Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T06:59:47.689Z Has data issue: false hasContentIssue false

3 - The First 80 Million Years of Snake Evolution

The Mesozoic Fossil Record of Snakes and Its Implications for Origin Hypotheses, Biogeography, and Mass Extinction

from Part I - The Squamate and Snake Fossil Record

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

The Cretaceous fossil record of snakes demonstrates the origin and evolution of the snake body and the early ecological and biogeographic history of the clade during the first 80 million years of their history. Consisting primarily of isolated vertebrae as well as a small number of mostly complete specimens, the record shows the elongate body of snakes evolved no earlier than approximately 100 million years ago. Stem snakes are present in terrestrial and marine palaeoenvironments throughout the Late Cretaceous of northern and southern continents. Conversely, the oldest records of living clades are restricted to the Campanian of South America, Africa, and possibly North America, which requires episodes of dispersal, or unrealistically long ghost lineages extending back to tectonically-mediated vicariance, to explain geographic distributions. Most Maastrichtian-aged stem and primary living clades extend into the Paleogene, indicating that the K-Pg extinction event had little visible effect on the evolution of snakes, whereas major diversifications of crown clades are constrained from middle Paleogene to Neogene.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Head, J. J., de Queiroz, K., and Greene, H. W., Pan-Serpentes. In de Queiroz, K., Cantino, P. D., and Gauthier, J. A., eds., Phylonyms: A Companion to the PhyloCode (Berkeley: CRC Press, 2020), pp. 11301134.Google Scholar
Walls, G. L., Ophthalmological implications for the early history of the snakes. Copeia, 1940 (1940), 18.CrossRefGoogle Scholar
D’a. Bellairs, A. and Underwood, G., The origin of snakes. Biological Reviews, 26 (1951), 193237.Google Scholar
Rieppel, O., A review of the origin of snakes. Evolutionary Biology, 22 (1988), 37130.CrossRefGoogle Scholar
Nopcsa, F., Eidolosaurus und Pachyophis . Zwei neue Neocom-Reptilien. Palaeontographica , 65 (1923), 99154.Google Scholar
Caldwell, M. W. and Lee, M. S. Y., A snake with legs from the marine Cretaceous of the Middle East. Nature, 386 (1997), 705709.Google Scholar
Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J., and Jacobs, L. L., A fossil snake with limbs. Science, 287 (2000), 20102012.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Caprette, C. L., Lee, M. S., Shine, R., Mokany, A., and Downhower, J. F., The origin of snakes (Serpentes) as seen through eye anatomy. Biological Journal of the Linnean Society, 81 (2004), 469482.Google Scholar
Scanlon, J. D., Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439 (2006), 839842.CrossRefGoogle ScholarPubMed
Garberoglio, F. F., Apesteguía, S., Simões, T. R., et al., New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science Advances, 5 (2019), p.eaax5833.Google Scholar
Camp, C. L., Classification of the lizards. Bulletin of the American Museum of Natural History, 48 (1923), 289481.Google Scholar
Lee, M. S. Y., The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, B, 352 (1997), 5391.Google Scholar
Lee, M. S. Y., Convergent evolution and character correlation in burrowing reptiles: Towards a resolution of squamate relationships. Biological Journal of the Linnean Society, 65 (1998), 369453.Google Scholar
Rage, J. -C., La phylogénie des Lépidosauriens (Reptilia): une approche cladistique. Comptes Rendus, Académie des Sciences, Paris, 294 (1982), 563566.Google Scholar
Hallermann, J., The ethmoidal region of Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata. Zoological Journal of the Linnean Society, 122 (1998), 385426.Google Scholar
Evans, S. E. and Barbadillo, L. J., An unusual lizard from the Early Cretaceous of Las Hoyas, Spain. Zoological Journal of the Linnean Society, 124 (1998), 235265.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Gauthier, J. A., Kearney, M., Maisano, J. A., Rieppel, O., and Behlke, A. D. B., Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History, 53 (2012), 3308.Google Scholar
Wiens, J. J., Kuczynski, C. A., Townsend, T., et al., Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossils. Systematic Biology, 59 (2010), 674688.CrossRefGoogle ScholarPubMed
Wiens, J. J., Hutter, C. R., Mulcahy, D. G., et al., Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biology Letters, 8 (2012), 10431046.Google Scholar
Pyron, R. A., Burbrink, F. T., and Wiens, J. J., A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology, 13 (2013), 93.Google Scholar
Streicher, J. W. and Wiens, J. J., Phylogenomic analyses of more than 4000 nuclear loci resolve the origin of snakes among lizard families. Biology Letters, 13 (2017), 20170393.CrossRefGoogle ScholarPubMed
Simões, T. R., Caldwell, M. W., Tałanda, M., et al., The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature, 557 (2018), 706709.CrossRefGoogle ScholarPubMed
Rage, J.-C. and Escuillié, F., Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. Comptes Rendus de l’Académie des Sciences - Série IIA - Earth and Planetary Science, 330 (2000), 513520.Google Scholar
Wilson, J. A., Mohabey, D., Peters, S., and Head, J. J., Predation upon hatchling sauropod dinosaurs by a new basal snake from the Late Cretaceous of India. PLOS Biology. 8 (2010), 15 doi: 10.1371/journal.pbio.1000322.g005.CrossRefGoogle ScholarPubMed
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Caldwell, M. W., The Origin of Snakes. Morphology and the Fossil Record (Boca Raton, FL: CRC Press, 2020).Google Scholar
Rage, J. -C., Encyclopedia of Paleoherpetology, part 11, Serpentes (Stuttgart: Gustav Fischer Verlag, 1984).Google Scholar
Holman, J. A., Fossil Snakes of North America. Origin, Evolution, Distribution, Paleoecology (Indianapolis: Indiana University Press, 2000).Google Scholar
Gans, C., Locomotion of limbless vertebrates: Pattern and evolution. Herpetologica, 42 (1986), 3346.Google Scholar
Campano, J. G., Reaction forces and rib function during locomotion in snakes. Integrative and Comparative Biology, 60 (2020), 215231.Google Scholar
Hoffstetter, R. and Gasc, J. -P., Vertebrae and ribs of modern reptiles. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 1, Morphology (London: Academic Press, 1969), pp. 201310.Google Scholar
Moon, B. R., Testing and inference of function from structure: Snake vertebrae do the twist. Journal of Morphology, 241 (1999), 217225.Google Scholar
Cieri, R. L., The axial anatomy of monitor lizards (Varanidae). Journal of Anatomy, 233 (2018), 636643.Google Scholar
Mosauer, W., The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny. Publications of the University of California at Los Angeles in Biological Sciences, 1 (1935), 81120.Google Scholar
Auffenberg, W., The vertebral musculature of Chersydrus (Serpentes). Quarterly Journal of the Florida Academy of Sciences, 29 (1966), 155162.Google Scholar
Gasc, J. -P., L’interprétation fonctionnelle de l’appareil musculo-squelettique de l’axe vertébral chez les Serpents (Reptilia). Mémoires du Museum National d’Histoire Naturelle Série A, 83 (1974), 1182.Google Scholar
Gasc, J. -P., Axial musculature. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 11, Morphology F (London: Academic Press, 1981), pp. 355435.Google Scholar
Penning, D. A., Quantitative axial myology in two constricting snakes: Lampropeltis holbrooki and Pantherophis obsoletus . Journal of Anatomy, 232 (2018), 10161024.Google Scholar
Ritter, D., Axial muscle function during lizard locomotion. Journal of Experimental Biology, 199 (1996), 24992510.Google Scholar
Chapman, S. W. and Conklin, R. E., The lymphatic system of the snake. Journal of Morphology, 58 (1935), 385417.Google Scholar
Ottaviani, G. and Tazzi, A., The lymphatic system. In Gans, C. and Parsons, T. S., eds., Biology of the Reptilia, Vol. 6, Morphology H (London: Academic Press, 1977), pp. 315462.Google Scholar
Laduke, T. C., The fossil snakes of Pit 91, Racho La Brea, California. Contributions in Science, Natural History Museum of Los Angeles County, 424 (1991), 128.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19.2.2FC (2016), 121.CrossRefGoogle Scholar
Zaher, H., Grazziotin, F. G., Cadle, J. E., et al., Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia, 49 (2009), 115153.CrossRefGoogle Scholar
Slowinski, J. B., A phylogenetic analysis of Bungarus (Elapidae) based on morphological characters. Journal of Herpetology, 28 (1994), 440446.Google Scholar
Head, J. J., Snakes of the Siwalik Group (Miocene of Pakistan): systematics and relationship to environmental change. Palaeontologia Electronica, 8 (2005), 16A.Google Scholar
Head, J. J., Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontologia Electronica, 18 (2015), 117.Google Scholar
Evans, S. E., Parviraptor (Squamata: Anguimorpha) and other lizards from the Morrison Formation at Fruita, Colorado. Museum of Northern Arizona Bulletin, 60 (1996), 243248.Google Scholar
Rage, J. -C. and Richter, A., A snake from the Lower Cretaceous (Barremian) of Spain: The oldest known snake. Neues Jarbuch für Geologie und Paläontologie, Monatshefte, Stuttgart, II.9 (1994), 561565.Google Scholar
Rage, J. -C. and Escuillié, F., The Cenomanian: stage of hindlimbed snakes. Carnets de Géologie, Maintenon, Article 2003/01 (2003), 111.Google Scholar
Evans, S. E., A new anguimorph lizard from the Jurassic and lower Cretaceous of England. Palaeontology, 37 (1994), 3349.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguía, S., The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 111.Google Scholar
Ross, C. F., Sues, H.-D., and De Klerk, W. J., Lepidosaurian remains from the lower Cretaceous Kirkwood Formation of South Africa. Journal of Vertebrate Paleontology, 19 (1999), 2127.Google Scholar
Rieppel, O. and Zaher, H., The braincases of mosasaurs and Varanus, and the relationships of snakes. Zoological Journal of the Linnean Society, 129 (2000), 489514.Google Scholar
Evans, S. E., The skull of lizards and tuatara. In Gans, C., Gaunt, A. S. and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 1347.Google Scholar
Estes, R., Frazzetta, T. H., and Williams, E. E., Studies on the fossil snake Dinilysia patagonica Woodward: Part I. Cranial morphology. Bulletin of the Museum of Comparative Zoology, 140 (1970), 2574.Google Scholar
Haas, G., Pachyrhachis problematicus Haas, snakelike reptile from the Lower Cenomanian: ventral view of the skull. Bulletin du Muséum national d’Histoire naturelle, Serie 4, 2 (1980), 87104.Google Scholar
Rieppel, O. and Head, J. J., New specimens of the fossil snake genus Eupodophis Rage and Escuillié, from the mid-Cretaceous of Lebanon. Memorie della Società Italiana di Scienze Naturali e Museo Civico di Storia Naturale di Milano, 23 (2004), 126.Google Scholar
Cundall, D. and Irish, F., The snake skull. In Gans, C., Gaunt, A. S., and Adler, K., eds., Biology of the Reptilia, Vol. 20, Morphology H (Ithaca, NY: Society for the Study of Amphibians and Reptiles, 2008), pp. 349692.Google Scholar
Scanlon, J. D., Cranial morphology of the Plio−Pleistocene giant madtsoiid snake Wonambi naracoortensis . Acta Palaeontologica Polonica, 50 (2005), 139180.Google Scholar
Martill, D. M., Tischlinger, H., and Longrich, N. R., A four-legged snake from the Early Cretaceous of Gondwana. Science, 349 (2015), 416419.Google Scholar
Cuny, G., Jaeger, J. -J., Mahboubi, M., and Rage, J. -C., Les plus anciens Serpents (Reptilia, Squamata) connus. Mise au point sur l’âge géologique des Serpents de la partie moyenne du Crétacé. Comptes Rendus des Séances de l’Académie des Sciences, t.311 (1990), 12671272.Google Scholar
Gardner, J. D. and Cifelli, R. L., A primitive snake from the Cretaceous of Utah. In Unwin, D.M., ed., Cretaceous Fossil Vertebrates (London: The Paleontological Association, 1999), pp. 87100.Google Scholar
Cifelli, R. L., Kirkland, J. I., Weil, A., Deino, A. L., and Kowallis, B. J., High-precision 40Ar/39Ar geochronology and the advent of North America’s Late Cretaceous terrestrial fauna. Proceedings of the National Academy of Sciences, USA, 94 (1997), 1116311167.Google Scholar
Xing, L., Caldwell, M. W., Chen, R., et al., A mid-Cretaceous embryonic-to-neonate snake in amber from Myanmar. Science Advances, 4 (2018), eaat5042.CrossRefGoogle ScholarPubMed
Hsiou, A., Albino, A. M., Medeiros, M. A., and Santos, R. A. B., The oldest Brazilian snakes from the Cenomanian (early Late Cretaceous). Acta Palaeontologica Polonica, 59 (2014), 635642.Google Scholar
Albino, A. M., Carrillo-Briceño, J. D., and Neenan, J. M., An enigmatic aquatic snake from the Cenomanian of Northern South America. PeerJ, 4 (2016), e2027.Google Scholar
Rage, J. -C., Un serpent primitif (Reptilia, Squamata) dans le Cénomanien (base du Crétacé supérieur). Comptes Rendus de l’Académie des Sciences de Paris, Série II, 307 (1988), 10271032.Google Scholar
Sauvage, H. E., Sur l’existence d’un Reptile du type Ophidien dans les couches a Ostrea columba des Charentes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 7 (1880), 12325.Google Scholar
Vullo, R., Rage, J. -C., and Neraudeau, D., Anuran and squamate remains from the Cenomanian (Late Cretaceous) of Charentes, western France. Journal of Vertebrate Paleontology, 31 (2011), 279291.Google Scholar
Rage, J. -C., Vullo, R., and Néraudeau, D., The mid-Cretaceous snake Simoliophis rochebrunei Sauvage, 1880 (Squamata: Ophidia) from its type area (Charentes, southwestern France): Redescription, distribution, and palaeoecology. Cretaceous Research, 58 (2016), 234253.Google Scholar
Hoffstetter, R., Un serpent terrestre dans le Crétacé inférieur du Sahara. Bulletin de La Société Géologique de France, 7 (1960), 158.Google Scholar
Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S., and Martill, D. M., A new basal snake from the mid-Cretaceous of Morocco. Cretaceous Research, 72 (2017), 134141.Google Scholar
Vullo, R., A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes. Comptes Rendus Palevol, 18 (2019), 765770.Google Scholar
Rage, J. -C. and Dutheil, D. B., Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco - A preliminary study, with description of a new genus of pipid frog. Palaeontographica Abteilung A, 285 (2008), 122.Google Scholar
Nopcsa, F., Ergbenisse der Forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens, II. Wirbeltier-Reste de rBaharîje-Stufe (unterstes Cenoman). 5. Die Symoliophis-Reste. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Abteilung, 30 (1925), 127.Google Scholar
Nessov, L. A., Zhegallo, V. I., and Averianov, A. O., A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Annales de Paléontologie, 84 (1998), 265274.Google Scholar
Haas, G., On a new snakelike reptile from the Lower Cenomanian of Ein Jabrud, near Jerusalem. Bulletin Du Muséum National d’Histoire Naturelle, 1 (1979), 5164.Google Scholar
Houssaye, A., Rediscovery and description of the second specimen of the hind-limbed snake Pachyophis woodwardi Nopcsa, 1923 (Squamata, Ophidia) from the Cenomanian of Bosnia Herzegovina. Journal of Vertebrate Paleontology, 30 (2010), 276279.Google Scholar
Bolkay, J., Mesophis nopcsai n.g. n.sp. ein neues, schlangenähnliches Reptil aus de runteren Kreide (Neocom) von Bilek-Selista (Ost-Hercegovina). Glasnik zemaljskog Muzeja u Bosni i Hercegovini, 37 (1925), 125135.Google Scholar
Nydam, R. L., Lizards and Snakes from the Cenomanian through Campanian of Southern Utah: filling the Gap in the fossil record of Squamata from the Late Cretaceous of the Western Interior of North America. In Titus, A. L. and Loewen, M. A., eds., At the Top of the Grand Staircase: The Late Cretaceous of Southern Utah (Bloomington & Indianapolis: Indiana University Press, 2013), pp. 370423.Google Scholar
Ðurić, D., Radosavljević, D., Petrović, D., Radonjić, M., and Vojnović, P., A new evidence for pachyostotic snake from Turonian of Bosnia-Herzegovina. Annales Géologiques de La Péninsule Balkanique, 78 (2017), 1721.CrossRefGoogle Scholar
de Broin, F., Buffetaut, E., Koeniguer, J. -C., et al., La fauna de Vertébrés continentaux du gisement d’In Beceten (Sénonien du Niger). Comptes Rendus Hebdomadaires Des Seances des Séances de l’Académie des Sciences de Paris, Série D, 279 (1974), 469472.Google Scholar
Rage, J. -C., Les continents péri-atlantiques au Crétacé Supérieur: Migrations des faunes continentales et problèmes paléogéographiques. Cretaceous Research, 2 (1981), 6584.Google Scholar
Laduke, T. C., Krause, D. W., Scanlon, J. D., and Kley, N. J., A Late Cretaceous (Maastrichtian) snake assemblage from the Maevarano Formation, Mahajanga Basin, Madagascar. Journal of Vertebrate Paleontology, 30 (2010), 109138.Google Scholar
Moody, R. T. J. and Sutcliffe, P. J. C., The Cretaceous deposits of the Iullemmeden Basin of Niger, central West Africa. Cretaceous Research, 12 (1991), 137157.Google Scholar
Meunier, L. M. V. and Larsson, H. C. E., Trematochampsa taqueti as a nomen dubium and the crocodyliform diversity of the Upper Cretaceous in Beceten Formation of Niger. Zoological Journal of the Linnean Society, 182 (2018), 659680.Google Scholar
Smith-Woodward, A., On some extinct reptiles from Patagonia, of the Genera Miolania, Dinilysia, and Genyodectes . Proceedings of the Zoological Society of London, 1 (1901), 169184.Google Scholar
Caldwell, M. W. and Albino, A. M., Exceptionally Preserved Skeletons of the Cretaceous Snake Dinilysia patagonica Woodward, 1901. Journal of Vertebrate Paleontology, 22 (2003), 861866.Google Scholar
Caldwell, M. W. and Calvo, J., Details of a new skull and articulated cervical column of Dinilysia patagonica Woodward, 1901. Journal of Vertebrate Paleontology, 28 (2008), 349362.Google Scholar
Scanferla, C. A. and Canale, J. I., The youngest record of the Cretaceous snake genus Dinilysia (Squamata, Serpentes). South American Journal of Herpetology, 2 (2007), 7681.Google Scholar
Marsh, O. C., Notice of New Reptiles from the Laramie Formation. American Journal of Science, 43 (1892), 449453.Google Scholar
Longrich, N. R., Bhullar, B. A. S., and Gauthier, J. A., A transitional snake from the Late Cretaceous period of North America. Nature, 488 (2012), 205208.Google Scholar
Rage, J. -C. and Werner, C., Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: The earliest snake assemblage. Palaeontologia Africana, 35 (1999), 85–110.S.Google Scholar
Wick, L. and Shiller, T. A., New taxa among a remarkably diverse assemblage of fossil squamates from the Aguja Formation (lower Campanian) of West Texas. Cretaceous Research, 114 (2020), 104516.Google Scholar
Head, J. J., A South American snake lineage from the Eocene Greenhouse of North America and a reappraisal of the fossil record of ‘anilioid’ snakes. Geobios, (2020), doi.org/10.1016/j.geobios.2020.09.005.Google Scholar
Rage, J. -C. and Wouters, G., Découverte du plus ancien palaeopheidé (Reptilia, Serpentes) dans le Maestrichtien du Maroc. Geobios, 12 (1979), 293–6.CrossRefGoogle Scholar
Pritchard, A. C., McCartney, J. A., Krause, D. W., and Kley, N. J., New snakes from the Upper Cretaceous (Maastrichtian) Maevarano Formation, Mahajanga Basin, Madagascar. Journal of Vertebrate Paleontology, 34 (2014), 10801093.Google Scholar
Miralles, A., Marin, J., Markus, D., et al.. Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. Journal of Evolutionary Biology, 31 (2018), 17821793.Google Scholar
Schiebout, J. A., Rigsby, C. A., Rapp, S. D., Hartnell, J. A., and Standhardt, B. R., Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas. The Journal of Geology, 95 (1987), 359375.Google Scholar
Augé, M. and Rage, J.-C., Herpetofaunas from the upper Paleocene and lower Eocene of Morocco. Annales de Paléontologie, 92 (2006), 235253.Google Scholar
Fachini, T. S., Onary, S., Palci, A., et al., Cretaceous blind snake from Brazil fills major gap in snake evolution. iScience, (2020), 101834.Google Scholar
Gómez, R. O., Baez, A. M., and Rougier, G. W., An anilioid snake from the Upper Cretaceous of northern Patagonia. Cretaceous Research, 29 (2008), 481488.Google Scholar
Georgalis, G. L. and Smith, K. T., Constrictores Oppel, 1811 – the available name for the taxonomic group uniting boas and pythons. Vertebrate Zoology, 70 (2020), 291304.Google Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., et al., Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457 (2009), 715717.Google Scholar
Roberts, E .M., Deino, A. L., and Chan, M. A., [40]Ar/[39]Ar age of the Kaiparowits Formation, southern Utah, and correlation of contemporaneous Campanian strata and vertebrate faunas along the margin of the Western Interior Basin. Cretaceous Research, 26 (2005), 307318.Google Scholar
Longrich, N. R., Bhullar, B. A. S., and Gauthier, J. A., Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 109 (2012), 2139621401.Google Scholar
Isaza, R., Garner, M., and Jacobson, E., Proliferative osteoarthritis and osteoarthrosis in 15 snakes. Journal of Zoo and Wildlife Medicine, 31 (2000), 2027.Google Scholar
Schrank, E., Palynology of the elastic Cretaceous sediments between Dongola and Wadi Muqaddam, northern Sudan. Berliner geowissenschaftliche Abhandlungen, (A), 120 (1990), 149168.Google Scholar
Schrank, E., Nonmarine Cretaceous correlations in Egypt and northern Sudan: palynological and palaeobotanical evidence. Cretaceous Research, 13 (1992), 351368.Google Scholar
Werner, C., Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan (Wadi Milk Formation). Berliner Geowissenschaftliche Abhandlungen, (E), 13 (1994), 221249.Google Scholar
Vullo, R. and Néraudeau, D., When the ‘primitive’ shark Tribodus (Hybodontiformes) meets the ‘modern’ ray Pseudohypolophus (Rajiformes): the unique co-occurrence of these two durophagous Cretaceous selachians in Charentes (SW France). Acta Geologica Polonica, 58 (2008), 249255.Google Scholar
Owusu Agyemang, P. C., Roberts, E. M., Bussert, R., Evans, D., and Müller, J., U–Pb detrital zircon constraints on the depositional age and provenance of the dinosaur-bearing Upper Cretaceous Wadi Milk Formation of Sudan. Cretaceous Research, 97 (2019), 5272.Google Scholar
Eisawi, A. A. M., Palynological evidence of a Campanian–Maastrichtian age of the Shendi Formation (Shendi Basin, central Sudan). American Journal of Earth Sciences, 2 (2015), 206210.Google Scholar
Salih, K. A. O., Evans, D. C., Bussert, R., Klein, N., Nafi, M., and Müller, J., First record of Hyposaurus (Dyrosauridae, Crocodyliformes) from the Upper Cretaceous Shendi Formation of Sudan. Journal of Vertebrate Paleontology, 36 (2016), p.e1115408.Google Scholar
Klein, N., Bussert, R., Evans, D., et al., Turtle remains from the Wadi milk formation (upper cretaceous) of northern Sudan. Palaeobiodiversity and Palaeoenvironments, 96 (2016), 281303.Google Scholar
Rauhut, O. W. M., A dinosaur fauna from the Late Cretaceous (Cenomanian) of northern Sudan. Palaeontologia Africana, 35 (1999), 6184.Google Scholar
Claeson, K. M., Sallam, H. M., O’Connor, P. M., and Sertich, J. J., A revision of the Upper Cretaceous lepidosirenid lungfishes from the Quseir Formation, Western Desert, central Egypt. Journal of Vertebrate Paleontology, 34 (2014), 760766.Google Scholar
Martin, M., Protopterus nigeriensis nov. sp., l’un des plus anciens protoptères—Dipnoi (In Beceten, Sénonien du Niger). Comptes Rendus de l’Académie des Sciences, Series IIA, Earth and Planetary Science, 325 (1997), 635638.Google Scholar
Otero, O., Current knowledge and new assumptions on the evolutionary history of the African lungfish, Protopterus, based on a review of its fossil record. Fish and Fisheries, 12 (2011), 235255.Google Scholar
Rage, J. -C. and Cappetta, H., Vertebrates from the Cenomanian, and the geological age of the Draa Ubari fauna (Libya). Annales de Paléontologie, 88 (2002), 7984.Google Scholar
Ibrahim, N., Sereno, P. C., Varricchio, D. J., et al., Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys, 928 (2020), 1216.Google Scholar
Mohabey, D. M., Head, J. J., and Wilson, J. A., A new species of the snake Madtsoia from the Upper Cretaceous of India and its paleobiogeographic implications. Journal of Vertebrate Paleontology, 31 (2011), 588595.Google Scholar
Gómez, R. O., Garberoglio, F. F., and Rougier, G. W., A new Late Cretaceous snake from Patagonia: Phylogeny and trends in body size evolution of madtsoiid snakes. Comptes Rendus Palevol, 18 (2019), 771781.Google Scholar
Yi, H. and Norell, M. A., The burrowing origin of modern snakes. Science Advances, 1 (2015), p.e1500743.Google Scholar
Rage, J. -C., Un caenophidien primitif (Reptilia, Serpentes) dans l’Éocène inférieur. Compte Rendu Sommaire des Séances de la Société Géologique de France, XVII o2 (1975), 4648.Google Scholar
Rage, J. -C., Folie, A., Rana, R. S., et al., A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica, 53 (2008), 391403.Google Scholar
Rage, J. -C. and Augé, M., Squamate reptiles from the middle Eocene of Lissieu (France). A landmark in the middle Eocene of Europe. Geobios , 43 (2010), 253268.Google Scholar
Head, J. J., Holroyd, P. A., Hutchison, J. H.,and Ciochon, R. L., First report of snakes (Serpentes) from the late middle Eocene Pondaung Formation, Myanmar. Journal of Vertebrate Paleontology, 25 (2005), 246250.Google Scholar
Zaher, H., Murphy, R. W., et al., Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PloS One, 14 (2019), p.e0216148.Google Scholar
Zaher, H. and Rieppel, O., On the phylogenetic relationships of the Cretaceous snakes with legs, with special reference to Pachyrhachis problematicus (Squamata, Serpentes). Journal of Vertebrate Paleontology, 22 (2002), 104109.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), p.20200735.Google Scholar
Vasile, Ş., Csiki-Sava, Z., and Venczel, M., A new madtsoiid snake from the Upper Cretaceous of the Haţeg Basin, western Romania. Journal of Vertebrate Paleontology, 33 (2013), 11001119.Google Scholar
Zaher, H. and Rieppel, O., Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271 (1999), 119.Google Scholar
Houssaye, A., ‘Pachyostosis’ in aquatic amniotes: a review. Integrative Zoology, 4 (2009), 325340 Google Scholar
Lee, M. S. Y. and Scanlon, J. D., Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 77 (2002), 333401.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: New insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.Google Scholar
Rieppel, O., Kluge, A. G., and Zaher, H., Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith. Journal of Vertebrate Paleontology, 22 (2002), 812829.Google Scholar
Rio, J. P. and Mannion, P. D., The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. Journal of Vertebrate Paleontology, 37 (2017), p.e1347179.Google Scholar
Scanlon, J. D., Nanowana gen. nov., small madtsoiid snakes from the Miocene of Riversleigh: Sympatric species with divergently specialised dentition. Memoirs of the Queensland Museum, 41 (1997), 393412.Google Scholar
Scanlon, J. D. and Lee, M. S. Y., The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403 (2000), 416420.Google Scholar
Snetkov, P. B., Vertebrae of the sea snake Palaeophis nessovi Averianov (Acrochordoidea, Palaeophiidae) from the Eocene of Western Kazakhstan and phylogenetic analysis of the superfamily Acrochordoidea. Paleontological Journal, 45 (2011), 305313.Google Scholar
Houssaye, A., Rage, J. -C., Bardet, N., et al., New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology, 56 (2013), 647661.Google Scholar
Bajpai, S. and Head, J. J., An early Eocene palaeopheid snake from Vastan Lignite Mine, Gujarat, India. Gondwana. Geological Magazine, 22 (2008), 8590.Google Scholar
Palci, A., Hutchinson, M. N., Caldwell, M. W., and Lee, M. S., The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. Royal Society Open Science, 4 (2017), 170685.Google Scholar
Barrett, P. M., McGowan, A. J., and Page, V., Dinosaur diversity and the rock record. Proceedings of the Royal Society, B, 276 (2009), 26672674.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: Revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Estes, R., Middle Paleocene lower vertebrates from the Tongue River Formation, southeastern Montana. Journal of Paleontology, 50 (1976), 500520.Google Scholar
Hoffstetter, R., Nouvelles récoltes de serpents fossiles dans l’Éocène Supérieur du désert Libyque. Bulletin du Muséum national d’Histoire naturelle, 33 (1961), 326331.Google Scholar
Rage, J. -C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part I. Madtsoiidae, Aniliidae. Palaeovertebrata, 27 (1998), 109144.Google Scholar
Rage, J. -C., Métais, G., Bartolini, A., et al., First report of the giant snake Gigantophis (Madtsoiidae) from the Paleocene of Pakistan: paleobiogeographic implications. Geobios, 47 (2014), 147153.Google Scholar
Rage, J. -C., Bajpai, S. M. T., Thewissen, J. G., and Tiwari, B. N., Early Eocene snakes from Kutch, Western India, with a review of the Palaeophiidae. Geodiversitas, 25 (2003), 695716.Google Scholar
Reynolds, R. G., Niemiller, M. L., and Revell, L. J., Toward a Tree-of-Life for the boas and pythons: Multilocus species-level phylogeny with unprecedented taxon sampling. Molecular Phylogenetics and Evolution, 71 (2014), 201213.Google Scholar
Clemens, W. A., Evolution of the mammalian fauna across the Cretaceous–Tertiary boundary in northeastern Montana and other areas of the western interior. Geological Society of America, Special Paper, 361 (2002), 217245.Google Scholar
Friedman, M., Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proceedings of the Royal Society, B, 277 (2010), 16751683.Google Scholar
Feng, Y. J., Blackburn, D. C., Liang, D., et al., Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, USA, 114 (2017), E5864E5870.Google Scholar
Alfaro, M. E., Faircloth, B. C., Harrington, R. C., et al., Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nature Ecology and Evolution, 2 (2018), 688696.Google Scholar
Field, D. J., Bercovici, A., Berv, J. S., et al., Early evolution of modern birds structured by global forest collapse at the end-Cretaceous mass extinction. Current Biology, 28 (2018), 18251831.Google Scholar
Rage, J. -C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, Booids incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata, 36 (2008), 3773.Google Scholar
Scanferla, A. and Smith, K. T., Exquisitely preserved fossil snakes of Messel: Insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas. Diversity, 12 (2020), 100.CrossRefGoogle Scholar
Pyron, R. A. and Burbrink, F. T., Extinction, ecological opportunity, and the origins of global snake diversity. Evolution, 66 (2012), 163178.CrossRefGoogle ScholarPubMed
McCartney, J. A., Bouchard, S. N., Reinhardt, J. A., et al., The oldest lamprophiid (Serpentes, Caenophidia) fossil from the late Oligocene Rukwa Rift Basin, Tanzania and the origins of African snake diversity. Geobios, (2020), doi.org/10.1016/j.geobios.2020.07.005.Google Scholar
Simpson, G. G., A new fossil snake from the Notostylops beds of Patagonia. Bulletin of the American Museum of Natural History, 67 (1933), 122.Google Scholar
Da Silva, F. O., Fabre, A. C., Savriama, Y., et al., The ecological origins of snakes as revealed by skull evolution. Nature Communications, 9 (2018), https://doi.org/10.1038/s41467–017-02788-3.Google Scholar
Watanabe, A., Fabre, A. C., Felice, R. N., et al., Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proceedings of the National Academy of Sciences, USA, 116 (2019), 1468814697.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×