Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-10-31T23:43:17.357Z Has data issue: false hasContentIssue false

Chapter 27 - Clinical Peripheral Nerve Injury Models

from Section 2 - Clinical Neurosurgical Diseases

Published online by Cambridge University Press:  04 January 2024

Farhana Akter
Affiliation:
Harvard University, Massachusetts
Nigel Emptage
Affiliation:
University of Oxford
Florian Engert
Affiliation:
Harvard University, Massachusetts
Mitchel S. Berger
Affiliation:
University of California, San Francisco
Get access

Summary

Peripheral nerve injuries(PNIs) come in many varieties and their mechanism of injury can have a tremendous impact on a patient’s expected outcome. As discussed in Chapter 26, depending on the mechanism, PNIs have a relatively well-choreographed response to injury. However, much of this sequence will be influenced by both modifiable and non-modifiable prognostic factors. Furthermore, this mechanism of injury and its severity will also help dictate the appropriate treatment of the injury. In this chapter, basic science principles and models addressing PNIs are more specifically examined as they occur in the context of trauma, entrapment, tumors, and the changes occurring in acute and chronic pain states. Clinical case examples of such injuries will be discussed to conclude each section, including their respective management.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alant, JD, Kemp, SW, Khu, KJ, Kumar, R, Webb, AA, Midha, R. Traumatic neuroma in continuity injury model in rodents. J Neurotrauma 2012;29(8):1691–703. https://doi.org/10.1089/neu.2011.1857.Google Scholar
Alant, JD, Senjaya, F, Ivanovic, A, Forden, J, Shakhbazau, A, Midha, R. The impact of motor axon misdirection and attrition on behavioral deficit following experimental nerve injuries. PLoS One 2013;8(11):e82546. https://doi.org/10.1371/journal.pone.0082546.CrossRefGoogle ScholarPubMed
Alles, SRA, Smith, PA. Etiology and pharmacology of neuropathic pain. Pharmacol Rev 2018;70(2):315–47. https://doi.org/10.1124/pr.117.014399.CrossRefGoogle ScholarPubMed
Al-Majed, AA, Brushart, TM, Gordon, T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 2000a;12(12):4381–90.Google Scholar
Al-Majed, AA, Neumann, CM, Brushart, TM, Gordon, T. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 2000b;20(7):2602–08.Google Scholar
Banks, GP, Winfree, CJ. Evolving techniques and indications in peripheral nerve stimulation for pain. Neurosurg Clin N Am 2019;30(2):265–73. https://doi.org/10.1016/j.nec.2018.12.011.Google Scholar
Battiston, B, Raimondo, S, Tos, P, et al. Chapter 11: Tissue engineering of peripheral nerves. Int Rev Neurobiol 2009;87:227–49. https://doi.org/10.1016/S0074-7742(09)87011-6.Google Scholar
Beer, GM, Steurer, J, Meyer, VE. Standardizing nerve crushes with a non-serrated clamp. J Reconstr Microsurg 2001;17(7):531534. https://doi.org/10.1055/s-2001-17755.Google Scholar
Berger, A, Millesi, H. Nerve grafting. Clin Orthop Relat Res 1978;(133):4955.Google Scholar
Blom, CL, Martensson, LB, Dahlin, LB. Nerve injury-induced c-Jun activation in Schwann cells is JNK independent. Biomed Res Int 2014;2014:392971. https://doi.org/10.1155/2014/392971.Google Scholar
Bouhassira, D. Neuropathic pain: definition, assessment and epidemiology. Rev Neurol (Paris) 2019;175(1–2):1625. https://doi.org/10.1016/j.neurol.2018.09.016.CrossRefGoogle ScholarPubMed
Brooks, DN, Weber, RV, Chao, JD, et al. Processed nerve allografts for peripheral nerve reconstruction: a multicenter study of utilization and outcomes in sensory, mixed, and motor nerve reconstructions. Microsurgery 2012;32(1):114. https://doi.org/10.1002/micr.20975.Google Scholar
Brossier, NM, Carroll, SL. Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull 2012;88(1):5871. https://doi.org/10.1016/j.brainresbull.2011.08.005.Google Scholar
Bruck, W. The role of macrophages in Wallerian degeneration. Brain Pathol 1997;7(2):741–52. https://doi.org/10.1111/j.1750-3639.1997.tb01060.x.Google Scholar
Brushart, TM, Hoffman, PN, Royall, RM, Murinson, BB, Witzel, C, Gordon, T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 2002;22(15):6631–8. https://doi.org/10.1523/JNEUROSCI.22-15-06631.2002.Google Scholar
Caillaud, M, Richard, L, Vallat, JM, Desmouliere, A, Billet, F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019;14(1):2433. https://doi.org/10.4103/1673-5374.243699.Google Scholar
Chang, KY, Ho, ST, Yu, HS. Vibration induced neurophysiological and electron microscopical changes in rat peripheral nerves. Occup Environ Med 1994;51(2):130–5. https://doi.org/10.1136/oem.51.2.130.CrossRefGoogle ScholarPubMed
Chao, T, Pham, K, Steward, O, Gupta, R. Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. J Comp Neurol 2008;506(2):180–93. https://doi.org/10.1002/cne.21537.Google Scholar
Chen, LE, Seaber, AV, Urbaniak, JR. The influence of magnitude and duration of crush load on functional recovery of the peripheral nerve. J Reconstr Microsurg 1993;9(4):299306; discussion 306–07. https://doi.org/10.1055/s-2007-1006671.CrossRefGoogle ScholarPubMed
Chick, G, Alnot, JY, Silbermann-Hoffman, O. [Benign solitary tumors of the peripheral nerves]. Rev Chir Orthop Reparatrice Appar Mot 2000;86(8):825–34.Google Scholar
Clark, BD, Al-Shatti, TA, Barr, AE, Amin, M, Barbe, MF. Performance of a high-repetition, high-force task induces carpal tunnel syndrome in rats. J Orthop Sports Phys Ther 2004;34(5):244–53. https://doi.org/10.2519/jospt.2004.34.5.244.Google Scholar
Clark, BD, Barr, AE, Safadi, FF, et al. Median nerve trauma in a rat model of work-related musculoskeletal disorder. J Neurotrauma 2003;20(7):681–95. https://doi.org/10.1089/089771503322144590.Google Scholar
Dahlin, LB, Archer, DR, McLean, WG. Axonal transport and morphological changes following nerve compression. An experimental study in the rabbit vagus nerve. J Hand Surg Br 1993;18(1):106–10. https://doi.org/10.1016/0266-7681(93)90206-u.Google Scholar
Dahlin, LB, Kanje, M. Conditioning effect induced by chronic nerve compression. An experimental study of the sciatic and tibial nerves of rats. Scand J Plast Reconstr Surg Hand Surg 1992;26(1):3741. https://doi.org/10.3109/02844319209035181.Google Scholar
Dahlin, LB, Nordborg, C, Lundborg, G. Morphologic changes in nerve cell bodies induced by experimental graded nerve compression. Exp Neurol 1987;95(3):611–21. https://doi.org/10.1016/0014-4886(87)90303-7.CrossRefGoogle ScholarPubMed
Dahlin, LB, Thambert, C. Acute nerve compression at low pressures has a conditioning lesion effect on rat sciatic nerves. Acta Orthop Scand 1993;64(4):479–81. https://doi.org/10.3109/17453679308993673.CrossRefGoogle Scholar
Deogaonkar, M, Slavin, KV. Peripheral nerve/field stimulation for neuropathic pain. Neurosurg Clin N Am 2014;25(1):110. https://doi.org/10.1016/j.nec.2013.10.001.CrossRefGoogle ScholarPubMed
Desai, KI. Primary benign brachial plexus tumors: an experience of 115 operated cases. Neurosurgery 2012;70(1):220–33; discussion 233. https://doi.org/10.1227/NEU.0b013e31822d276a.CrossRefGoogle ScholarPubMed
Dombi, E, Baldwin, A, Marcus, LJ, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med 2016;375(26):2550–60. https://doi.org/10.1056/NEJMoa1605943.Google Scholar
Dong, R, Liu, Y, Yang, Y, Wang, H, Xu, Y, Zhang, Z. MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. Biomed Res Int 2019;2019:6458237. https://doi.org/10.1155/2019/6458237.Google Scholar
Driscoll, PJ, Glasby, MA, Lawson, GM. An in vivo study of peripheral nerves in continuity: biomechanical and physiological responses to elongation. J Orthop Res 2002;20(2):370–5. https://doi.org/10.1016/S0736-0266(01)00104-8.Google Scholar
Dumanian, GA, Potter, BK, Mioton, LM, et al. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. Ann Surg 2019;270(2):238–46. https://doi.org/10.1097/SLA.0000000000003088.CrossRefGoogle ScholarPubMed
Dyck, PJ, Lais, AC, Giannini, C, Engelstad, JK. Structural alterations of nerve during cuff compression. Proc Natl Acad Sci U S A 1990;87(24):9828–32. https://doi.org/10.1073/pnas.87.24.9828.Google Scholar
Evans, DG, Baser, ME, McGaughran, J, Sharif, S, Howard, E, Moran, A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002;39(5):311–4. https://doi.org/10.1136/jmg.39.5.311.CrossRefGoogle ScholarPubMed
Felix, SP, Pereira Lopes, FR, Marques, SA, Martinez, AM. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 2013;33(6):468–77. https://doi.org/10.1002/micr.22109.Google Scholar
Gelberman, RH, Szabo, RM, Williamson, RV, Dimick, MP. Sensibility testing in peripheral-nerve compression syndromes. An experimental study in humans. J Bone Joint Surg Am 1983a;65(5):632–8.CrossRefGoogle ScholarPubMed
Gelberman, RH, Szabo, RM, Williamson, RV, Hargens, AR, Yaru, NC, Minteer-Convery, MA. Tissue pressure threshold for peripheral nerve viability. Clin Orthop Relat Res 1983b(178):285–91.Google Scholar
Geuna, S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015;243:3946. https://doi.org/10.1016/j.jneumeth.2015.01.021.Google Scholar
Geuna, S, Raimondo, S, Ronchi, G, et al. Chapter 3: Histology of the peripheral nerve and changes occurring during nerve regeneration. Int Rev Neurobiol 2009;87:2746. https://doi.org/10.1016/S0074-7742(09)87003-7.Google Scholar
Gordon, T, Borschel, GH. The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 2017;287(Pt 3):331–47. https://doi.org/10.1016/j.expneurol.2016.01.014.Google Scholar
Gordon, T, Brushart, TM, Chan, KM. Augmenting nerve regeneration with electrical stimulation. Neurol Res 2008;30(10):1012–22. https://doi.org/10.1179/174313208X362488.Google Scholar
Gottfried, ON, Viskochil, DH, Couldwell, WT. Neurofibromatosis Type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 2010;28(1):E8. https://doi.org/10.3171/2009.11.FOCUS09221.Google Scholar
Gray, M, Palispis, W, Popovich, PG, van Rooijen, N, Gupta, R. Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury. J Neurosci Res 2007;85(4):766–77. https://doi.org/10.1002/jnr.21166.CrossRefGoogle ScholarPubMed
Gregory, NS, Harris, AL, Robinson, CR, Dougherty, PM, Fuchs, PN, Sluka, KA. An overview of animal models of pain: disease models and outcome measures. J Pain 2013;14(11):1255–69. https://doi.org/10.1016/j.jpain.2013.06.008.Google Scholar
Gross, A, Bishop, R, Widemann, BC. Selumetinib in plexiform neurofibromas. N Engl J Med 2017;376(12):1195. https://doi.org/10.1056/NEJMc1701029.Google Scholar
Gross, AM, Dombi, E, Widemann, BC. Current status of MEK inhibitors in the treatment of plexiform neurofibromas. Childs Nerv Syst 2020a;36(10):2443–52. https://doi.org/10.1007/s00381-020-04731-2.Google Scholar
Gross, AM, Wolters, PL, Dombi, E, et al. Selumetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020b;382(15):1430–42. https://doi.org/10.1056/NEJMoa1912735.CrossRefGoogle ScholarPubMed
Gupta, R, Channual, JC. Spatiotemporal pattern of macrophage recruitment after chronic nerve compression injury. J Neurotrauma 2006;23(2):216–26. https://doi.org/10.1089/neu.2006.23.216.Google Scholar
Gupta, R, Rowshan, K, Chao, T, Mozaffar, T, Steward, O. Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Exp Neurol 2004;187(2):500–08. https://doi.org/10.1016/j.expneurol.2004.02.009.Google Scholar
Gupta, R, Steward, O. Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. J Comp Neurol 2003;461(2):174–86. https://doi.org/10.1002/cne.10692.Google Scholar
Gupta, R, Truong, L, Bear, D, Chafik, D, Modafferi, E, Hung, CT. Shear stress alters the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in Schwann cells. J Orthop Res 2005;23(5):1232–9. https://doi.org/10.1016/j.orthres.2004.12.010.Google Scholar
Haastert-Talini, K, Geuna, S, Dahlin, LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials 2013;34(38):9886–904. https://doi.org/10.1016/j.biomaterials.2013.08.074.Google Scholar
Hashmonai, M, Cameron, AE, Licht, PB, Hensman, C, Schick, CH. Thoracic sympathectomy: a review of current indications. Surg Endosc 2016;30(4):1255–69. https://doi.org/10.1007/s00464-015-4353-0.Google Scholar
Jack, A, Ramey, WL, Dettori, JR, et al. Factors associated with C5 palsy following cervical spine surgery: a systematic review. Global Spine J 2019;9(8):881–94. https://doi.org/10.1177/2192568219874771.Google Scholar
Jack, AS, Chapman, JR, Mummaneni, PV, Gerard, CS, Jacques, L. Radiological data of brachial plexus avulsion injury associated spinal cord herniation (BPAI-SCH) and comparison to anterior thoracic spinal cord herniation (ATSCH). Data Brief 2020a;29:105333. https://doi.org/10.1016/j.dib.2020.105333.CrossRefGoogle ScholarPubMed
Jack, AS, Chapman, JR, Mummaneni, PV, Jacques, LG, Gerard, CS. Late cervical spinal cord herniation resulting from post-traumatic brachial plexus avulsion injury. World Neurosurg 2020b;137:17. https://doi.org/10.1016/j.wneu.2020.01.129.Google Scholar
Jack, AS, Osburn, BR, Tymchak, ZA, et al. Foraminal ligaments tether upper cervical nerve roots: a potential cause of postoperative C5 palsy. J Brachial Plex Peripher Nerve Inj 2020c;15(1):e9e15. https://doi.org/10.1055/s-0040-1712982.Google Scholar
Jacobson, RD, Virag, I, Skene, JH. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci 1986;6(6):1843–55.Google Scholar
Johansson, F, Dahlin, LB. The multiple silicone tube device, “tubes within a tube,” for multiplication in nerve reconstruction. Biomed Res Int 2014;2014:689127. https://doi.org/10.1155/2014/689127.CrossRefGoogle ScholarPubMed
Karsidag, S, Akcal, A, Sahin, S, Karsidag, S, Kabukcuoglu, F, Ugurlu, K. Neurophysiological and morphological responses to treatment with acetyl-l-carnitine in a sciatic nerve injury model: preliminary data. J Hand Surg Eur 2012;37(6):529–36. https://doi.org/10.1177/1753193411426969.Google Scholar
Keir, PJ, Rempel, DM. Pathomechanics of peripheral nerve loading. Evidence in carpal tunnel syndrome. J Hand Ther 2005;18(2):259–69. https://doi.org/10.1197/j.jht.2005.02.001.Google Scholar
Kim, DH, Friedman, AH, Kitagawa, RS, Kiline, DG. Management of peripheral nerve tumors In Filler, AG, Kline, DG, Zager, EL (Eds.), Youmans Neurological Surgery. 6th ed. Philadelphia, PA: Elsevier Saunders, 2011; p. 3264.Google Scholar
Kingery, WS, Lu, JD, Roffers, JA, Kell, DR. The resolution of neuropathic hyperalgesia following motor and sensory functional recovery in sciatic axonotmetic mononeuropathies. Pain 1994;58(2):157–68. https://doi.org/10.1016/0304-3959(94)90196-1.Google Scholar
Kolberg, M, Holand, M, Agesen, TH, et al. Survival meta-analyses for >1800 malignant peripheral nerve sheath tumor patients with and without neurofibromatosis type 1. Neuro Oncol 2013;15(2):135–47. https://doi.org/10.1093/neuonc/nos287.Google Scholar
Koopmeiners, AS, Mueller, S, Kramer, J, Hogan, QH. Effect of electrical field stimulation on dorsal root ganglion neuronal function. Neuromodulation 2013;16(4):304–11; discussion 310–01. https://doi.org/10.1111/ner.12028.Google Scholar
Kovalsky, Y, Amir, R, Devor, M. Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. J Neurophysiol 2009;102(3):1430–42. https://doi.org/10.1152/jn.00005.2009.Google Scholar
Kramis, RC, Roberts, WJ, Gillette, RG. Post-sympathectomy neuralgia: hypotheses on peripheral and central neuronal mechanisms. Pain 1996;64(1):19. https://doi.org/10.1016/0304-3959(95)00060-7.Google Scholar
Kuiken, TA, Barlow, AK, Hargrove, L, Dumanian, GA. Targeted muscle reinnervation for the upper and lower extremity. Tech Orthop 2017;32(2):109–16. https://doi.org/10.1097/BTO.0000000000000194.CrossRefGoogle ScholarPubMed
Kwan, MK, Wall, EJ, Massie, J, Garfin, SR. Strain, stress and stretch of peripheral nerve. Rabbit experiments in vitro and in vivo. Acta Orthop Scand 1992;63(3):267–72. https://doi.org/10.3109/17453679209154780.Google Scholar
Laycock-van Spyk, S, Thomas, N, Cooper, DN, Upadhyaya, M. Neurofibromatosis type 1-associated tumours: their somatic mutational spectrum and pathogenesis. Hum Genomics 2011;5(6):623–90. https://doi.org/10.1186/1479-7364-5-6-623.Google Scholar
Li, XY, Wan, Y, Tang, SJ, Guan, Y, Wei, F, Ma, D. Maladaptive plasticity and neuropathic pain. Neural Plast 2016;2016:4842159. https://doi.org/10.1155/2016/4842159.Google Scholar
Longo, JF, Weber, SM, Turner-Ivey, BP, Carroll, SL. Recent advances in the diagnosis and pathogenesis of neurofibromatosis type 1 (NF1)-associated peripheral nervous system neoplasms. Adv Anat Pathol 2018;25(5):353–68. https://doi.org/10.1097/PAP.0000000000000197.Google Scholar
Ludwin, SK, Maitland, M. Long-term remyelination fails to reconstitute normal thickness of central myelin sheaths. J Neurol Sci 1984;64(2):193–8. https://doi.org/10.1016/0022-510x(84)90037-6.CrossRefGoogle ScholarPubMed
Lundborg, G, Dahlin, LB, Hansson, HA, Kanje, M, Necking, LE. Vibration exposure and peripheral nerve fiber damage. J Hand Surg Am 1990;15(2):346–51. https://doi.org/10.1016/0363-5023(90)90121-7.CrossRefGoogle ScholarPubMed
Lundborg, G, Gelberman, RH, Minteer-Convery, M, Lee, YF, Hargens, AR. Median nerve compression in the carpal tunnel–functional response to experimentally induced controlled pressure. J Hand Surg Am 1982;7(3):252–9. https://doi.org/10.1016/s0363-5023(82)80175-5.Google Scholar
Lundborg, G, Myers, R, Powell, H. Nerve compression injury and increased endoneurial fluid pressure: a “miniature compartment syndrome”. J Neurol Neurosurg Psychiatry 1983;46(12):1119–24. https://doi.org/10.1136/jnnp.46.12.1119.Google Scholar
Lundborg, G, Rydevik, B. Effects of stretching the tibial nerve of the rabbit. A preliminary study of the intraneural circulation and the barrier function of the perineurium. J Bone Joint Surg Br 1973;55(2):390401.Google Scholar
Mackinnon, S, Dellon, A. Surgery of the Peripheral Nerve. New York: Thieme, 1988.Google Scholar
Mackinnon, SE, Dellon, AL, Hudson, AR, Hunter, DA. Chronic human nerve compression – a histological assessment. Neuropathol Appl Neurobiol 1986;12(6):547–65. https://doi.org/10.1111/j.1365-2990.1986.tb00159.x.Google Scholar
Madison, RD, Archibald, SJ, Brushart, TM. Reinnervation accuracy of the rat femoral nerve by motor and sensory neurons. J Neurosci 1996;16(18):5698–703.Google Scholar
Mahan, MA. Nerve stretching: a history of tension. J Neurosurg 2019;132(1):252–9. https://doi.org/10.3171/2018.8.JNS173181.Google Scholar
Martyn, CN, Hughes, RA. Epidemiology of peripheral neuropathy. J Neurol Neurosurg Psychiatry 1997;62(4):310–8. https://doi.org/10.1136/jnnp.62.4.310.CrossRefGoogle ScholarPubMed
McCaughan, JA, Holloway, SM, Davidson, R, Lam, WW. Further evidence of the increased risk for malignant peripheral nerve sheath tumour from a Scottish cohort of patients with neurofibromatosis type 1. J Med Genet 2007;44(7):463–6. https://doi.org/10.1136/jmg.2006.048140.Google Scholar
Melzack, R. From the gate to the neuromatrix. Pain 1999;(Suppl 6):S121–6. https://doi.org/10.1016/s0304-3959(99)00145-1.Google Scholar
Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science 1965;150:971–9. https://doi.org/10.1126/science.150.3699.971.Google Scholar
Mendell, LM. Constructing and deconstructing the gate theory of pain. Pain 2014;155(2):210–6. https://doi.org/10.1016/j.pain.2013.12.010.Google Scholar
Menorca, RM, Fussell, TS, Elfar, JC. Nerve physiology: mechanisms of injury and recovery. Hand Clin 2013;29(3):317–30. https://doi.org/10.1016/j.hcl.2013.04.002.Google Scholar
Miettinen, MM, Antonescu, CR, Fletcher, CDM, et al. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1 – a consensus overview. Hum Pathol 2017;67:110. https://doi.org/10.1016/j.humpath.2017.05.010.Google Scholar
Moimas, S, Novati, F, Ronchi, G, et al. Effect of vascular endothelial growth factor gene therapy on post-traumatic peripheral nerve regeneration and denervation-related muscle atrophy. Gene Ther 2013;20(10):1014–21. https://doi.org/10.1038/gt.2013.26.Google Scholar
Molliver, DC, Wright, DE, Leitner, ML, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997;19(4):849–61. https://doi.org/10.1016/s0896-6273(00)80966-6.Google Scholar
Nodari, A, Previtali, SC, Dati, G, et al. Alpha6beta4 integrin and dystroglycan cooperate to stabilize the myelin sheath. J Neurosci 2008;28(26):6714–9. https://doi.org/10.1523/JNEUROSCI.0326-08.2008.Google Scholar
O’Brien, JP, Mackinnon, SE, MacLean, AR, Hudson, AR, Dellon, AL, Hunter, DA. A model of chronic nerve compression in the rat. Ann Plast Surg 1987;19(5):430–5. https://doi.org/10.1097/00000637-198711000-00008.Google Scholar
Ochoa, J, Fowler, TJ, Gilliatt, RW. Anatomical changes in peripheral nerves compressed by a pneumatic tourniquet. J Anat 1972;113(Pt 3):433–55.Google Scholar
Papalia, I, Tos, P, Stagno d’Alcontres, F, Battiston, B, Geuna, S. On the use of the grasping test in the rat median nerve model: a re-appraisal of its efficacy for quantitative assessment of motor function recovery. J Neurosci Methods 2003;127(1):43–7. https://doi.org/10.1016/s0165-0270(03)00098-0.Google Scholar
Pasmant, E, Sabbagh, A, Spurlock, G, et al. NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 2010;31(6):E1506–18. https://doi.org/10.1002/humu.21271.Google Scholar
Penas, C, Navarro, X. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front Cell Neurosci 2018;12:158. https://doi.org/10.3389/fncel.2018.00158.Google Scholar
Pham, K, Gupta, R. Understanding the mechanisms of entrapment neuropathies. Neurosurg Focus 2009;26(2):E7. https://doi.org/10.3171/FOC.2009.26.2.E7.Google Scholar
Poppler, LH, Parikh, RP, Bichanich, MJ, et al. Surgical interventions for the treatment of painful neuroma: a comparative meta-analysis. Pain 2018;159(2):214–23. https://doi.org/10.1097/j.pain.0000000000001101.Google Scholar
Previtali, SC, Feltri, ML, Archelos, JJ, Quattrini, A, Wrabetz, L, Hartung, H. Role of integrins in the peripheral nervous system. Prog Neurobiol 2001;64(1):3549. https://doi.org/10.1016/s0301-0082(00)00045-9.Google Scholar
Prudner, BC, Ball, T, Rathore, R, Hirbe, AC. Diagnosis and management of malignant peripheral nerve sheath tumors: current practice and future perspectives. Neurooncol Adv 2020;2(Suppl 1):i40i49. https://doi.org/10.1093/noajnl/vdz047.Google Scholar
Que, J, Cao, Q, Sui, T, Du, S, Kong, D, Cao, X. Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis 2013;4:e526. https://doi.org/10.1038/cddis.2013.56.Google Scholar
Ray, WZ, Mahan, MA, Guo, D, Guo, D, Kliot, M. An update on addressing important peripheral nerve problems: challenges and potential solutions. Acta Neurochir (Wien) 2017;159(9):1765–73. https://doi.org/10.1007/s00701-017-3203-3.Google Scholar
Reid, AJ, de Luca, AC, Faroni, A, et al. Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 2013;544:125–30. https://doi.org/10.1016/j.neulet.2013.04.001.CrossRefGoogle ScholarPubMed
Rosen, HR, Ammer, K, Mohr, W, Bock, P, Kornek, GV, Firbas, W. Chemically-induced chronic nerve compression in rabbits – a new experimental model for the carpal tunnel syndrome. Langenbecks Arch Chir 1992;377(4):216–21. https://doi.org/10.1007/BF00210276.Google Scholar
Rydevik, B, Lundborg, G. Permeability of intraneural microvessels and perineurium following acute, graded experimental nerve compression. Scand J Plast Reconstr Surg 1977;11(3):179–87. https://doi.org/10.3109/02844317709025516.Google Scholar
Rydevik, B, Lundborg, G, Bagge, U. Effects of graded compression on intraneural blood blow. An in vivo study on rabbit tibial nerve. J Hand Surg Am 1981;6(1):312. https://doi.org/10.1016/s0363-5023(81)80003-2.Google Scholar
Salzer, JL, Bunge, RP. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol 1980;84(3):739–52. https://doi.org/10.1083/jcb.84.3.739.Google Scholar
Savastano, LE, Laurito, SR, Fitt, MR, Rasmussen, JA, Gonzalez Polo, V, Patterson, SI. Sciatic nerve injury: a simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014;227:166–80. https://doi.org/10.1016/j.jneumeth.2014.01.020.Google Scholar
Scholz, J, Finnerup, NB, Attal, N, et al. The IASP classification of chronic pain for ICD-11: chronic neuropathic pain.Pain 2019;160(1):53–9. https://doi.org/10.1097/j.pain.0000000000001365.Google Scholar
Schwartz, MA, DeSimone, DW. Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 2008;20(5):551–6. https://doi.org/10.1016/j.ceb.2008.05.005.Google Scholar
Sdrulla, AD, Guan, Y, Raja, SN. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract 2018;18(8):1048–67. https://doi.org/10.1111/papr.12692.Google Scholar
Siemionow, M, Brzezicki, G. Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol 2009;87:141–72. https://doi.org/10.1016/S0074-7742(09)87008-6.Google Scholar
Sommer, C, Leinders, M, Uceyler, N. Inflammation in the pathophysiology of neuropathic pain. Pain 2018;159(3):595602. https://doi.org/10.1097/j.pain.0000000000001122.Google Scholar
Sommerich, CM, Lavender, SA, Buford, JA, Banks, JJ, Korkmaz, SV, Pease, WS. Towards development of a nonhuman primate model of carpal tunnel syndrome: performance of a voluntary, repetitive pinching task induces median mononeuropathy in Macaca fascicularis. J Orthop Res 2007;25(6):713–24. https://doi.org/10.1002/jor.20363.Google Scholar
Spinner, RJ, Kline, DG. Surgery for peripheral nerve and brachial plexus injuries or other nerve lesions. Muscle Nerve 2000;23(5):680–95. https://doi.org/10.1002/(sici)1097-4598(200005)23:5<680::aid-mus4>3.0.co;2-h.Google Scholar
Staedtke, V, Bai, RY, Blakeley, JO. Cancer of the peripheral nerve in neurofibromatosis type 1. Neurotherapeutics 2017;14(2):298306. https://doi.org/10.1007/s13311-017-0518-y.Google Scholar
Stone, JJ, Spinner, RJ. Go for the gold: a “plane” and simple technique for resecting benign peripheral nerve sheath tumors. Oper Neurosurg (Hagerstown) 2020;18(1):60–8. https://doi.org/10.1093/ons/opz034.Google Scholar
Stossel, M, Wildhagen, VM, Helmecke, O, et al. Comparative evaluation of chitosan nerve guides with regular or increased bendability for acute and delayed peripheral nerve repair: a comprehensive comparison with autologous nerve grafts and muscle-in-vein grafts. Anat Rec (Hoboken) 2018;301(10):1697–713. https://doi.org/10.1002/ar.23847.Google Scholar
Swieboda, P, Filip, R, Prystupa, A, Drozd, M. Assessment of pain: types, mechanism and treatment. Ann Agric Environ Med 2013;Spec no. 1:27.Google Scholar
Szabo, RM, Sharkey, NA. Response of peripheral nerve to cyclic compression in a laboratory rat model. J Orthop Res 1993;11(6):828–33. https://doi.org/10.1002/jor.1100110608.Google Scholar
Taskinen, HS, Roytta, M. The dynamics of macrophage recruitment after nerve transection. Acta Neuropathol 1997;93(3):252–9. https://doi.org/10.1007/s004010050611.Google Scholar
Teixeira, MJ, da Paz, MG, Bina, MT, et al. Neuropathic pain after brachial plexus avulsion–central and peripheral mechanisms. BMC Neurol 2015;15:73. https://doi.org/10.1186/s12883-015-0329-x.Google Scholar
Tibbs, GR, Posson, DJ, Goldstein, PA. Voltage-gated ion channels in the PNS: novel therapies for neuropathic pain? Trends Pharmacol Sci 2016;37(7):522–42. https://doi.org/10.1016/j.tips.2016.05.002.Google Scholar
Tos, P, Battiston, B, Ciclamini, D, Geuna, S, Artiaco, S. Primary repair of crush nerve injuries by means of biological tubulization with muscle-vein-combined grafts. Microsurgery 2012;32(5):358–63. https://doi.org/10.1002/micr.21957.Google Scholar
Tos, P, Ronchi, G, Nicolino, S, et al. Employment of the mouse median nerve model for the experimental assessment of peripheral nerve regeneration. J Neurosci Methods 2008;169(1):119–27. https://doi.org/10.1016/j.jneumeth.2007.11.030.Google Scholar
Tricaud, N, Perrin-Tricaud, C, Bruses, JL, Rutishauser, U. Adherens junctions in myelinating Schwann cells stabilize Schmidt–Lanterman incisures via recruitment of p120 catenin to E-cadherin. J Neurosci 2005;25(13):3259–69. https://doi.org/10.1523/JNEUROSCI.5168-04.2005.Google Scholar
Tsuda, M. Microglia in the spinal cord and neuropathic pain. J Diabetes Investig 2016;7(1):1726. https://doi.org/10.1111/jdi.12379.Google Scholar
Varejao, AS, Melo-Pinto, P, Meek, MF, Filipe, VM, Bulas-Cruz, J. Methods for the experimental functional assessment of rat sciatic nerve regeneration. Neurol Res 2004;26(2):186–94. https://doi.org/10.1179/016164104225013833.Google Scholar
Vuka, I, Vucic, K, Repic, T, Ferhatovic Hamzic, L, Sapunar, D, Puljak, L. Electrical stimulation of dorsal root ganglion in the context of pain: a systematic review of in vitro and in vivo animal model studies. Neuromodulation 2018;21(3):213–24. https://doi.org/10.1111/ner.12722.Google Scholar
Wall, EJ, Massie, JB, Kwan, MK, Rydevik, BL, Myers, RR, Garfin, SR. Experimental stretch neuropathy. Changes in nerve conduction under tension. J Bone Joint Surg Br 1992;74(1):126–9.Google Scholar
Watanabe, M, Yamaga, M, Kato, T, Ide, J, Kitamura, T, Takagi, K. The implication of repeated versus continuous strain on nerve function in a rat forelimb model. J Hand Surg Am 2001;26(4):663–9. https://doi.org/10.1053/jhsu.2001.24142.Google Scholar
Whitlock, EL, Tuffaha, SH, Luciano, JP, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009;39(6):787–99. https://doi.org/10.1002/mus.21220.Google Scholar
Yamaguchi, T, Osamura, N, Zhao, C, Zobitz, ME, An, KN, Amadio, PC. The mechanical properties of the rabbit carpal tunnel subsynovial connective tissue. J Biomech 2008;41(16):3519–22. https://doi.org/10.1016/j.jbiomech.2007.06.004.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×