Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T09:12:49.060Z Has data issue: false hasContentIssue false

8 - Numerical Cognition in Nonhuman Primates

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

How is number represented without language? Research on numerical cognition in humans and nonhuman primates suggests two possible shared systems of processing. The most widely demonstrated system comes from research with humans, nonhuman primates, and a wide variety of other species. This system, known as the approximate number system, is characterized by ratio-dependent representation of a wide range of numerical values. A smaller body of research points to a second system, the object file system, which represents small numerical values with precision. In addition to reviewing this literature, we will also attend to the role of training in numerical discrimination, the use of number when other continuous variables are present, and the arithmetic abilities of nonhuman primates.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addessi, E., Crescimbene, L., & Visalberghi, E. (2008). Food and token quantity discrimination in capuchin monkeys (Cebus apella). Animal Cognition, 11, 275282.Google Scholar
Agrillo, C., Dadda, M., & Bisazza, A. (2007). Quantity discrimination in female mosquitofish. Animal Cognition, 10, 6370.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimination of quantity in female mosquitofish. Animal Cognition, 11, 495503.Google Scholar
Anderson, U. S., Stoinski, T. S., Bloomsmith, M. A., & Maple, T. L. (2007). Relative numerousness judgment and summation in young, middle-aged, and older adults orangutans (Pongo pygmaeus abeii and Pongo pygmaeus pygmaeus). Journal of Comparative Psychology, 121, 111.Google Scholar
Banks, W. P., Fujii, M., & Kayra-Stuart, F. (1976). Semantic congruity effects in comparative judgments of magnitudes of digits. Journal of Experimental Psychology: Human Perception and Performance, 2, 435447.Google Scholar
Barnard, A. M., Hughes, K. D., Gerhardt, R. R., Divincenti, L. Jr, Bovee, J. M., & Cantlon, J. F. (2013). Inherently analog quantity representations in olive baboons (Papio anubis). Frontiers in Psychology, 4, 253.Google Scholar
Barth, H., Baron, A., Spelke, E., & Carey, S. (2009). Children’s multiplicative transformations of discrete and continuous quantities. Journal of Experimental Child Psychology, 103, 441454.Google Scholar
Bar-Shai, N., Keasar, T., & Shmida, A. (2011). The use of numerical information by bees in foraging tasks. Behavioral Ecology, 22, 317325.Google Scholar
Baum, W. M., & Rachlin, H. C. (1969). Choice as time allocation. Journal of Experimental Analysis of Behavior, 12, 861874.Google Scholar
Beran, M. J. (2004). Chimpanzees (Pan troglodytes) respond to nonvisible sets after one-by-one addition and removal of items. Journal of Comparative Psychology, 118, 2536.Google Scholar
Beran, M. J. (2007). Rhesus monkeys (Macaca mulatta) enumerate large and small sequentially presented sets of items using analog numerical representations. Journal of Experimental Psychology: Animal Behavior Processes, 33, 4254.Google Scholar
Beran, M. J. (2008a). Capuchin monkeys (Cebus apella) succeed in a test of quantity conservation. Animal Cognition, 11, 109116.Google Scholar
Beran, M. J. (2008b). The evolutionary and developmental foundations of mathematics. PLoS Biology, 6, e19.Google Scholar
Beran, M. J. (2008c). Monkeys (Macaca mulatta and Cebus apella) track, enumerate, and compare multiple sets of moving items. Journal of Experimental Psychology: Animals Behavior Processes, 34, 6374.Google ScholarPubMed
Beran, M. J., Beran, M. M., Harris, E. H., & Washburn, D. A. (2005). Ordinal judgments and summation of nonvisible sets of food items by two chimpanzees and a rhesus macaque. Journal of Experimental Psychology: Animal Behavior Processes, 31, 351362.Google Scholar
Beran, M. J., Evans, T. A., & Harris, E. H. (2008a). Perception of food amounts by chimpanzees based on the number, size, contour length, and visibility of items. Animal Behavior, 75, 17931802.Google Scholar
Beran, M. J., Evans, T. A., Leighty, K. A., Harris, E. H., & Rice, D. (2008b). Summation and quantity judgments of sequentially presented sets by capuchin monkeys (Cebus apella). American Journal of Primatology, 70, 191194.Google Scholar
Beran, M. J., Johnson-Pynn, J. S., & Ready, C. (2008c). Quantity representation in children and rhesus monkeys: Linear versus logarithmic scale. Journal of Experimental Child Psychology, 100, 225233.Google Scholar
Beran, M. J., & Parrish, A. E. (2016). Capuchin monkeys (Cebus apella) treat small and large numbers of items similarly during a relative quantity judgment task. Psychonomic Bulletin & Review, 23(4), 12061213.Google Scholar
Bongard, S., & Nieder, A. (2010). Basic mathematical rules are encoded by primate prefrontal cortex neurons. Proceedings of the National Academy of Sciences, 107, 22772282.Google Scholar
Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.Google Scholar
Brannon, E. M., Cantlon, J. F., & Terrace, H. S. (2006). The role of reference points in ordinal numerical comparisons by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 32, 120134.Google Scholar
Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746749Google Scholar
Brannon, E. M., & Terrace, H. S. (2000). Representation of the numerosities 1–9 by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: Animal Behavior Processes, 26, 3149.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2005). Semantic congruity affects numerical judgments similarly in monkeys and humans. Proceedings of the National Academy of Sciences, 102, 1650716511.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2006a). Shared system for ordering small and large numbers in monkeys and humans. Psychological Science, 17, 401406.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2006b). The effect of heterogeneity on numerical ordering in rhesus monkeys. Infancy, 9, 173189.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2007a). Basic math in monkeys and college students. PLoS Biology, 5, e328.Google Scholar
Cantlon, J. F., & Brannon, E. M. (2007b). How much does number matter to a monkey (Macaca mulatta)? Journal of Experimental Psychology: Animal Behavior Processes, 33, 3241.Google Scholar
Cantlon, J. F., Merritt, D. J., & Brannon, E. M. (2016). Monkeys display classic signatures of human symbolic arithmetic. Animal Cognition, 19, 405415.Google Scholar
Cheyette, S. J., & Piantadosi, S. T. (2020). A unified account of numerosity perception. Nature Human Behaviour, 4, 12651272.Google Scholar
Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic Bulletin Review, 8, 698707.Google Scholar
Davis, H., & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychology Bulletin, 92, 547571.Google Scholar
Davis, H., & Pérusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence, and a new research agenda. Behavioral and Brain Sciences, 11, 561579.Google Scholar
Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 314326.Google Scholar
Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219250.Google Scholar
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008) Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene culture. Science,320, 12171220.Google Scholar
Deppe, A. M., Wrights, P. C., & Szelistowski, W. A. (2009). Object permanence in lemurs. Animal Cognition, 12, 381388.Google Scholar
Erhart, E. M., & Overdorff, D. J. (2008). Spatial memory during foraging in prosimian primates: Propithecus edwardsi and Eulemur fulvus rufus. Folia Primatologica, 79, 185196.Google Scholar
Farnsworth, G. L., & Smolinski, J. L. (2006). Numerical discrimination by wild northern mockingbirds. The Condor, 108, 953957.Google Scholar
Flombaum, J. I., Junge, J. A., & Hauser, M. D. (2005). Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition, 97, 315325.Google Scholar
Frank, M. C., Everett, D. L., Fedorenko, E., & Gibson, E. (2008). Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition, 108, 819824.Google Scholar
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374.Google Scholar
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Harvard University Press.Google Scholar
Hanus, D., & Call, J. (2007). Discrete quantity judgments in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygnaeus): The effect of presenting while sets versus item-by-item. Journal of Comparative Psychology, 121, 241249.Google Scholar
Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of Royal Society of London. Series B: Biological Sciences, 267, 829833.Google Scholar
Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of Experimental Analysis of Behavior, 4, 267272.CrossRefGoogle ScholarPubMed
Herrnstein, R. J., & Loveland, D. H. (1975). Maximizing and matching on concurrent ratio schedules. Journal of Experimental Analysis of Behavior, 24, 107116.Google Scholar
Holyoak, K.J. (1978). Comparative judgments with numerical reference points. Cognitive Psychology, 10, 203243.Google Scholar
Jones, S. M. (2012). Comparative studies of numerical cognition in nonhuman primates: From numerical comparison to arithmetic. Dissertation, Duke University. Retrieved from https://hdl.handle.net/10161/5870.Google Scholar
Jones, S. M., & Brannon, E. M. (2012). Prosimian primates show ratio dependence in spontaneous quantity discriminations. Frontiers in Psychology, 3.Google Scholar
Jones, S., Cantlon, J., Merritt, D., Brannon, E.M. (2009). Context affects the numerical semantic congruity effect in rhesus monkeys (Macaca mulatta). Behavioural Processes, 83, 191196.Google Scholar
Jones, S. M., Pearson, J., DeWind, N. K., Paulsen, D., Tenekedjieva, A. M., & Brannon, E. M. (2014). Lemurs and macaques show similar numerical sensitivity. Animal Cognition, 17, 503515.Google Scholar
Jordan, K. E., & Brannon, E. M. (2006a). A common representation system governed by Weber’s law: Nonverbal numerical similarity judgments in 6-year-olds and rhesus macaques. Journal of Experimental Child Psychology, 95, 215229.Google Scholar
Jordan, K. E., & Brannon, E. M. (2006b). Weber’s law influences numerical representations in rhesus macaques (Macaca mulatta). Animal Cognition, 9, 159172.Google Scholar
Jordan, K. E., MacLean, E. L. & Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108, 617625.Google Scholar
Kahneman, D., Treisman, A., & Gibbs, B.J. (1992). The reviewing of object files: Object specific integration of information. Cognitive Psychology, 24, 175219.Google Scholar
Leon, M. I., & Gallistel, C. (1998). Self-stimulating rats combine subjective reward magnitude and subjective reward rate multiplicatively. Journal of Experimental Psychology: Animal Behavior Processes, 24, 265277.Google Scholar
Lewis, K. P., Jaffe, S., & Brannon, E. M., (2005). Analog number representations in mongoose lemurs (Eulemur mongoz): Evidence from a search task. Animal Cognition, 8, 247252.Google Scholar
Livingstone, M. S., Pettine, W. W., Srihasam, K., Moore, B., Morocz, I. A., & Lee, D. (2014). Symbol addition by monkeys provides evidence for normalized quantity coding. Proceedings of the National Academy of Sciences, 111, 68226827.Google Scholar
Luhrs, M. L., Dammhahn, M., Kappeler, P. M., & Fichtel, C. (2009). Spatial memory in the grey mouse lemur (Microcebus murinus). Animal Cognition, 12, 599609.Google Scholar
MacLean, E. L., Merritt, D. J., & Brannon, E. M. (2008). Social complexity predicts transitive reasoning in prosimian primates. Animal Behavior, 76, 479486.Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47, 379387.Google Scholar
McCrink, K., & Spelke, E. S. (2010). Core multiplication in childhood. Cognition, 116, 204216.Google Scholar
Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320334.Google Scholar
Merritt, D. J., MacLean, E. L., Crawford, J. C., & Brannon, E. M. (2011). Numerical rule-learning in ring-tailed Lemurs (Lemur catta). Frontiers in Psychology, 2.Google Scholar
Merritt, D. J., MacLean, E. L., Jaffe, S., & Brannon, E. M. (2007). A comparative analysis of serial ordering in ring-tailed lemurs (Lemur catta). Journal of Comparative Psychology, 121, 363371.Google Scholar
Moyer, R. S., & Bayer, R. H. (1976). Mental comparison and the symbolic distance effect. Cognitive Psychology, 8, 228246.Google Scholar
Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 228246.Google Scholar
Myerson, J., & Miezin, F. M. (1980). The kinetics of choice: An operant systems analysis. Psychological Review, 87, 160174.Google Scholar
Nieder, A. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 17081711.Google Scholar
Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6, 177190.Google Scholar
Nieder, A. (2020). The adaptive value of numerical competence. Trends in Ecology & Evolution, 35, 605617.Google Scholar
Petrusic, W. M., Baranski, J. V., & Kennedy, R. (1998). Similarity comparisons with remembered and perceived magnitudes: Memory psychophysics and fundamental measurements. Memory and Cognition, 26, 10411055.Google Scholar
Piantadosi, S. T., & Cantlon, J. F. (2017). True numerical cognition in the wild. Psychological Science, 28, 462469.Google Scholar
Pica, P., Lemur, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499503.Google Scholar
Platt, J. R., & Johnson, D. M. (1971) Localization of position within a homogeneous behavior chain: Effects of error contingencies. Learning and Motivation, 2, 386414.Google Scholar
Santos, L. R., Barnes, J. L., & Mahajan, N. (2005). Expectations about numerical events in four lemur species (Eulemur fulvus, Eulemur mongoz, Lemur catta and Varecia rubra). Animal Cognition, 8, 253262.Google Scholar
Scarf, D., Hayne, H., & Colombo, M. (2011). Pigeons on par with primates in numerical competence. Science, 334, 16641664.Google Scholar
Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.Google Scholar
Stevens, J. R., Wood, J. N., & Hauser, M. D. (2007). When quantity trump number: Discrimination experiments in cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus). Animal Cognition, 10, 429437.Google Scholar
Sulkowski, G. M., & Hauser, M. D. (2001). Can rhesus monkeys spontaneously subtract? Cognition, 79, 239262.Google Scholar
Tattersall, I. (1982). The primates of Madagascar (Vol. 52). Columbia University Press.Google Scholar
vanMarle, K. (2012). Infants use different mechanisms to make small and large number ordinal judgments. Journal of Experimental Child Psychology, 114, 102110.Google Scholar
vanMarle, K., Aw, J., McCrink, K., & Santos, L. R. (2006). How capuchin monkeys (Cebus apella) quantify objects and substances. Journal of Comparative Psychology, 120, 416426.Google Scholar
Whalen, J., Gallistel, C., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10, 130137.Google Scholar
Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range location, or rank for wild chimpanzees? Animal Behavior, 61, 12031216.Google Scholar
Wood, J. N., Hauser, M. D., Glynn, D. D., & Barner, D. (2008). Free-ranging rhesus monkeys spontaneously individuate and enumerate small numbers of non-solid portions. Cognition, 106, 207221.Google Scholar
Yoder, A. D. (2007). Lemurs. Current Biology, 17, R866.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×