. (2012). Synergistic effects of HIV infection and older age on daily functioning. Journal of Acquired Immune Deficiency Syndromes, 61, 341348.CrossRefGoogle ScholarPubMed
Nagarajan, R., Sarma, M. K., Thomas, M. A., Chang, L., Natha, U., Wright, M., … Keller, M. A. (2012). Neuropsychological function and cerebral metabolites in HIV-infected youth. Journal of Neuroimmune Pharmacology, 7, 981990. doi: 10.1007/s11481-012-9407-7CrossRefGoogle ScholarPubMed
Nichols, S. L. (2012). Executive functions in HIV. In Hunter, S. J. & Sparrow, E. P. (Eds)., Executive function and dysfunction: Identification, assessment, and treatment (pp. 168173). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Nichols, S. L. (2013). Neuropsychology of HIV in children and adolescents. Psychology and AIDS Exchange Newsletter, 1. Retrieved from: http://www.apa.org/pi/aids/resources/exchange/2013/01/neuropsychology-children.aspxGoogle Scholar
Nichols, S. L., Bethel, J., Kapogiannis, B. G., Li, T., Woods, S. P., Patton, E. D., … Garvie, P. A. (2016). Antiretroviral treatment initiation does not differentially alter neurocognitive functioning over time in youth the behaviorally acquired HIV. Journal of Neurovirology, 22, 218230.CrossRefGoogle Scholar
Nichols, S. L., Brummel, S. S., Smith, R. A., Garvie, P. A., Hunter, S. J., Malee, K. M., … Mellins, C. A. (2015). Executive functioning in children and adolescents with perinatal HIV infection. Pediatric Infectious Diseases Journal, 34, 969975. doi: 10.1097/inf.0000000000000809CrossRefGoogle ScholarPubMed
Nichols, S. L., Chernoff, M. C., Malee, K., Sirois, P. A., Williams, P. L., Figueroa, V., & Woods, S. P. (2016). Learning and memory in children and adolescents with perinatal HIV infection and perinatal HIV exposure. Pediatric Infectious Diseases Journal, 35, 649654. doi: 10.1097/inf.0000000000001131CrossRefGoogle ScholarPubMed
Nichols, S. L., Chernoff, M. C., Malee, K. M., Sirois, P. A., Woods, S. P., Williams, P. L., … Kammerer, B. (2016). Executive functioning in children and adolescents with perinatal HIV infection and perinatal HIV exposure. Journal of the Pediatric Infectious Diseases Society, 5(suppl 1), S15S23. doi: 10.1093/jpids/piw049CrossRefGoogle ScholarPubMed
Nichols, S. L., & Farley, J. J. (2009). Human immunodeficiency virus infection in children. In Carey, W. B., Crocker, A. C., Elias, E. R., Feldman, A. M., & Coleman, W. L. (Eds.), Developmental-behavioral pediatrics (4th ed., pp. 269276). St. Louis, MO: Elsevier Publishing.CrossRefGoogle Scholar
Nichols, S. L., Montepiedra, G., Farley, J. J., Sirois, P. A., Malee, K., Kammerer, B., … Naar-King, S. (2012). Cognitive, academic, and behavioral correlates of medication adherence in children and adolescents with perinatally acquired HIV infection. Journal of Developmental and Behavioral Pediatrics, 33, 298308. doi: 10.1097/DBP.0b013e31824bef47CrossRefGoogle ScholarPubMed
Nozyce, M. L., Huo, Y., Williams, P.L., Kapetanovic, S., Hazra, R., Nichols, S., … Sirois, P. A. (2014). Safety of in utero and neonatal antiretroviral exposure: cognitive and academic outcomes in HIV-exposed, uninfected children 5-13 years of age. Pediatric Infectious Disease Journal, 33, 11281133. doi: 10.1097/INF.0000000000000410.CrossRefGoogle ScholarPubMed
O’Cleirigh, C., Magidson, J. F., Skeer, M. R., Mayer, K. H., & Safren, S. A. (2015). Prevalence of psychiatric and substance abuse symptomatology among HIV-infected gay and bisexual men in HIV primary care. Psychosomatics, 56, 470478.CrossRefGoogle ScholarPubMed
Panel on Antiretroviral Therapy and Medical Management of HIV-Infected Children. (2015). Guidelines for the use of antiretroviral agents in pediatric HIV infection. Retrieved from: https://aidsinfo.nih.gov/contentfiles/lvguidelines/PediatricGuidelines.pdfGoogle Scholar
Pearlstein, S. L., Mellins, C. A., Dolezal, C., Elkington, K. S., Santamaria, E. K., Leu, C. S., … Abrams, E. J. (2014). Youth in transition: Life skills among perinatally HIV-infected and HIV-exposed adolescents. Journal of Pediatric Psychology, 39, 294305. doi: 10.1093/jpepsy/jst077CrossRefGoogle ScholarPubMed
Phillips, N., Amos, T., Kuo, C., Hoare, J., Ipser, J., Thomas, K. G. F., & Stein, D. J. (2016). HIV-associated cognitive impairment in perinatally infected children: A meta-analysis. Pediatrics, 138, e20160893.CrossRefGoogle ScholarPubMed
Prasad, R. (2015). HIV primary care. In South-Paul, J. E., Matheny, S. C., & Lewis, E. L. (Eds.), Lange current diagnosis and treatment: Family medicine (4th ed., pp. 582597). NY: McGraw-Hill.Google Scholar
Redmond, S. M., Yao, T. J., Russell, J. S., Rice, M. L., Hoffman, H. J., Siberry, G. K., … Williams, P. L. (2016). Longitudinal evaluation of language impairment in youth with perinatally acquired human immunodeficiency virus (HIV) and youth with perinatal HIV exposure. Journal of the Pediatric Infectious Diseases Society, 5(Suppl 1), S33S40. doi: 10.1093/jpids/piw045CrossRefGoogle ScholarPubMed
Rice, M. L., Buchanan, A. L., Siberry, G. K., Malee, K. M., Zeldow, B., Frederick, T., … Williams, P. L. (2012). Language impairment in children perinatally infected with HIV compared to children who were HIV-exposed and uninfected. Journal of Developmental and Behavioral Pediatrics, 33, 112123. doi: 10.1097/DBP.0b013e318241ed23CrossRefGoogle ScholarPubMed
Ruel, T. D., Boivin, M. J., Boal, H. E., Bangirana, P., Charlebois, E., Havlir, D. V., … Wong, J. K. (2012). Neurocognitive and motor deficits in HIV-infected Ugandan children with high CD4 cell counts. Clinical Infectious Diseases, 54, 10011009. doi: 10.1093/cid/cir1037CrossRefGoogle ScholarPubMed
Santiago, F., Range, B. F., Keele, Y., Li, E., Bailes, F., Bibollet-Ruche, C., … Hahn, B. H. (2005). Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Taï Forest, Côte d’Ivoire: Implications for the origin of epidemic human immunodeficiency virus type 2. Journal of Virology, 79, 1251512527. doi.org/10.1128/JVI.79.19.12515–12527.2005CrossRefGoogle Scholar
Saylor, D., Dickens, A. M., Sacktor, N., Haughey, N., Slusher, B., Pletnikov, M., … McArthur, J. C. (2016). HIV-associated neurocognitive disorder – Pathogenesis and prospects for treatment. Nature Reviews Neurology, 12, 234248.CrossRefGoogle ScholarPubMed
Sheppard, D. P., Woods, S. P., Bondi, M. W., Gilbert, P. E., Massman, P. J., Doyle, K. L., & the HNRP Group. (2015). Does older age confer an increased risk of incident neurocognitive disorders among persons living with HIV disease? Clinical Neuropsychology, 29, 656677.CrossRefGoogle ScholarPubMed
Sherr, L., Croome, N., Parra Castaneda, K., Bradshaw, K., & Herrero Romero, R. (2014). Developmental challenges in in HIV infected children – An updated systematic review. Children and Youth Services Review, 45, 7489.CrossRefGoogle Scholar
Sherr, L., Mueller, J., & Varrall, R. (2009). A systematic review of cognitive development and child human immunodeficiency virus infection. Psychology, Health, & Medicine, 14, 387404.CrossRefGoogle ScholarPubMed
Sirois, P. A., Chernoff, M. C., Malee, K. M., Garvie, P. A., Harris, L. L., Williams, P. L., … Nichols, S. L. (2016). Associations of memory and executive functioning with academic and adaptive functioning among youth with perinatal HIV exposure and/or infection. Journal of the Pediatric Infectious Diseases Society, 5(suppl 1), S24S32. doi: 10.1093/jpids/piw046CrossRefGoogle ScholarPubMed
Smith, R., Chernoff, M., Williams, P. L., Malee, K. M., Sirois, P. A., Kammerer, B., … Rutstein, R. (2012). Impact of HIV severity on cognitive and adaptive functioning during childhood and adolescence. Pediatric Infectious Diseases Journal, 31, 592598. doi: 10.1097/INF.0b013e318253844bCrossRefGoogle ScholarPubMed
Smith, R., Malee, K., Leighty, R., Brouwers, P., Mellins, C., Hittelman, J., … Blasini, I. (2006). Effects of perinatal HIV infection and associated risk factors on cognitive development among young children. Pediatrics, 117, 851862. doi: 10.1542/peds.2005-0804CrossRefGoogle ScholarPubMed
Smith, R., & Wilkins, M. (2015). Perinatally acquired HIV infection: Long-term neuropsychological consequences and challenges ahead. Child Neuropsychology, 21, 234268. doi: 10.1080/09297049.2014.898744CrossRefGoogle ScholarPubMed
Squeglia, L. M., & Gray, K. M. (2016). Alcohol and drug use and the developing brain. Current Psychiatry Reports, 18, 46. doi: 10.1007/s11920-016-0689-yCrossRefGoogle ScholarPubMed
Tassiopoulos, K., Patel, K., Alperen, J., Kacanek, D., Ellis, A., Berman, C., … Seage, G. R., III. (2016). Pediatric HIV/AIDS cohort study following young people with perinatal HIV infection from adolescence into adulthood: The protocol for PHACS AMP Up, a prospective cohort study. British Medical Journal:Open, 6, e011396. doi: 10.1136/bmjopen-2016-011396.Google ScholarPubMed
Tozzi, V., Balestra, P., Bellagamba, R., Corpolongo, A., Salvatori, M. F., Visco-Comandini, U., … Narciso, P. (2007). Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: Prevalence and risk factors. Journal of Acquired Immune Deficiency Syndromes, 45, 174182.CrossRefGoogle ScholarPubMed
Uban, K. A., Herting, M. M., Williams, P. L., Ajmera, T., Gautam, P., Huo, Y., … Sowell, E. R. (2015). White matter microstructure among youth with perinatally acquired HIV is associated with disease severity. AIDS, 29, 10351044. doi: 10.1097/qad.0000000000000648CrossRefGoogle ScholarPubMed
Walker, S. Y., Pierre, R. B., Christie, C. D. C., & Chang, S. M. (2013). Neurocognitive function in HIV-positive children in a developing country. International Journal of Infectious Diseases, 17, e862867.CrossRefGoogle ScholarPubMed
Weber, E., Blackstone, K., & Woods, S. P. (2013). Cognitive neurorehabilitation of HIV-associated neurocognitive disorders: A qualitative review and call to action. Neuropsychology Review, 23, 8198.CrossRefGoogle ScholarPubMed
Weber, E., Woods, S. P., Cameron, M. V., Gibson, S., Grant, I., & the HNRC Group (2010). Mental rotation of hands in HIV infection: Neuropsychological evidence of dysfunction in fronto-striato-parietal networks. Journal of Neuropsychiatry and Clinical Neurosciences, 22, 115122.CrossRefGoogle ScholarPubMed
Williams, P. L., Storm, D., & Montepiedra, G. (2006). Predictors of adherence to antiretroviral medications in children and adolescents with HIV infection. Pediatrics, 118, 17451757.CrossRefGoogle ScholarPubMed
Willen, E. J., Cuadra, A., Arheart, K. L., Post, M. J., & Govind, V. (2016). Young adults perinatally infected with HIV perform more poorly on measures of executive functioning and motor speed than ethnically matched healthy controls. AIDS Care, 29, 387393. doi: 10.1080/09540121.2016.1234677CrossRefGoogle ScholarPubMed
Woods, S. P., Moore, D. J., Weber, E., & Grant, I. (2009). Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychology Review, 19, 152168.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×