Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-03T06:33:52.342Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 July 2022

Andrew Lyne
Affiliation:
University of Manchester
Francis Graham-Smith
Affiliation:
University of Manchester
Benjamin Stappers
Affiliation:
University of Manchester
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Pulsar Astronomy , pp. 364 - 402
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, B. P., Abbott, R., Abbott, T. D., and 1153 others. 2017. GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett., 119(16), 16.Google ScholarPubMed
Abbott, B. P., Abbott, R., Abbott, T. D., and 1149 others. 2018. GW170817: Measurements of neutron star radii and equation of state. Phys. Rev. Lett., 121(16), 16.Google Scholar
Abdo, A. A., Allen, B., Berley, D., and 31 others. 2007. TeV gamma-ray sources from a survey of the Galactic plane with Milagro. ApJ, 664(Aug.), L91L94.Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., and 177 others. 2009a. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT. Science, 325(Aug.), 840844.CrossRefGoogle ScholarPubMed
Abdo, A. A., Ackermann, M., Ajello, M., and 199 others. 2009b. A population of gammaray millisecond pulsars seen with the Fermi Large Area Telescope. Science, 325, 848.CrossRefGoogle ScholarPubMed
Abdo, A. A., Ackermann, M., Ajello, M., and 232 others. 2010a. Fermi Large Area Telescope first source catalog. ApJS, 188, 405436.Google Scholar
Abdo, A. A., Ackermann, M., Ajello, M., and 189 others. 2010b. Fermi Large Area Telescope observations of the Crab Pulsar and Nebula. ApJ, 708, 12541267.CrossRefGoogle Scholar
Abdo, A. A., Ackermann, M., Ajello, M., and 214 others. 2010c. The first Fermi Large Area Telescope catalog of gamma-ray pulsars. ApJS, 187, 460494.Google Scholar
Abdo, A. A., Ajello, M., Allafort, A., and 208 others. 2013. The Second Fermi Large Area Telescope catalog of gamma-ray pulsars. ApJS, 208(2), 2.Google Scholar
Acciari, V. A., Aliu, E., Arlen, T., and 79 others. 2010. Discovery of very high energy γ -ray emission from the SNR G54.1+0.3. ApJ, 719(1), L69L73.CrossRefGoogle Scholar
Ackermann, M., Ajello, M., Allafort, A., and 166 others. 2013. Detection of the characteristic pion-decay signature in supernova remnants. Science, 339(6121), 807811.Google Scholar
Aharonian, F., Akhperjanian, A. G., Aye, K.-M., and 96 others. 2005. Discovery of extended VHE gamma-ray emission from the asymmetric pulsar wind nebula in MSH 15-52 with HESS. A&A, 435, L17L20.Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., and 103 others. 2006. First detection of a VHE gamma-ray spectral maximum from a cosmic source: HESS discovery of the Vela X nebula. A&A, 448, L43.Google Scholar
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., and 125 others. 2007. Discovery of two candidate pulsar wind nebulae in very-high-energy gamma rays. A&A, 472(2), 489495.Google Scholar
Akgün, T., Link, B., and Wasserman, I. 2006. Precession of the isolated neutron star PSR B1828-11. MNRAS, 365, 653672.Google Scholar
Alam, Md F., Arzoumanian, Z., Baker, P. T., and 67 others. 2020. The NANOGrav 12.5year data set: Wideband timing of 47 millisecond pulsars. arXiv e-prints, May, arXiv:2005.06495.Google Scholar
Allen, B., Knispel, B., Cordes, J. M., and 43 others. 2013. The Einstein@Home search for radio pulsars and PSR J2007+2722 discovery. ApJ, 773(Aug.), 91.Google Scholar
Alpar, M. A., Anderson, P. W., Pines, D., and Shaham, J. 1981. Giant glitches and the pinned vorticity in the Vela and other pulsars. ApJ, 249, L29L33.Google Scholar
Alpar, M. A., Cheng, A. F., Ruderman, M. A., and Shaham, J. 1982. A new class of radio pulsars. Nature, 300, 728730.CrossRefGoogle Scholar
Alpar, M. A., Cheng, K. S., and Pines, D. 1989. Vortex creep and the internal temperature of neutron stars: Linear and nonlinear response to a glitch. ApJ, 346, 823832.Google Scholar
Alpar, M. A., Chau, H. F., Cheng, K. S., and Pines, D. 1996. Postglitch relaxation of the Crab Pulsar after its first four glitches. ApJ, 459, 706716.Google Scholar
Andersen, B. C., and Ransom, S. M. 2018. A Fourier domain “Jerk” search for binary pulsars. ApJ, 863(1), L13L18.CrossRefGoogle Scholar
Andersen, B. C., Bandura, K. M., Bhardwaj, M., and 68 others. 2020. A bright millisecondduration radio burst from a Galactic magnetar. Nature, 587(7832), 5458.Google Scholar
Anderson, P. W., and Itoh, N. 1975. Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature, 256, 2527.CrossRefGoogle Scholar
Anderson, S. B. 1993 (Jan.). A Study of Recycled Pulsars in Globular Clusters. Ph.D. thesis, California Institute of Technology, Pasadena.Google Scholar
Antoniadis, J., Freire, P. C. C., Wex, N., and 19 others. 2013. A massive pulsar in a compact relativistic binary. Science, 340(6131), 6131.Google Scholar
Antonopoulou, D., Espinoza, C. M., Kuiper, L., and Andersson, N. 2018. Pulsar spin-down: The glitch-dominated rotation of PSR J0537-6910. MNRAS, 473(2), 16441655.Google Scholar
Archibald, A. M., Stairs, I. H., Ransom, S. M., and 15 others. 2009. A radio pulsar/X-ray binary link. Science, 324(5933), 5933.Google Scholar
Archibald, R. F., Kaspi, V. M., Tendulkar, S. P., and Scholz, P. 2016. A magnetar-like outburst from a high-B radio pulsar. ApJ, 829(1), L21.Google Scholar
Arendt, P. N., and Eilek, J. A. 2002. Pair creation in the pulsar magnetosphere. ApJ, 581, 451469.Google Scholar
Armstrong, J. W., Rickett, B. J., and Spangler, S. R. 1995. Electron density power spectrum in the local interstellar medium. ApJ, 443, 209221.Google Scholar
Arons, J., and Barnard, J. J. 1986. Wave propagation in pulsar magnetospheres: Dispersion relations and normal modes of plasmas in superstrong magnetic fields. ApJ, 302, 120.CrossRefGoogle Scholar
Arzoumanian, Z., Nice, D. J., Taylor, J. H, and Thorsett, S. E. 1994. Timing behavior of 96 radio pulsars. ApJ, 422, 671680.Google Scholar
Arzoumanian, Z., Joshi, K., Rasio, F. A., and Thorsett, S. E. 1996. Orbital parameters of the PSR B1620-26 triple system. PASP Conf. Ser., 105, 525530.Google Scholar
Ash, M. E., Shapiro, I. I., and Smith, W. B. 1967. Astronomical constants and planetary ephemerides deduced from radar and optical observations. AJ, 72, 338350.Google Scholar
Ashton, G., Lasky, P. D., Graber, V., and Palfreyman, J. 2019. Rotational evolution of the Vela pulsar during the 2016 glitch. Nature Astronomy, 3, 11431148.CrossRefGoogle Scholar
Ashworth, M. 1982. The Emission Mechanism of Radio Pulsars. Ph.D. thesis, The University of Manchester.Google Scholar
Asseo, E., Pellat, R., and Sol, H. 1983. Radiative or two-stream instability as a source for pulsar radio emission. ApJ, 266, 201214.CrossRefGoogle Scholar
Atwood, W. B., Ziegler, M., Johnson, R. P., and Baughman, B. M. 2006. A time-differencing technique for detecting radio-quiet gamma-ray pulsars. ApJ, 652(1), L49L52.Google Scholar
Atwood, W. B., Abdo, A. A., Ackermann, , and 237 others. 2009. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope mission. ApJ, 697(2), 10711102.Google Scholar
Baade, W. 1942. The Crab Nebula. ApJ, 96, 188198.Google Scholar
Baade, W., and Zwicky, F. 1934. On super-novae. Proc. Nat. Acad. Sci., 20, 254259.Google Scholar
Bachetti, M., Harrison, F. A., Walton, D. J., and 21 others. 2014. An ultraluminous X-ray source powered by an accreting neutron star. Nature, 514(7521), 202204.Google Scholar
Backer, D. C. 1970. Pulsar nulling phenomena. Nature, 228, 4243.Google Scholar
Backer, D. C. 1976. Pulsar average wave forms and hollow-cone beam models. ApJ, 209, 895907.CrossRefGoogle Scholar
Backer, D. C., and Hellings, R. W. 1986. Pulsar timing and general relativity. Ann. Rev. Astr. Ap., 24, 537575.Google Scholar
Backer, D. C., Rankin, J. M., and Campbell, D. B. 1976. Orthogonal mode emission in geometric models of pulsar polarisation. Nature, 263, 202207.Google Scholar
Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., and Goss, W. M. 1982. A millisecond pulsar. Nature, 300, 615618.Google Scholar
Bailes, M., Manchester, R. N., Kesteven, M. J., Norris, R. P., and Reynolds, J. E. 1990. The proper motion of six southern radio pulsars. MNRAS, 247, 322326.Google Scholar
Baldo, M., and Burgio, G. F. 2012. Properties of the nuclear medium. Reports on Progress in Physics, 75(2), 2.CrossRefGoogle ScholarPubMed
Bamba, A., Mori, K., and Shibata, S. 2010. Chandra view of pulsar wind nebula tori. ApJ, 709, 507511.CrossRefGoogle Scholar
Barat, C., Chambon, G., Hurley, K., Niel, M., Vedrenne, G., Estulin, I. V., Kurt, V. G., and Zenchenko, V. M. 1979. Evidence for periodicity in a gamma ray burst. A&A, 79, L24L25.Google Scholar
Barnard, J. J. 1986. Probing the magnetic field of radio pulsars: A reexamination of polarization position angle swings. ApJ, 303, 280291.Google Scholar
Barr, E. D., Champion, D. J., Kramer, M., and 13 others. 2013. The Northern High Time Resolution Universe pulsar survey – I. Setup and initial discoveries. MNRAS, 435(3), 22342245.CrossRefGoogle Scholar
Bartel, N., Sieber, W., and Wolszczan, A. 1980. Pulse to pulse intensity modulation from radio pulsars with particular reference to frequency dependence. A&A, 90, 5860.Google Scholar
Bartel, N., Morris, D., Sieber, W., and Hankins, T. H. 1982. The mode-switching phenomenon in pulsars. ApJ, 258, 776789.Google Scholar
Bartel, N., Chandler, J. F., Ratner, M. I., Shapiro, I. I., Pan, R., and Capallo, R. J. 1996. Towards a frame-tie via millisecond pulsar VLBI. AJ, 112, 16901696.CrossRefGoogle Scholar
Bassa, C. G., Pleunis, Z., Hessels, J. W. T., Ferrara, E. C., Kondratiev, V. I., Sanidas, S., Lyne, A. G., Stappers, B. W., Ransom, S. M., and Fermi Pulsar Search Consortium. 2018 (Aug.). Targeted millisecond pulsar surveys of Fermi γ -ray sources with LOFAR. Pages 3336 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Bastian, T. S. 1994. Angular scattering of solar radio emission by coronal turbulence. ApJ, 426(May), 774.Google Scholar
Basu, R., and Mitra, D. 2019. Radio emission features in different modes of PSR J0826+2637 (B0823+26). MNRAS, 487(4), 45364549.Google Scholar
Basu, R., Mitra, D., Melikidze, G. I., Maciesiak, K., Skrzypczak, A., and Szary, A. 2016. Meterwavelength Single-pulse Polarimetric Emission Survey. II. The phenomenon of drifting subpulses. ApJ, 833(1), 1.Google Scholar
Baym, G., Pethick, C. J., and Sutherland, P. 1971. The ground state of matter at high densities: Equation of state and stellar models. ApJ, 170, 299317.CrossRefGoogle Scholar
Baym, G., Hatsuda, T., Kojo, T., Powell, P. D., Song, Y., and Takatsuka, T. 2018. From hadrons to quarks in neutron stars: A review. Reports on Progress in Physics, 81(5), 5.Google Scholar
Baym, G., Furusawa, S., Hatsuda, T., Kojo, T., and Togashi, H. 2019. New neutron star equation of state with quark-hadron crossover. ApJ, 885(1), 1.Google Scholar
Beck, R. 2009 (Apr.). Measuring interstellar magnetic fields by radio synchrotron emission. Pages 314 of: Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E. (eds), Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. IAU Symposium, vol. 259.Google Scholar
Beck, R. 2015. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev., 24(Dec.), 4.Google Scholar
Becker, W., and Trümper, J. 1997. The X-ray luminosity of rotation-powered neutron stars. A&A, 326, 682691.Google Scholar
Belian, R. D., Conner, J. P., and Evans, W. D. 1976. The discovery of X-ray bursts from a region in the constellation Norma. ApJ, 206, L135L138.Google Scholar
Bell, J. F. 1998. Radio pulsar timing. Adv. Space Res., 21, 137147.Google Scholar
Bell, J. F., and Bailes, M. 1996. A new method for obtaining binary pulsar distances and its implications for tests of general relativity. ApJ, 456, L33L36.Google Scholar
Bell, J. F., Bailes, M., Manchester, R. N., Weisberg, J. M., and Lyne, A. G. 1995. The proper motion and wind nebula of the nearby millisecond pulsar J0437-4715. ApJ, 440, L81L83.Google Scholar
Bergeron, P., Dufour, P., Fontaine, G., Coutu, S., Blouin, S., Genest-Beaulieu, C., Bédard, A., and Rolland, B. 2019. On the measurement of fundamental parameters of white dwarfs in the Gaia era. ApJ, 876(1), 1.Google Scholar
Bertotti, B., Carr, B. J., and Rees, M. J. 1983. Limits from the timing of pulsars on the cosmic gravitational wave background. MNRAS, 203, 945954.Google Scholar
Bertotti, B., Iess, L., and Tortora, P. 2003. A test of general relativity using radio links with the Cassini spacecraft. Nature, 425, 374376.Google Scholar
Beskin, V. S. 1999. Radio pulsars. Physics Uskpekhi, 42, 1071.Google Scholar
Beskin, V. S., Gurevich, A. V., and Istomin, Ya. N. 1993. Physics of the Pulsar Magnetosphere. Cambridge University Press.Google Scholar
Beuermann, K., Kanbach, G., and Berkhuijsen, E. M. 1985. Radio structure of the Galaxy – Thick disk and thin disk at 408 MHz. A&A, 153, 1734.Google Scholar
Bhandari, S., Sadler, E. M., Prochaska, J. X., and 16 others. 2020. The host galaxies and progenitors of fast radio bursts localized with the Australian Square Kilometre Array Pathfinder. ApJ, 895(2), L37.Google Scholar
Bhat, N. D. R., Cordes, J. M., Camilo, F., Nice, D. J., and Lorimer, D. R. 2004. Multifrequency observations of radio pulse broadening and constraints on interstellar electron density microstructure. ApJ, 605(2), 759783.Google Scholar
Bhat, N. D. R., Gupta, Y., Kramer, M., Karastergiou, A., Lyne, A. G., and Johnston, S. 2007. Simultaneous single-pulse observations of radio pulsars. V. On the broadband nature of the pulse nulling phenomenon in PSR B1133+16. A&A, 462(1), 257268.Google Scholar
Bhattacharya, D., Wijers, R. A. M. J., Hartman, J. W., and Verbunt, F. 1992. On the decay of magnetic fields of single radio pulsars. A&A, 254, 198212.Google Scholar
Bhattacharya, B., Gupta, Y., and Gil, J. 2009 (Sept.). Wide profile drifting pulsars: An elegant way to probe pulsar magnetospheres. Page 313 of: Saikia, D. J., Green, D. A., Gupta, Y., and Venturi, T. (eds), The Low-Frequency Radio Universe. Astronomical Society of the Pacific Conference Series, vol. 407.Google Scholar
Bietenholz, M. F., Kassim, N., and Weiler, K. 2002. The radio spectral index of 3C58. Proc. IAU Symp. 199, 303.Google Scholar
Biggs, J. D. 1990. Meridional compression of radio pulsar beams. MNRAS, 245, 514521.Google Scholar
Biggs, J. D., Hamilton, P. A., McCulloch, P. M., and Manchester, R. N. 1985a. The drifting subpulses of PSR 0148-06. MNRAS, 214, 47P52P.Google Scholar
Biggs, J. D., McCulloch, P. M., Hamilton, P. A., Manchester, R. N., and Lyne, A. G. 1985b. A study of PSR0826-34 – A remarkable pulsar. MNRAS, 215, 281294.Google Scholar
Bignall, H. E., Jauncey, D. L., Lovell, J., Macquart, J.-P., Kedziora-Chudczer, L., and Tzioumis, A. K. 2003 (Jan.). The rapidly scintillating quasar, PKS 1257-326. Page E12 of: IAU Joint Discussion. IAU Joint Discussion.Google Scholar
Bignami, G. F., Caraveo, P. A., De Luca, A., and Mereghetti, S. 2003. Discovery of X-ray cyclotron absorption lines measures the magnetic field of an isolated neutron star. Nature, 423, 725727.Google Scholar
Bilous, A. V., Pennucci, T. T., Demorest, P., and Ransom, S. M. 2015. A broadband radio study of the average profile and giant pulses from PSR B1821-24A. ApJ, 803(2), 2.Google Scholar
Bilous, A. V., Watts, A. L., Harding, A. K., Riley, T. E., Arzoumanian, Z., Bogdanov, S., Gendreau, K. C., Ray, P. S., Guillot, S., Ho, W. C. G., and Chakrabarty, D. 2019. A NICER view of PSR J0030+0451: Evidence for a global-scale multipolar magnetic field. ApJ, 887(1), L23.Google Scholar
Bjoernsson, C.-I. 1998. A direct method to determine the geometry of the hollow cones in pulsars. A&A, 338, 971976.Google Scholar
Blaauw, A. 1985. The progenitors of the local pulsar population. Pages 211224 of: Boland, W., and van Woerden, H. (eds), Birth and Evolution of Massive Stars and Stellar Groups. Dordrecht: Reidel.Google Scholar
Blandford, R., and Teukolsky, S. A. 1976. Arrival-time analysis for a pulsar in a binary system. ApJ, 205, 580591.Google Scholar
Blaskiewicz, M., Cordes, J. M., and Wasserman, I. 1991. A relativistic model of pulsar polarization. ApJ, 370, 643669.Google Scholar
Bochenek, C. D., Ravi, V., Belov, K. V., Hallinan, G., Kocz, J., Kulkarni, S. R., and McKenna, D. L. 2020. A fast radio burst associated with a galactic magnetar. Nature, 587(7832), 5962.CrossRefGoogle ScholarPubMed
Bogdanov, S., Rybicki, G. B., and Grindlay, J. E. 2007. Constraints on neutron star properties from X-ray observations of millisecond pulsars. ApJ, 670(1), 668676.Google Scholar
Boldt, E. A., Desai, U. D., Holt, S. S., Serlemitsos, P. J., and Silverberg, R. F. 1969. Pulsed X-ray emission of NP 0532 in March 1968. Nature, 223, 280281.Google Scholar
Bolton, J. G., Stanley, G. J., and Slee, O. B. 1949. Positions of three discrete sources of galactic radio-frequency radiation. Nature, 164, 101102.Google Scholar
Boriakoff, V., Ferguson, D. C., and Slater, G. 1981. Pulsar microstructure quasi-periodicity. Pages 199204 of: Sieber, W., and Wielebinski, R. (eds), Pulsars, IAU Symposium 95. Dordrecht: Reidel.Google Scholar
Boriakoff, V., Buccheri, R., and Fauci, F. 1983. Discovery of a 6.1-ms binary pulsar, PSR1953+29. Nature, 304, 417419.Google Scholar
Bradt, H., Rappaport, S., Mayer, W., Nather, R. E., Warner, B., Macfarlane, M., and Kristian, J. 1969. X-ray and optical observations of the pulsar NP 0532 in the Crab Nebula. Nature, 222, 728730.CrossRefGoogle Scholar
Bradt, H. V. D., and McClintock, J. E. 1983. The optical counterparts of compact galactic X-ray sources. Ann. Rev. Astr. Ap., 21, 1366.Google Scholar
Brambilla, G., Kalapotharakos, C., Timokhin, A., Harding, A., and Kazanas, D. 2018. Electron-positron pair flow and current composition in the pulsar magnetosphere. ApJ, 858(2), 2.Google Scholar
Breton, R. P., Kaspi, V. M., Kramer, M., McLaughlin, M. A., Lyutikov, M., Ransom, S. M., Stairs, I. H., Ferdman, R. D., Camilo, F., and Possenti, A. 2008. Relativistic spin precession in the Double Pulsar. Science, 321, 104.CrossRefGoogle ScholarPubMed
Brisken, W. F., Benson, J. M., Goss, W. M., and Thorsett, S. E. 2002. Very Long Baseline Array measurement of nine pulsar parallaxes. ApJ, 571, 906917.CrossRefGoogle Scholar
Brisken, W. F., Macquart, J.-P., Gao, J. J., Rickett, B. J., Coles, W. A., Deller, A. T., Tingay, S. J., and West, C. J. 2010. 100 as resolution VLBI imaging of anisotropic interstellar scattering toward pulsar B0834+06. ApJ, 708, 232243.Google Scholar
Bühler, R., and Blandford, R. 2014. The surprising Crab pulsar and its nebula: A review. Rep. Prog. Phys., 77(6), 6.Google Scholar
Burgay, M., D’Amico, N., Possenti, A., and 10 others. 2003. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426, 531533.CrossRefGoogle ScholarPubMed
Burgay, M., Joshi, B. C., D’Amico, N., Possenti, A., Lyne, A. G., Manchester, R. N., McLaughlin, M. A., Kramer, M., Camilo, F., and Freire, P. C. C. 2006. The Parkes High-Latitude pulsar survey. MNRAS, 368(May), 283292.Google Scholar
Burgay, M., Keith, M. J., Lorimer, D. R., and 11 others. 2013. The Perseus Arm pulsar survey. MNRAS, 429(1), 579588.Google Scholar
Burgay, M., Stappers, B., Bailes, M., and 21 others. 2019. The High Time Resolution Universe pulsar survey – XV. Completion of the intermediate-latitude survey with the discovery and timing of25 further pulsars. MNRAS, 484(4), 57915801.Google Scholar
Cadelano, M., Ransom, S. M., Freire, P. C. C., Ferraro, F. R., Hessels, J. W. T., Lanzoni, B., Pallanca, C., and Stairs, I. H. 2018. Discovery of three new millisecond pulsars in Terzan 5. ApJ, 855(2), 2.Google Scholar
Cairns, I. H., Johnston, S., and Das, P. 2004. Intrinsic variability and field statistics for pulsars B1641-45 and B0950+08. MNRAS, 353(1), 270286.Google Scholar
Cameron, A. D., Champion, D. J., Kramer, M., and 27 others. 2018. The High Time Resolution Universe pulsar survey – XIII. PSR J1757-1854, the most accelerated binary pulsar. MNRAS, 475(1), L57L61.Google Scholar
Camilo, F., Thorsett, S. E., and Kulkarni, S. R. 1994. The magnetic fields, ages and original spin periods of millisecond pulsars. ApJ, 421, L15L18.CrossRefGoogle Scholar
Camilo, F., Nice, D. J., and Taylor, J. H. 1996a. A search for millisecond pulsars at galactic latitudes −50° <b < −20°. ApJ, 461, 812819.Google Scholar
Camilo, F., Nice, D. J., Shrauner, J. A., and Taylor, J. H. 1996b. Princeton-Arecibo all-sky survey for millisecond pulsars. I. ApJ, 469, 819827.Google Scholar
Camilo, F., Lorimer, D. R., Freire, P., Lyne, A. G., and Manchester, R. N. 2000. Observations of 20 millisecond pulsars in 47 Tucanae at 20 cm. ApJ, 535, 975990.Google Scholar
Camilo, F., Lorimer, D. R., Bhat, N. D. R., Gotthelf, E. V., Halpern, J. P., Wang, Q. D., Lu, F. J., and Mirabal, N. 2002a. Discovery of a 136 millisecond radio and X-ray pulsar in supernova remnant G54.1+0.3. ApJ, 574, L71L74.Google Scholar
Camilo, F., Manchester, R. N., Gaensler, B. M., Lorimer, D. L., and Sarkissian, J. 2002b. PSR J1124-5916: A young and energetic pulsar in supernova remnant G292.0+1.8. ApJ, 567, L71L75.Google Scholar
Camilo, F., Stairs, I. H., Lorimer, D. R., Backer, D. C., Ransom, S. M., Klein, B., Wielebinski, R., Kramer, M., McLaughlin, M. A., Arzoumanian, Z., and Müller, P. 2002c. Discovery of radio pulsations from the X-ray pulsar J0205+6449 in supernova remnant 3C 58 with the Green Bank Telescope. ApJ, 571, L41L44.Google Scholar
Camilo, F., Ransom, S. M., Gaensler, B. M., Slane, P. O., Lorimer, D. R., Reynolds, J., Manchester, R. N., and Murray, S. S. 2006a. PSR J1833-1034: Discovery of the central young pulsar in the supernova remnant G21.5-0.9. ApJ, 637, 456465.Google Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., Reynolds, J., Helfand, D. J., Zimmerman, N., and Sarkissian, J. 2006b. Transient pulsed radio emission from a magnetar. Nature, 442, 892895.Google Scholar
Camilo, F., Reynolds, J., Johnston, S., Halpern, J. P., and Ransom, S. M. 2008. The magnetar 1E 1547.0-5408: Radio spectrum, polarimetry, and timing. ApJ, 679(May), 681686.Google Scholar
Camilo, F., Ransom, S. M., Gaensler, B. M., and Lorimer, D. R. 2009a. Discovery of the energetic pulsar J1747-2809 in the supernova remnant G0.9+0.1. ApJ, 700, L34L38.CrossRefGoogle Scholar
Camilo, F., Ray, P. S., Ransom, S. M., and 24 others. 2009b. Radio detection of LAT PSRs J1741-2054 and J2032+4127: No longer just gamma-ray pulsars. ApJ, 705(Nov.), 113.Google Scholar
Camilo, F., Ransom, S. M., Chatterjee, S., Johnston, S., and Demorest, P. 2012. PSR J1841- 0500: A radio pulsar that mostly is not there. ApJ, 746(Feb.), 63.CrossRefGoogle Scholar
Campana, R., Massaro, E., Mineo, T., and Cusumano, G. 2009. The multi-component model of the Crab Pulsar at energies above 25 GeV. A&A, 499, 847850.Google Scholar
Caswell, J. L., Murray, J. D., Roger, R. S., Cole, D. J., and Cooke, D. J. 1975. Neutral hydrogen absorption measurements yielding kinematic distances for 42 continuum sources in the Galactic plane. A&A, 45, 239258.Google Scholar
Cerutti, B., and Beloborodov, A. M. 2017. Electrodynamics of pulsar magnetospheres. Space Sci. Rev., 207(1-4), 111136.Google Scholar
Chakrabarty, D., and Morgan, E. H. 1998. The two-hour orbit of a binary millisecond X-ray pulsar. Nature, 394, 346348.CrossRefGoogle Scholar
Chakrabarty, D., Morgan, E. H., Muno, M. P., Galloway, D. K., Wijnands, R., van der Klis, M., and Markwardt, C. B. 2003. Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Nature, 424, 4244.Google Scholar
Chakraborty, A., and Bagchi, M. 2020. Understanding the Galactic population of normal pulsars: A leap forward. arXiv e-prints, Dec., arXiv:2012.13243.Google Scholar
Champion, D. J., Lorimer, D. R., McLaughlin, M. A., Cordes, J. M., Arzoumanian, Z., Weisberg, J. M., and Taylor, J. H. 2004. PSR J1829+2456: A relativistic binary pulsar. MNRAS, 350, L61L65.Google Scholar
Chandrasekhar, S. 1931. The maximum mass of ideal white dwarfs. ApJ, 74, 8182.Google Scholar
Chatterjee, S., and Cordes, J. M. 2002. Bow shocks from neutron stars: Scaling laws and HST observations of the Guitar Nebula. ApJ, 575, 407418.Google Scholar
Chatterjee, S., Brisken, W. F., Vlemmings, W. H. T., Goss, W. M., Lazio, T. J. W., Cordes, J. M., Thorsett, S. E., Fomalont, E. B., Lyne, A. G., and Kramer, M. 2009. Precision astrometry with the Very Long Baseline Array: Parallaxes and proper motions for 14 pulsars. ApJ, 698, 250265.Google Scholar
Chau, H. F., Cheng, K. S., and Ding, K. Y. 1992. Implications of 3P2 superfluidity in the interior of neutron stars. ApJ, 399, 213.Google Scholar
Chen, J. L., and Wang, H. G. 2014. Frequency dependence of pulse width for 150 radio normal pulsars. ApJS, 215(1), 1.Google Scholar
Cheng, A. F., and Ruderman, M. 1979. A theory of subpulse polarization patterns from radio pulsars. ApJ, 229, 348360.Google Scholar
Chevalier, R. A. 1977. Was SN 1054 a type II supernova? Pages 5361 of: Schramm, D. N. (ed), Supernovae. Dordrecht: Reidel.Google Scholar
Chevalier, R. A. 1992. Early expansion and luminosity evolution of supernovae. ApJ, 394, 599602.Google Scholar
Chiang, J., and Romani, R. W. 1994. An outer gap model of high-energy emission from rotation-powered pulsars. ApJ, 436, 754761.Google Scholar
Chiu, H. Y., and Salpeter, E. E. 1964. Surface X-ray emission from neutron stars. Phys. Rev. Lett., 12, 413.Google Scholar
Chung, C. T. Y., and Melatos, A. 2011. Stokes tomography of radio pulsar magnetospheres – I. Linear polarization. MNRAS, 411, 24712529.Google Scholar
Cieslar, M., Bulik, T., and Oslowski, S. 2018. Markov chain Monte Carlo population synthesis of single radio pulsars in the Galaxy. arXiv e-prints, Mar., arXiv:1803.02397.Google Scholar
Clark, C. J., Wu, J., Pletsch, H. J., and Guillemot, L. 2018. The Einstein@Home Survey for Gamma-ray Pulsars. Pages 2124 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Clark, D. H., and Caswell, J. L. 1976. A study of Galactic supernova remnants, based on Molonglo-Parkes observational data. MNRAS, 174, 267305.Google Scholar
Clark, D. H., and Stephenson, F. R. 1977. Do all Galactic supernovae produce long-lived remnants? MNRAS, 179, 87P92P.Google Scholar
Clemence, G. M., and Szebehely, V. 1967. Annual variation of an atomic clock. AJ, 72, 13241326.Google Scholar
Clifton, T. R., and Lyne, A. G. 1986. High-radio-frequency survey for young and millisecond pulsars. Nature, 320, 4345.Google Scholar
Clifton, T. R., Lyne, A. G., Jones, A. W., McKenna, J., and Ashworth, M. 1992. A high frequency survey of the Galactic plane for young and distant pulsars. MNRAS, 254, 177184.Google Scholar
Cocke, W. J., Disney, M. J., and Taylor, D. J. 1969. Discovery of optical signals from pulsar NP 0532. Nature, 221, 525527.CrossRefGoogle Scholar
Cognard, I., Bourgois, G., Lestrade, J.-F., Biraud, F., Aubry, D., Darchy, B., and Drouhin, J.-P. 1996. High-precision timing observations of the millisecond pulsar PSR 1821-24 at Nancay. A&A, 311, 179188.Google Scholar
Cognard, I., Freire, P. C. C., Guillemot, L., and 10 others. 2017. A massive-born neutron star with a massive white dwarf companion. ApJ, 844(2), 2.Google Scholar
Cohen, M. H., Gunderman, E. J., Handebeck, H. E., and Sharp, L. E. 1967. Interplanetary scintillations. II. Observations. ApJ, 147, 449466.Google Scholar
Cole, T. W. 1970. Pulsar subpulses and the emission process. Nature, 227, 788791.Google Scholar
Coles, W. A., Rickett, B. J., Gao, J. J., Hobbs, G., and Verbiest, J. P. W. 2010. Scattering of pulsar radio emission by the interstellar plasma. ApJ, 717, 12061221.Google Scholar
Comella, J. M., Craft, H. D., Lovelace, R. V. E., Sutton, J. M., and Tyler, G. L. 1969. Crab Nebula pulsar NP 0532. Nature, 221, 453454.Google Scholar
Cordes, J. M. 1986. Space velocities of radio pulsars from interstellar scintillations. ApJ, 311, 183196.Google Scholar
Cordes, J. M. 2002. Pulsar Observations I. – Propagation Effects, Searching Distance Estimates, Scintillations and VLBI. Astronomical Society of the Pacific Conference Series, vol. 278. Pages 227250.Google Scholar
Cordes, J. M., and Chatterjee, S. 2019. Fast radio bursts: An extragalactic enigma. Ann. Rev. Astr. Ap., 57(Aug.), 417465.Google Scholar
Cordes, J. M., and Chernoff, D. F. 1997. Neutron star population dynamics. I. Millisecond pulsars. ApJ, 482, 971992.Google Scholar
Cordes, J. M., and Lazio, T.J. W. 2002. NE2001. I. A new model for the Galactic distribution of free electrons and its fluctuations. preprint (arXiv:astro-ph/0207156).Google Scholar
Cordes, J. M. 2004. NE2001: A new model for the Galactic electron density and its fluctuations. ASP Conf. Ser., 317, 211.Google Scholar
Cordes, J. M., and Lazio, T. J. W. 2003. NE2001. II. Using radio propagation data to construct a model for the Galactic distribution of free electrons. preprint (arXiv:astro- ph/0301598).Google Scholar
Cordes, J. M., and McLaughlin, M. A. 2003. Searches for fast radio transients. ApJ, 596, 11421154.Google Scholar
Cordes, J. M., Romani, R. W., and Lundgren, S. C. 1993. The Guitar Nebula: A bow-shock from a slow-spin, high-velocity neutron star. Nature, 362, 133135.Google Scholar
Cordes, J. M., Freire, P. C. C., Lorimer, D. R., and 21 others. 2006a. Arecibo pulsar survey using ALFA. I. Survey strategy and first discoveries. ApJ, 637, 446455.Google Scholar
Cordes, J. M., Rickett, B. J., Stinebring, D. R., and Coles, W. A. 2006b. Theory of parabolic arcs in interstellar scintillation spectra. ApJ, 637, 346365.Google Scholar
Cordes, J. M., Shannon, R. M., and Stinebring, D. R. 2016. Frequency-dependent dispersion measures and implications for pulsar timing. ApJ, 817(1), 1.Google Scholar
Crossley, J. H., Eilek, J. A., Hankins, T. H., and Kern, J. S. 2010. Short-lived radio bursts from the Crab Pulsar. ApJ, 722, 19081920.Google Scholar
Crusius-Waetzel, A. R., and Lesch, H. 2002 (Jan.). Emission mechanisms in high energy pulsars: From gamma rays to infrared. Page 162 of: Becker, W., Lesch, H., and Trümper, J. (eds), Neutron Stars, Pulsars, and Supernova Remnants.Google Scholar
Dai, S., Hobbs, G., Manchester, R. N., and 23 others. 2015. A study of multifrequency polarization pulse profiles of millisecond pulsars. MNRAS, 449(3), 32233262.CrossRefGoogle Scholar
Damashek, M., Taylor, J. H., and Hulse, R. A. 1978. Parameters of 17 newly discovered pulsars in the northern sky. ApJ, 225, L31.Google Scholar
Damashek, M., Backus, P. R., Taylor, J. H., and Burkhardt, R. K. 1982. Northern hemisphere pulsar survey: A third radio pulsar in a binary system. ApJ, 253, L57L60.Google Scholar
D’Amico, N., Lyne, A. G., Manchester, R. N., Possenti, A., and Camilo, F. 2001. Discovery of short-period binary millisecond pulsars in four globular clusters. ApJ, 548, L171L174.Google Scholar
Damour, T., and Esposito-Farèse, G. 1998. Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D, 58, 112.Google Scholar
Damour, T., and Esposito-Farèse, G. 1992. Testing local Lorentz invariance of gravity with binary pulsar data. Phys. Rev. D, 46, 41284132.Google Scholar
Damour, T., and Taylor, J. H. 1991. On the orbital period change of the binary pulsar PSR1913+16. ApJ, 366, 501511.Google Scholar
Damour, T., and Taylor, J. H. 1992. Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D, 45, 18401868.Google Scholar
Davies, J. G., Horton, P. W., Lyne, A. G., Rickett, B. J., and Smith, F. G. 1968. Pulsating radio source at α = 19h19m, δ = +22°. Nature, 217, 910913.Google Scholar
Davies, J. G., Lyne, A. G., and Seiradakis, J. H. 1973. Thirteen new pulsars. Nature Phys. Sci., 244, 8485.Google Scholar
De, K., Gupta, Y., and Sharma, P. 2016. Detection of polarized quasi-periodic microstructure emission in millisecond pulsars. ApJ, 833(1), L10.Google Scholar
de Jager, G., Lyne, A. G., Pointon, L., and Ponsonby, J. E. B. 1968. Measurement of the distance of pulsar CP 0328. Nature, 220, 128129.Google Scholar
de Plaa, J., Kuiper, L., and Hermsen, W. 2003. Hard X-ray timing and spectral properties of PSR B0540-69. A&A, 400(Mar.), 10131019.Google Scholar
de Vaucouleurs, G., and Corwin, H. G. 1985. S. Andromedae 1885: A centennial review. ApJ, 295, 287304.Google Scholar
Degenaar, N., and Suleimanov, V. F. 2018 (Jan.). Testing the equation of state with electromagnetic observations. Page 185 of: Rezzolla, L., Pizzochero, P., Jones, D. I., Rea, N., and Vidana, I. (eds), Astrophysics and Space Science Library. Astrophysics and Space Science Library, vol. 457.Google Scholar
Deller, A. T., Tingay, S. J., Bailes, M., and Reynolds, J. E. 2009. Precision southern hemisphere VLBI pulsar astrometry. II. Measurement of seven parallaxes. ApJ, 701, 12431257.Google Scholar
Deller, A. T., Weisberg, J. M., Nice, D. J., and Chatterjee, S. 2018. A VLBI distance and transverse velocity for PSR B1913+16. ApJ, 862(2), 2.Google Scholar
Deller, A. T., Goss, W. M., Brisken, W. F., and 8 others. 2019. Microarcsecond VLBI pulsar astrometry with PSRπ II. Parallax distances for 57 pulsars. ApJ, 875(2), 2.Google Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., and Hessels, J. W. T. 2010. A two-solar-mass neutron star measured using Shapiro delay. Nature, 467(7319), 10811083.Google Scholar
Deneva, J. S., Cordes, J. M., and Lazio, T. J. W. 2009. Discovery of three pulsars from a Galactic Center pulsar population. ApJ, 702, L177L181.Google Scholar
Deneva, J. S., Stovall, K., McLaughlin, M. A., Bates, S. D., Freire, P. C. C., Martinez, J. G., Jenet, F., and Bagchi, M. 2013. Goals, strategies and first discoveries of AO327, the Arecibo all-sky 327 MHz drift pulsar survey. ApJ, 775(1), 1.Google Scholar
Deshpande, A. A., and Rankin, J. M. 1999. Pulsar magnetospheric emission mapping: Images and implications of polar CAP weather. ApJ, 524, 10081013.Google Scholar
Desvignes, G., Kramer, M., Lee, K., van Leeuwen, J., Stairs, I., Jessner, A., Cognard, I., Kasian, L., Lyne, A., and Stappers, B. W. 2019. Radio emission from a pulsar’s magnetic pole revealed by general relativity. Science, 365(6457), 10131017.Google Scholar
Detweiler, S. 1979. Pulsar timing measurements and the search for gravitational waves. ApJ, 234, 1100.Google Scholar
Dewey, R. J., Taylor, J. H., Weisberg, J. M., and Stokes, G. H. 1985. A search for low- luminosity pulsars. ApJ, 294, L25L29.Google Scholar
Dib, R., Kaspi, V. M., and Gavriil, F. P. 2009. Rossi X-ray timing explorer monitoring of the anomalous X-ray pulsar 1E 1048.1 – 5937: Long-term variability and the 2007 march event. ApJ, 702(1), 614630.Google Scholar
Diehl, R., Halloin, H., Kretschmer, K., and 12 others. 2006. 26Al in the inner Galaxy. Large- scale spectral characteristics derived with SPI/INTEGRAL. A&A, 449, 10251031.Google Scholar
Dodson, R. G., McCulloch, P. M., and Lewis, D. R. 2002. High time resolution observations of the January 2000 glitch in the Vela Pulsar. ApJ, 564, L85L88.Google Scholar
Dombrovsky, V. A. 1954. On the nature of the radiation from the Crab Nebula. Dokl. Akad. Nauk. USSR, 94, 1021.Google Scholar
Driessen, L. N., Janssen, G. H., Bassa, C. G., Stappers, B. W., and Stinebring, D. R. 2019. Scattering features and variability of the Crab Pulsar. MNRAS, 483(1), 12241232.Google Scholar
Dubner, G., and Giacani, E. 2015. Radio emission from supernova remnants. Astron. Astrophys. Rev., 23(Sept.), 3.Google Scholar
Duffet-Smith, P. J., and Readhead, A. C. S. 1976. The angular broadening of radio sources by scattering in the interstellar medium. MNRAS, 174, 717.Google Scholar
Duncan, J. C. 1939. Second report on the expansion of the Crab Nebula. ApJ, 89, 482.Google Scholar
Duncan, R. C., and Thompson, C. 1992. Formation of very strongly magnetized neutron stars: Implications for gamma-ray bursts. ApJ, 392, L9L13.Google Scholar
Durdin, J. M., Large, M. I., Little, A. G., Manchester, R. N., Lyne, A. G., and Taylor, J. H. 1979. An unusual pulsar – PSR0826-34. MNRAS, 186, 39P-41P.Google Scholar
Duyvendak, J. J. L. 1942. Further data bearing on the identification of the Crab Nebula with the supernova of A.D. 1054, Part I: The ancient Oriental chronicles. PASP, 54, 9194.Google Scholar
Dyks, J., and Harding, A. K. 2004. Rotational sweepback of magnetic field lines in geometric models of pulsar radio emission. ApJ, 614(Oct.), 869880.CrossRefGoogle Scholar
Dyks, J., and Rudak, B. 2003. Two-pole caustic model for high-energy light curves of pulsars. ApJ, 598, 12011206.Google Scholar
Dyks, J., Rudak, B., and Harding, A. K. 2004. On the methods of determining the radio emission geometry in pulsar magnetospheres. ApJ, 607, 939948.Google Scholar
Eatough, R. P., Keane, E. F., and Lyne, A. G. 2009. An interference removal technique for radio pulsar searches. MNRAS, 395(1), 410415.Google Scholar
Eatough, R. P., Falcke, H., Karuppusamy, R., and 20 others. 2013. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature, 501(7467), 391394.Google Scholar
Edwards, R. T., and Stappers, B. W. 2002. Drifting sub-pulse analysis using the twodimensional Fourier transform. A&A, 393(Oct.), 733748.Google Scholar
Edwards, R. T., Bailes, M., van Straten, W., and Britton, M. C. 2001. The Swinburne intermediate-latitude pulsar survey. MNRAS, 326(Sept.), 358374.Google Scholar
Edwards, R. T., Hobbs, G. B., and Manchester, R. N. 2006. TEMPO2, a new pulsar timing package – II. The timing model and precision estimates. MNRAS, 372, 15491574.Google Scholar
Eilek, J. A., Arendt, P. N. Jr., Hankins, T. H., and Weatherall, J. C. 2002. The radio-loud plasma in pulsars. Proceedings of the 270 WE-Heraeus seminar on neutron stars, pulsars, and supernova remnants, MPE Report 278, 249.Google Scholar
Esamdin, A., Lyne, A. G., Kramer, M., Graham-Smith, F., and Manchester, R. N. 2004 (Jan.). Thirteen drift bands in PSR B0826-34. Page 341 of: Camilo, F., and Gaensler, B. M. (eds), Young Neutron Stars and Their Environments. IAU Symposium, vol. 218.Google Scholar
Espinoza, C. M., Lyne, A. G., Kramer, M., Manchester, R. N., and Kaspi, V. M. 2011. The braking index of PSR J1734-333 and the magnetar population. ApJ, 741, 13.Google Scholar
Espinoza, C. M., Lyne, A. G., and Stappers, B. W. 2017. New long-term braking index measurements for glitching pulsars using a glitch-template method. MNRAS, 466(1), 147162.Google Scholar
Esposito-Farèse, G. 1999. Binary-pulsar tests of strong-field gravity. Pulsar Timing, General Relativity and the Internal Structure of Neutron Stars, 13.Google Scholar
Evans, W. D., Klebesadel, R. W., Laros, J. G., and 11 others. 1980. Location of the gammaray transient event of 1979 March 5. ApJ, 237, L7L9.Google Scholar
Faber, J. A., and Rasio, F. A. 2002. Post-Newtonian SPH calculations of binary neutron star coalescence. III. Irrotational systems and gravitational wave spectra. Phys. Rev. D, 65(8), 8.Google Scholar
Fahlman, G. G., and Gregory, P. C. 1981. An X-ray pulsar in SNR G109.1-1.0. Nature, 293, 202204.Google Scholar
Fantin, N. J., Côté, P., Hanes, D. A., Gwyn, S. D. J., Bianchi, L., Ferrarese, L., Cuillandre, J.-C., McConnachie, A., and Starkenburg, E. 2017. The next generation Virgo Cluster survey. XXVIII. Characterization of the Galactic white dwarf population. ApJ, 843(1), 1.Google Scholar
Faucher-Giguére, C.-A., and Kaspi, V. M. 2006. Birth and evolution of isolated radio pulsars. ApJ, 643, 332355.Google Scholar
Faulkner, A. J., Kramer, M., Lyne, A. G., Manchester, R. N., McLaughlin, M. A., Stairs, I. H., Hobbs, G., Possenti, A., Lorimer, D. R., D’Amico, N., Camilo, F., and Burgay, M. 2005. PSR J1756-2251: A new relativistic double neutron star system. ApJ, 618, L119L122.Google Scholar
Ferdman, R. D., Stairs, I. H., Kramer, M., and 14 others. 2010. A precise mass measurement of the intermediate-mass binary pulsar PSR J1802 – 2124. ApJ, 711(2), 764771.Google Scholar
Ferdman, R. D., Archibald, R. F., Gourgouliatos, K. N., and Kaspi, V. M. 2018. The glitches and rotational history of the highly energetic young pulsar PSR J0537-6910. ApJ, 852(2), 2.Google Scholar
Fichtel, C. E., Hartman, R. C., Kniffen, D. A., Thompson, D. J., Bignami, G. F., Ögelman, H., Özel, M. E., and Tümer, T. 1975. High-energy gamma-ray results from the Second Small Astronomy Satellite. ApJ, 198, 163182.Google Scholar
Filippenko, A. V. 1997. Optical spectra of supernovae. Ann. Rev. Astr. Ap., 35, 309355.Google Scholar
Filippenko, A. V., and Radhakrishnan, V. 1982. Pulsar nulling and drifting subpulse phase memory. ApJ, 263, 828834.Google Scholar
Finger, M. H., Koh, D. T., Nelson, R. W., Prince, T. A., Vaughan, B. A., and Wilson, R. B. 1996. Discovery of hard X-ray pulsations from the transient source GRO J1744-28. Nature, 381, 291293.Google Scholar
Fishman, G. J., Harnden, F. R., and Haymes, R. C. 1969. Observation of pulsed hard X-radiation from NP 0532 from 1967 data. ApJ, 156, L107L110.Google Scholar
Flanagan, C. S. 1990. Rapid recovery of the Vela Pulsar from a giant glitch. Nature, 345, 416417.Google Scholar
Fomalont, E. B., Goss, W. M., Lyne, A. G., and Manchester, R. N. 1984. Astrometry of 59 pulsars: A comparison of interferometric and timing positions. MNRAS, 210, 113130.Google Scholar
Fomalont, E. B., Goss, W. M., Lyne, A. G., Manchester, R. N., and Justtanont, K. 1992. Positions and proper motions of pulsars. MNRAS, 258, 497510.Google Scholar
Fonseca, E. Stairs, I. H., and Thorsett, S. E. 2014. A comprehensive study of relativistic gravity using PSR B1534+12. ApJ, 787(1), 1.Google Scholar
Fontaine, G., Brassard, P., and Bergeron, P. 2001. The potential of white dwarf cos- mochronology. PASP, 113(782), 409435.Google Scholar
Foster, R. S., and Backer, D. C. 1990. Constructing a pulsar timing array. ApJ, 361, 300.Google Scholar
Foster, R. S., Cadwell, B. J., Wolszczan, A., and Anderson, S. B. 1995. A high Galactic latitude pulsar survey of the Arecibo sky. ApJ, 454, 826830.CrossRefGoogle Scholar
Frail, D. A., and Kulkarni, S. R. 1991. Unusual interaction of the high-velocity pulsar PSR 1757-24 with the supernova remnant G5.4-1.2. Nature, 352, 785787.Google Scholar
Frail, D. A., and Weisberg, J. M. 1990. A critical evaluation of pulsar distance measurements. AJ, 100, 743757.Google Scholar
Frail, D. A., Goss, W. M., and Whiteoak, J. B. Z. 1994. The radio lifetime of supernova remnants and the distribution of pulsar velocities at birth. ApJ, 437, 781793.Google Scholar
Freire, P., Ransom, S., Begin, S., and Stairs, I. 2008. Eight new millisecond pulsars in NGC 6440 and NGC 6441. ApJ, 675, 670682.Google Scholar
Freire, P. C., Kramer, M., Lyne, A. G., Camilo, F., Manchester, R. N., and D’Amico, N. 2001a. Detection of inoized gas in the globular cluster 47 Tucanae. ApJ, 557, L105L108.Google Scholar
Freire, P. C., Kramer, M., and Lyne, A. G. 2001b. Determination of the orbital parameters of binary pulsars. MNRAS, 322, 885890.Google Scholar
Freire, P. C., Camilo, F., Lorimer, D. R., Lyne, A. G., Manchester, R. N., and D’Amico, N. 2001c. Timing the millisecond pulsars in 47 Tucanae. MNRAS, 326(Sept.), 901915.Google Scholar
Freire, P. C., Camilo, F., Kramer, M., Lorimer, D. R., Lyne, A. G., Manchester, R. N., and D’Amico, N. 2003. Further results from the timing of the millisecond pulsars in 47 Tucanae. MNRAS, 340, 13591374.Google Scholar
Freire, P. C. C., and Wex, N. 2010. The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars. MNRAS, 409, 199212.Google Scholar
Fritz, G., Henry, R. C., Meekins, J. F., Chubb, T. A., and Friedmann, H. 1969. X-ray pulsar in the Crab Nebula. Science, 164, 709712.Google Scholar
Fruchter, A. S., Stinebring, D. R., and Taylor, J. H. 1988a. A millisecond pulsar in an eclipsing binary. Nature, 333, 237239.Google Scholar
Fruchter, A. S., Gunn, J. E., Lauer, T. R., and Dressler, A. 1988b. Optical detection and characterization of the eclipsing pulsar’s companion. Nature, 334, 686689.CrossRefGoogle Scholar
Fuentes, J. R., Espinoza, C. M., Reisenegger, A., Shaw, B., Stappers, B. W., and Lyne, A. G. 2017. The glitch activity of neutron stars. A&A, 608, A131.Google Scholar
Gaensler, B. M., and Slane, P. O. 2006. The evolution and structure of pulsar wind nebulae. Ann. Rev. Astr. Ap., 44(1), 1747.Google Scholar
Gaensler, B. M., and Wallace, B. J. 2003. A multi-frequency radio study of supernova remnant G292.0+1.8 and its pulsar wind nebula. ApJ, 594, 326339.Google Scholar
Gaensler, B. M., Slane, P. O., Gotthelf, E. V., and Vasisht, G. 2001. Anomalous X-Ray pulsars and soft gamma-ray repeaters in supernova remnants. ApJ, 559, 963972.Google Scholar
Gaensler, B. M., Arons, J., Kaspi, V. M., Pivovaroff, M. J., Kawai, N., and Tamura, K. 2002a. High-resolution X-ray imaging of pulsar B1509-58 and its environment. ApJ, 569, 878893.Google Scholar
Gaensler, B. M., Jones, D. H., and Stappers, B. W. 2002b. An optical bow shock around the nearby millisecond pulsar J2124-3358. ApJ, 580, L137L141.Google Scholar
Gaensler, B. M., Madsen, G. J., Chatterjee, S., and Mao, S. A. 2008. The vertical structure of warm ionised gas in the Milky Way. PASA, 25, 184200.Google Scholar
Galloway, D. K., and Keek, L. 2017. Thermonuclear X-ray bursts. arXiv e-prints, Dec., arXiv:1712.06227.Google Scholar
Galt, J. A., and Lyne, A. G. 1972. The interstellar scintillation pattern of PSR 0329+54. MNRAS, 158, 281290.Google Scholar
Gandolfi, S., Lippuner, J., Steiner, A. W., Tews, I., Du, X., and Al-Mamun, M. 2019. From the microscopic to the macroscopic world: From nucleons to neutron stars. J. Phys. G Nucl. Phys., 46(10), 10.Google Scholar
Gardner, F. F., Morris, D., and Whiteoak, J. B. 1969. The linear polarization of radio sources between 11 and 20 cm wavelength. II Influence of the Galaxy on source depolarization and Faraday rotation. Aust. J. Phys., 22, 813819.Google Scholar
Gavriil, F. P., Kaspi, V. M., and Woods, P. M. 2002. Magnetar-like X-ray bursts from an anomalous X-ray pulsar. Nature, 419, 142144.CrossRefGoogle ScholarPubMed
Gavriil, F. P., Gonzalez, M. E., Gotthelf, E. V., Kaspi, V. M., Livingstone, M. A., and Woods, P. M. 2008. Magnetar-like emission from the young pulsar in Kes 75. Science, 319, 18021805.Google Scholar
Gedalin, M., Gruman, E., and Melrose, D. B. 2002. New mechanism of pulsar radio emission. Phys. Rev. Lett., 88, 121101.Google Scholar
Gehrels, N., and Chen, W. 1993. The Geminga supernova as a possible cause of the local interstellar bubble. Nature, 361, 706707.Google Scholar
Gelfand, J. D., Gaensler, B. M., Slane, P. O., Patnaude, D. J., Hughes, J. P., and Camilo, F. 2007. The radio emission, X-ray emission, and hydrodynamics of G328.4+0.2: A comprehensive analysis of a luminous pulsar wind nebula, its neutron star, and the progenitor supernova explosion. ApJ, 663, 468486.CrossRefGoogle Scholar
Geppert, U., Page, D., and Zannias, T. 1999. Submergence and re-diffusion of the neutron star magnetic field after the supernova. A&A, 345, 847854.Google Scholar
Geyer, M., Karastergiou, A., Kondratiev, V. I., and 8 others. 2017. Scattering analysis of LOFAR pulsar observations. MNRAS, 470(3), 26592679.CrossRefGoogle Scholar
Giacconi, R. 1974. Page 27 of: Proc. 16th Int. Conf. on Physics. Editions de l’Université de Bruxelles.Google Scholar
Giacconi, R., Gursky, H., Paolini, F. R., and Rossi, B. 1962. Evidence for X-rays from sources outside the solar system. Phys. Rev. Lett., 9, 439443.Google Scholar
Gil, J. A., and Han, J. L. 1996. Geometry of pulsar emission and pulse width distribution. ApJ, 458, 265.Google Scholar
Gil, J. A., and Kijak, K. 1993. Period dependence of radio emission altitudes in the pulsar magnetosphere. A&A, 273, 563569.Google Scholar
Gil, J. A., Kijak, J., and Seiradakis, J. H. 1993. On the Two-dimensional structure of pulsar beams. A&A, 272, 268.Google Scholar
Glendenning, N. K. 2000. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity. New York: Springer.Google Scholar
Gold, T. 1968. Rotating neutron stars as the origin of the pulsating radio sources. Nature, 218, 731732.Google Scholar
Gold, T. 1969. Rotating neutron stars and the nature of pulsars. Nature, 221, 2527.Google Scholar
Goldreich, P., and Julian, W. H. 1969. Pulsar electrodynamics. ApJ, 157, 869880.Google Scholar
Golenetskii, S. V., Ilyinskii, V. N., and Mazets, E. P. 1984. Recurrent bursts in GBS 0526-66, the source of the 5 March 1979 gamma-ray burst. Nature, 307, 4143.Google Scholar
Gómez, G. C., Benjamin, R. A., and Cox, D. P. 2001. A reexamination of the distribution of Galactic free electrons. AJ, 122, 908920.Google Scholar
Gonthier, P. L., Ouellette, M. S., Berrier, J., O’Brien, S., and Harding, A. K. 2002. Galactic populations of radio and gamma-ray pulsars in the polar cap model. ApJ, 565, 482499.Google Scholar
Gotthelf, E. V., Vasisht, G., Boylan-Kolchin, M., and Torii, K. 2000. A 700 year-old pulsar in the supernova remnant Kesteven 75. ApJ, 542(Oct.), L37L40.CrossRefGoogle Scholar
Gould, D. M., and Lyne, A. G. 1998. Multifrequency polarimetry of 300 radio pulsars. MNRAS, 301, 235260.Google Scholar
Graham, D. A., Mebold, U., Hesse, K. H., Hills, D. L., and Wielebinski, R. 1974. HI absorbtion of nine pulsars. A&A, 37, 405410.Google Scholar
Graham-Smith, F., Dolan, J. F., Boyd, P. T., Biggs, J. D., Lyne, A. G., and Percival, J. 1996. The ultraviolet polarization of the Crab Pulsar. MNRAS, 282, 13541358.Google Scholar
Grenier, I. A., and Harding, A. K. 2015. Gamma-ray pulsars: A gold mine. Comptes Rendus Physique, 16(6-7), 641660.Google Scholar
Grewing, M., and Warmsley, M. 1971. On the interpretation of the pulsar dispersion measure. A&A, 11, 6569.Google Scholar
Grindlay, J., Gursky, H., Schnopper, H., Parsignault, D. R., Heise, J., Brinkman, A. C., and Shriver, J. 1976. Discovery of intense X-ray bursts from the globular cluster NGC 6624. ApJ, 205, L127L130.Google Scholar
Gunn, J. E., and Ostriker, J. P. 1970. On the nature of pulsars. III. Analysis of observations. ApJ, 160, 9791002.Google Scholar
Gupta, Y., and Gangadhara, R. T. 2003. Understanding the radio emission geometry of multiple-component radio pulsars from retardation and aberration effects. ApJ, 584, 418426.Google Scholar
Gupta, Y., Rickett, B. J., and Lyne, A. G. 1994. Refractive interstellar scintillation in pulsar dynamic spectra. MNRAS, 269, 10351068.Google Scholar
Haberl, F. 2007. The magnificent seven: Magnetic fields and surface temperature distributions. ApJS, 73.Google Scholar
Haensel, P., Salgado, M., and Bonazzola, S. 1995. Equation of state of dense matter and maximum rotation frequency of neutron stars. A&A, 296, 745.Google Scholar
Hall, J. S., and Mikesell, A. H. 1950. Polarization of light in the Galaxy as determined from observations of 557 early-type stars. Pub. of US Naval Obs Second Ser., 17, 162.Google Scholar
Hamilton, T. T., Helfand, D. J., and Becker, R. H. 1985. A search for millisecond pulsars in globular clusters. AJ, 90, 606608.Google Scholar
Han, J. L. 2017. Observing interstellar and intergalactic magnetic fields. Ann. Rev. Astr. Ap., 55(1), 111157.Google Scholar
Han, J. L., and Manchester, R. N. 2001. The shape of pulsar radio beams. MNRAS, 320, L35L39.Google Scholar
Han, J. L., Manchester, R. N., and Qiao, G. J. 1999. Pulsar rotation measures and the magnetic structure of our Galaxy. MNRAS, 306, 371380.CrossRefGoogle Scholar
Han, J. L., Demorest, P. B., van Straten, W., and Lyne, A. G. 2009. Polarization observations of 100 pulsars at 774 MHz by the Green Bank Telescope. ApJS, 181, 557571.Google Scholar
Han, J. L., Manchester, R. N., van Straten, W., and Demorest, P. 2018. Pulsar rotation measures and large-scale magnetic field reversals in the galactic disk. ApJS, 234(1), 1.Google Scholar
Hankins, T. H. 1971. Microsecond intensity variation in the radio emission from CP 0950. ApJ, 169, 487494.Google Scholar
Hankins, T. H., and Cordes, J. M. 1981. Interpulse emission from pulsar 0950+08: How many poles? ApJ, 249, 241253.Google Scholar
Hankins, T. H., and Eilek, J. A. 2007. Radio emission signatures in the Crab Pulsar. ApJ, 670(1), 693701.Google Scholar
Hankins, T. H., and Rickett, B. J. 1975. Pulsar signal processing. Pages 55129 of: Methods in Computational Physics Volume 14 – Radio Astronomy. New York: Academic Press.Google Scholar
Hankins, T. H., Eilek, J. A., and Jones, G. 2016. The Crab Pulsar at centimeter wavelengths. II. Single pulses. ApJ, 833(1), 1.Google Scholar
Harding, A. K., Contopoulos, I., and Kazanas, D. 1999. Magnetar spin-down. ApJ, 525, L125L128.Google Scholar
Harding, A. K., Stern, J. V., Dyks, J., and Frackowiak, M. 2008. High-altitude emission from pulsar slot gaps: The Crab Pulsar. ApJ, 680, 13781393.Google Scholar
Harding, A. K., Kalapotharakos, C., Barnard, M., and Venter, C. 2018. Multi-TeV emission from the Vela Pulsar. ApJ, 869(1), L18.Google Scholar
Harrison, E. R., and Tademaru, E. 1975. Acceleration of pulsars by asymmetric radiation. ApJ, 201, 447461.Google Scholar
Harrison, P. A., and Lyne, A. G. 1993. Pulsar velocities and the scale height of scattering in the Galaxy. MNRAS, 265, 778780.Google Scholar
Harrison, P. A., Lyne, A. G., and Anderson, B. 1993. New determinations of the proper motions of 44 pulsars. MNRAS, 261, 113124.Google Scholar
Hartman, J. W., Bhattacharya, D., Wijers, R., and Verbunt, F. 1997. A study of the evolution of radio pulsars through improved population synthesis. A&A, 322, 477488.Google Scholar
Hartnett, J. G., and Luiten, A. 2010. Comparison of astrophysical and terrestrial frequency standards. arXiv:1004.0115.Google Scholar
Hartnett, J. G., and Luiten, A. N. 2011. Colloquium: Comparison of astrophysical and terrestrial frequency standards. Rev. Mod. Phys., 83(1), 19.Google Scholar
Haskell, B., and Melatos, A. 2015. Models of pulsar glitches. Int. J Modern Phys. D, 24(3), 3.Google Scholar
Hayakawa, S., and Matsouka, M. 1964. Origin of Cosmic X-rays. Prog. Theor. Phys. Suppl., 30, 204.Google Scholar
Heinke, C. O., and Ho, W. C. G. 2010. Direct observation of the cooling of the Cassiopeia A neutron star. ApJ, 719, L167L171.Google Scholar
Helfand, D. J., Fowler, L. A., and Kuhlman, J. V. 1977a. Pulsar flux observations: Longterm intensity and spectral variations. AJ, 82, 701705.Google Scholar
Helfand, D. J., Taylor, J. H., and Manchester, R. N. 1977b. Pulsar proper motions. ApJ, 213, L1L4.Google Scholar
Helfand, D. J., Gotthelf, E. V., and Halpern, J. P. 2001. The Vela Pulsar and its synchrotron nebula: Aftermath of a glitch. ApJ, 556(July), 380391.Google Scholar
Hellings, R. W. 1986. Relativistic effects in astronomical timing measurements. AJ, 91, 650.Google Scholar
Hellings, R. W., and Downs, G. S. 1983. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis. ApJ, 265, L39.Google Scholar
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Freire, P. C. C., Kaspi, V. M., and Camilo, F. 2006. A radio pulsar spinning at 716 Hz. Science, 311(Mar.), 19011904.Google Scholar
Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Kaspi, V. M., and Freire, P. C. C. 2007. A 1.4-GHz Arecibo survey for pulsars in globular clusters. ApJ, 670, 363378.Google Scholar
Hessels, J. W. T., Nice, D. J., Gaensler, B. M., and 21 others. 2008a. PSR J1856+0245: Arecibo discovery of a young, energetic pulsar coincident with the TeV gamma-ray source HESS J1857+026. ApJ, 682, L41L44.Google Scholar
Hessels, J. W. T., Ransom, S. M., Kaspi, V. M., Roberts, M. S. E., Champion, D. J., and Stappers, B. W. 2008b (Feb.). The GBT350 survey of the northern Galactic plane for radio pulsars and transients. Pages 613615 of: Bassa, C., Wang, Z., Cumming, A., and Kaspi, V. M. (eds), 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More. American Institute of Physics Conference Series, vol. 983.Google Scholar
Hessels, J. W. T., Spitler, L. G., Seymour, A. D., and 23 others. 2019. FRB 121102 bursts show complex time-frequency structure. ApJ, 876(2), L23.Google Scholar
Hewish, A. 1980. Frequency-time structure of pulsar scintillation. MNRAS, 192, 799804.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. 1968. Observation of a rapidly pulsating radio source. Nature, 217, 709713.Google Scholar
Hibschman, J. A., and Arons, J. 2001. Polarization sweeps in rotation-powered pulsars. ApJ, 546, 382393.Google Scholar
Hill, A. S., Stinebring, D. R., Barnor, H. A., Berwick, D. E., and Webber, A. B. 2003. Pulsar scintillation arcs. I. Frequency dependence. ApJ, 599, 457464.Google Scholar
Hillebrandt, W., and Niemeyer, J. C. 2000. Type IA supernova explosion models. Ann. Rev. Astr. Ap., 38, 191230.Google Scholar
Hiltner, W. A. 1949. Polarization of stellar radiation III. The polarisation of 841 stars. ApJ, 114, 241271.Google Scholar
Ho, P.-Y. 1962. Ancient and mediaeval observations of comets and novae in Chinese sources. Vistas Astron., 5, 127225.Google Scholar
Ho, W. C. G., Ng, C. Y., Lyne, A. G., Stappers, B. W., Coe, M. J., Halpern, J. P., Johnson, T. J., and Steele, I. A. 2017. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron. MNRAS, 464(1), 12111219.Google Scholar
Hobbs, G., Lyne, A. G., and Kramer, M. 2003. Jodrell Bank timing astrometry. Pages 215218 of: Bailes, M., Nice, D. J., and Thorsett, S. E. (eds), Radio Pulsars. San Francisco: Astronomical Society of the Pacific.Google Scholar
Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E., and Jordan, C. 2004. Long-term timing observations of 374 pulsars. MNRAS, 353, 13111344.CrossRefGoogle Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G., and Kramer, M. 2005. A statistical study of 233 pulsar proper motions. MNRAS, 360, 974992.Google Scholar
Hobbs, G., Lyne, A. G., and Kramer, M. 2010. An analysis of the timing irregularities for 366 pulsars. MNRAS, 402, 10271048.Google Scholar
Hobbs, G., Archibald, A., Arzoumanian, Z., and 55 others. 2010. The International Pulsar Timing Array project: Using pulsars as a gravitational wave detector. Classical and Quantum Gravity, 27, 084013.Google Scholar
Hobbs, G., Guo, L., Caballero, R. N., and 57 others. 2020. A pulsar-based time-scale from the International Pulsar Timing Array. MNRAS, 491(4), 59515965.Google Scholar
Hoyle, F., Narlikar, J., and Wheeler, J. A. 1964. Electromagnetic waves from very dense stars. Nature, 203, 914916.Google Scholar
Hui, C. Y., and Becker, W. 2008. Resolving the bow-shock nebula around the old pulsar PSR B1929+10 with multi-epoch Chandra observations. A&A, 486, 485491.Google Scholar
Hulse, R. A., and Taylor, J. H. 1974. A high sensitivity pulsar survey. ApJ, 191, L59L61.Google Scholar
Hurley, K. 2000. The 4.5 +/- 0.5 soft gamma repeaters in review. Page 515 of: McConnell, M. L., and Ryan, J. M. (eds), The Fifth Compton Symposium; AIP Conference Proceedings No. 510. New York: AIP Press.Google Scholar
Hurley, K., Cline, T., Mazets, E., and 11 others. 1999. A giant periodic flare from the soft gamma-ray repeater SGR1900+14. Nature, 397, 4143.Google Scholar
Hurley-Walker, N., Gaensler, B. M., Leahy, D. A., and 18 others. 2019a. Candidate radio supernova remnants observed by the GLEAM survey. PASA, 36(Nov.), e048.Google Scholar
Hurley-Walker, N., Filipović, M. D., Gaensler, B. M., and 18 others. 2019b. New candidate radio supernova remnants detected in the GLEAM survey. PASA, 36(Jan.), e045.Google Scholar
Ibrahim, A. I., Safi-Harb, S., Swank, J. H., Parke, W., Zane, S., and Turolla, R. 2002. Discovery of cyclotron resonance features in the soft gamma repeater SGR 1806-20. ApJ, 574, L51L55.Google Scholar
Ibrahim, A. I., Swank, J. H., and Parke, W. 2003. New evidence of proton-cyclotron resonance in a magnetar strength field from SGR 1806-20. ApJ, 584, L17L21.Google Scholar
Ibrahim, A. I., Markwardt, C. B., Swank, J. H., and 10 others. 2004. Discovery of a transient magnetar: XTE J1810-197. ApJ, 609, L21L24.Google Scholar
Ilie, C. D., Weltevrede, P., Johnston, S., and Chen, T. 2020. The drifting sub-pulses of PSR B0031-07 and its synchronously modulated radio polarization. MNRAS, 491(3), 33853394.Google Scholar
Ilovaisky, S. A., and Lequeux, J. 1972. A study of galactic supernova remnants I. Distances, radio luminosity function and galactic distribution. A&A, 18, 169185.Google Scholar
Israel, G., Covino, S., Mignani, R., and 9 others. 2005. Discovery and monitoring of the likely IR counterpart of SGR 1806-20 during the 2004 gamma-ray burst-active state. A&A, 438, L1L4.Google Scholar
Jackson, M. S., Halpern, J. P., Gotthelf, E. V., and Mattox, J. R. 2002. A high-energy study of the Geminga Pulsar. ApJ, 578(2), 935942.Google Scholar
Jacoby, B. A., Bailes, M., van Kerkwijk, M. H., Ord, S., Hotan, A., Kulkarni, S. R., and Anderson, S. B. 2003. PSR J1909-3744: A binary millisecond pulsar with a very small duty cycle. ApJ, 599(2), L99L102.Google Scholar
Jacoby, B. A., Cameron, P. B., Jenet, F. A., Anderson, S. B., Murty, R. N., and Kulkarni, S. R. 2006. Measurement of orbital decay in the double neutron star binary PSR B2127+11C. ApJ, 644, L113L116.Google Scholar
Jacoby, B. A., Bailes, M., Ord, S. M., Edwards, R. T., and Kulkarni, S. R. 2009. A large-area survey for radio pulsars at high Galactic latitudes. ApJ, 699(2), 20092016.Google Scholar
Jaffe, T. R., Leahy, J. P., Banday, A. J., Leach, S. M., Lowe, S. R., and Wilkinson, A. 2010. Modelling the Galactic magnetic field on the plane in two dimensions. MNRAS, 401, 10131028.Google Scholar
Jahan-Miri, M. 2010. Rotational coupling of the pinned core superfluid. ApJ, 725, 2935.Google Scholar
Janka, Hans-Thomas. 2012. Explosion mechanisms of core-collapse supernovae. Annual Review of Nuclear and Particle Science, 62(1), 407451.Google Scholar
Janssen, G. H., and van Leeuwen, J. 2004. Intermittent nulls in PSR B0818-13, and the subpulse-drift alias mode. A&A, 425(Oct.), 255261.Google Scholar
Janssen, G. H., Stappers, B. W., Kramer, M., Purver, M., Jessner, A., and Cognard, I. 2008a. European Pulsar Timing Array. 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More. AIP Conference Proceedings, Volume 983, 633635.Google Scholar
Janssen, G. H., Stappers, B. W., Kramer, M., Nice, D. J., Jessner, A., Cognard, I., and Purver, M. B. 2008b. Multi-telescope timing of PSR J1518+4904. A&A, 490, 753761.Google Scholar
Jansson, R., and Farrar, G. R. 2012. The Galactic magnetic field. ApJ, 761(1), L11.Google Scholar
Jauncey, D., Bignall, H., Kedziora-Chudczer, L., Koay, J., Lovell, J., Macquart, J.-P., Ojha, R., Pursimo, T., Reynolds, C., and Rickett, B. 2016. Interstellar scintillation and scattering of micro-arc-second AGN. Galaxies, 4(4), 4.Google Scholar
Jensen, H. J. 1998. Self-organised Critical Systems. Cambridge University Press.Google Scholar
Jennings, R. J., Kaplan, D. L., Chatterjee, S., Cordes, J. M., and Deller, A. T. 2018. Binary pulsar distances and velocities from Gaia Data Release 2. ApJ, 864(1), 2634.Google Scholar
Jha, S. W., Maguire, K., and Sullivan, M. 2019. Observational properties of thermonuclear supernovae. Nat. Astron., 3(Aug.), 706716.Google Scholar
Johnston, H. M., and Kulkarni, S. R. 1991. On the detectability of pulsars in close binary systems. ApJ, 368, 504514.Google Scholar
Johnston, S., and Karastergiou, A. 2019. The period-width relationship for radio pulsars revisited. MNRAS, 485(1), 640647.Google Scholar
Johnston, S., Lyne, A. G., Manchester, R. N., Kniffen, D. A., D’Amico, N., Lim, J., and Ashworth, M. 1992. A high frequency survey of the southern Galactic plane for pulsars. MNRAS, 255, 401411.Google Scholar
Johnston, S., Koribalski, B. S., Weisberg, J., and Wilson, W. 1996. HI line measurements of pulsars towards the Gum Nebula and Carina Arm. MNRAS, 279, 661668.Google Scholar
Johnston, S., Koribalski, B., Weisberg, J. M., and Wilson, W. 2001. HI line measurements of pulsars towards the Galactic Center and the electron density in the inner Galaxy. MNRAS, 322, 715722.Google Scholar
Johnston, S., Kramer, M., Lorimer, D. R., Lyne, A. G., McLaughlin, M., Klein, B., and Manchester, R. N. 2006. Discovery of two pulsars towards the Galactic centre. MNRAS, Oct., L96+.Google Scholar
Johnston, S., Smith, D. A., Karastergiou, A., and Kramer, M. 2020. The Galactic population and properties of young, highly energetic pulsars. MNRAS, 497(2), 19571965.Google Scholar
Jones, D. I., and Anderson, N. 2001. Freely precessing neutron stars: Model and observations. MNRAS, 324, 811824.Google Scholar
Jones, P. B. 2002. Post-glitch relaxation in pulsars. MNRAS, 335, 733740.Google Scholar
Joss, P. C., and Rappaport, S. A. 1984. Neutron stars in interacting binary systems. Ann. Rev. Astr. Ap., 22, 537592.Google Scholar
Kalapotharakos, C., Brambilla, G., Timokhin, A., Harding, A., and Kazanas, D. 2018. Three-dimensional kinetic pulsar magnetosphere models: Connecting to gamma-ray observations. ApJ, 857(1), 1.Google Scholar
Kaplan, D. L., Escoffier, R. P., Lacasse, R. J., O’Neil, K., Ford, J. M., Ransom, S. M., Anderson, S. B., Cordes, J. M., Lazio, T. J. W., and Kulkarni, S. R. 2005. The Green Bank Telescope pulsar spigot. PASP, 117(June), 643653.Google Scholar
Kaplan, G. H. 2005. The IAU resolutions on astronomical reference systems, time scales, and earth rotation models: Explanation and implementation. U.S. Naval Observatory Circular, 179.Google Scholar
Karuppusamy, R., Stappers, B. W., and van Straten, W. 2010. Giant pulses from the Crab Pulsar. A wide-band study. A&A, 515(June), A36.Google Scholar
Kaspi, V. M. 1995. Millisecond pulsar timing: Recent advances. Pages 345356 of: Fruchter, A. S., Tavani, M., and Backer, D. C. (eds), Millisecond Pulsars–A Decade of Surprise, vol. 72. Astronomical Society of the Pacific.Google Scholar
Kaspi, V. M., and Beloborodov, A. M. 2017. Magnetars. Ann. Rev. Astr. Ap., 55(1), 261301.Google Scholar
Kaspi, V. M., and Helfand, D. J. 2002. Constraining the birth events of neutron stars. ASP Conf. Ser., 271, 3.Google Scholar
Kaspi, V. M., Lackey, J. R., Mattox, J., Manchester, R. N., Bailes, M., and Pace, R. 2000. High-energy gamma-ray observations of two young, energetic radio pulsars. ApJ, 528, 445453.Google Scholar
Katgert, P., and Oort, J. H. 1967. On the frequency of supernova outbursts in galaxies. Bull. Astr. Inst. Netherlands, 19, 239245.Google Scholar
Keane, E. F., and Kramer, M. 2008. On the birthrates of Galactic neutron stars. MNRAS, 391, 20092016.Google Scholar
Keane, E. F., Ludovici, D. A., Eatough, R. P., Kramer, M., Lyne, A. G., McLaughlin, M. A., and Stappers, B. W. 2010. Further searches for rotating radio transients in the Parkes Multi-beam pulsar survey. MNRAS, 401, 10571068.Google Scholar
Keith, M. J., Kramer, M., Lyne, A. G., Eatough, R. P., Stairs, I. H., Possenti, A., Camilo, F., and Manchester, R. N. 2009. PSR J1753-2240: A mildly recycled pulsar in an eccentric binary system. MNRAS, 393(2), 623627.Google Scholar
Keith, M. J., Jameson, A., van Straten, W., and 14 others. 2010. The High Time Resolution Universe pulsar survey – I. System configuration and initial discoveries. MNRAS, 409, 619627.Google Scholar
Keith, M. J., Coles, W., Shannon, R. M., and 16 others. 2013. Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing. MNRAS, 429(3), 21612174.Google Scholar
Kemp, J. C. 1970. Circular polarization of thermal radiation in a magnetic field. ApJ, 162(Oct.), 169.Google Scholar
Kerr, F. J. 1969. The large scale distribution of hydrogen in the Galaxy. Ann. Rev. Astr. Ap., 7, 3966.Google Scholar
Kerr, M., Hobbs, G., Johnston, S., and Shannon, R. M. 2016. Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession. MNRAS, 455(2), 18451854.Google Scholar
Kiel, P. D., and Hurley, J. R. 2009. Populating the Galaxy with pulsars – II. Galactic dynamics. MNRAS, 395, 23262346.CrossRefGoogle Scholar
Kijak, J., and Gil, J. 1997. Radio emission altitudes in pulsar magnetospheres. MNRAS, 288, 631637.Google Scholar
Klose, S., Henden, A. A., Geppert, U., Greiner, J., Guetter, H. H., Hartmann, D. H., Kouveliotou, C., Luginbuhl, C. B., Stecklum, B., and Vrba, F. J. 2004. A near-infrared survey of the N49 region around the soft gamma repeater SGR 0526-66. ApJ, 609, L13L16.Google Scholar
Koester, D. 2002. White dwarfs: Recent developments. Astron. Astrophys. Rev., 11(1), 3366.Google Scholar
Kolonko, M., Gil, J., and Maciesiak, K. 2004. On the pulse-width statistics in radio pulsars. A&A, 428(Dec.), 943951.Google Scholar
Komesaroff, M. M. 1970. Possible mechanism for the pulsar radio emission. Nature, 225, 612614.Google Scholar
Komesaroff, M. M., Morris, D., and Cooke, D. J. 1970. Linear polarization and pulse shape measurements of nine pulsars. Astrophys. Lett., 5, 3741.Google Scholar
Komissarov, S., and Lyubarsky, Y. 2004. MHD simulations of Crab’s jet and torus. Ap&SS, 293, 107113.Google Scholar
Konacki, M., and Wolszczan, A. 2003. Masses and orbital inclinations of planets in the PSR B1257+12 system. ApJ, 591, L147L150.Google Scholar
Kondratiev, V. I., Verbiest, J. P. W., Hessels, J. W. T., and 29 others. 2016. A LOFAR census of millisecond pulsars. A&A, 585(Jan.), A128.Google Scholar
Kopeikin, S. M. 1995. On possible implications of orbital parallaxes of wide orbit binary pulsars and their measurability. ApJ, 439, L5L8.Google Scholar
Koribalski, B. S., Johnston, S., Weisberg, J., and Wilson, W. 1995. HI line measurements of eight southern pulsars. ApJ, 441, 756.Google Scholar
Kostyuk, S. V., Kondratiev, V. I., Kuzmin, A. D., Popov, M. V., and Soglasnov, V. A. 2003. Peculiarities of giant pulses from the Crab Pulsar at frequencies of 594 and 2228 MHz. Astronomy Letters, 29(June), 387393.Google Scholar
Kosugi, G., Ogasawara, R., and Terada, H. 2005. A variable infrared counterpart to the soft gamma-ray repeater SGR 1806-20. ApJ, 623, L125L128.Google Scholar
Kouveliotou, C., Dieters, S., Strohmayer, T., van Paradijs, J., Fishman, G. J., Meegan, C. A., Hurley, K., Kommers, J., Smith, I., Frail, D., and Murakami, T. 1998. An X-ray pulsar with a superstrong magnetic field in the soft γ -ray repeater SGR 1806-20. Nature, 393, 235237.Google Scholar
Kouveliotou, C., Strohmayer, T., Hurley, K., Van Paradijs, J., Finger, M. H., Dieters, S., Woods, P., Thompson, C., and Duncan, R. C. 1999. Discovery of a magnetar associated with the soft gamma repeater SGR 1900+14. ApJ, 510, L115L118.Google Scholar
Kramer, M. 1998. Determination of the geometry of the PSR B1913+16 system by geodetic precession. ApJ, 509, 856860.Google Scholar
Kramer, M., and Stairs, I. H. 2008. The double pulsar. Ann. Rev. Astr. Ap., 46, 541572.Google Scholar
Kramer, M., Lange, C., Lorimer, D. R., Backer, D. C., Xilouris, K. M., Jessner, A., and Wielebinski, R. 1999. The characteristics of millisecond pulsar emission: III. From low to high frequencies. ApJ, 526, 957975.Google Scholar
Kramer, M., Johnston, S., and van Straten, W. 2002. High-resolution single-pulse studies of the Vela Pulsar. MNRAS, 334, 523532.Google Scholar
Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A., and Lorimer, D. R. 2006a. A periodically active pulsar giving insight into magnetospheric physics. Science, 312, 549551.Google Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., and 12 others. 2006b. Tests of general relativity from timing the Double Pulsar. Science, 314, 97102.Google Scholar
Krishnakumar, M. A., Maan, Yogesh, Joshi, B. C., and Manoharan, P. K. 2019. Multifrequency scatter-broadening evolution of pulsars. II. Scatter-broadening of nearby pulsars. ApJ, 878(2), 2.Google Scholar
Krishnamohan, S., and Downs, G. S. 1983. Intensity dependence of the pulse profile and polarization of the Vela pulsar. ApJ, 265, 372.Google Scholar
Kronberg, P. P., and Newton-McGee, K. J. 2009. Remarkable symmetries in the Milky Way disk’s magnetic field. arXiv:0909.4753.Google Scholar
Kuiper, L., and Hermsen, W. 2009. High-energy characteristics of the schizophrenic pulsar PSR J1846-0258 in Kes 75. Multi-year RXTE and INTEGRAL observations crossing the magnetar-like outburst. A&A, 501(3), 10311046.Google Scholar
Kulkarni, S. R. 1986. Optical identification of binary pulsars: Implications for magnetic field decay in neutron stars. ApJ, 306, L85L89.Google Scholar
Kumar, H. S., and Safi-Harb, S. 2008. Variability of the high magnetic field X-ray pulsar PSR J1846-0258 associated with the supernova remnant Kes 75 as revealed by the Chandra X-ray observatory. ApJ, 678, L43L46.Google Scholar
Kuzmin, A. 2001. Scattering of the low frequency pulsar radiation. Astrophys. Space Sci., 278, 5356.Google Scholar
Kuzmin, A. D., Hamilton, P. A., Shitov, Y. P., McCulloch, P. M., McConnell, D., and Pugatchev, V. D. 2003. High temporal resolution observations of the pulsar microstructure at 102 MHz. MNRAS, 344, 11871192.Google Scholar
Lai, D. 2001. Matter in strong magnetic fields. Rev. Modern Phys., 73(July), 629.Google Scholar
Lam, M. T., Cordes, J. M., Chattergee, S., and 22 others. 2017. The NANOGrav nine-year data set: Excess noise in millisecond pulsar arrival times. ApJ, 834(1), 1.Google Scholar
Lampland, C. O. 1921. Observed changes in the structure of the Crab Nebula (NGC 1952). PASP, 33, 7984.Google Scholar
Lang, K. R. 1971. Interstellar scintillation of pulsar radiation. ApJ, 164, 249264.Google Scholar
Lange, C., Camilo, F., Wex, N., Kramer, M., Backer, D. C., Lyne, A. G., and Doroshenko, O. 2001. Precision timing measurements of PSR J1012+5307. MNRAS, 326, 274282.Google Scholar
Large, M. I., and Vaughan, A. E. 1971. A search of the Galactic plane for high dispersion pulsars. MNRAS, 151, 277287.Google Scholar
Large, M. I., Vaughan, A. E., and Wielebinski, R. 1968a. Pulsar searches at the Molonglo radio observatory. Nature, 220, 753756.Google Scholar
Large, M. I., Vaughan, A. E., and Mills, B. Y. 1968b. A pulsar supernova association. Nature, 220, 340341.Google Scholar
Laros, J. G., Fenimore, E. E., Klebesadel, R. W., and 14 others. 1987. A new type of repetitive behavior in a high-energy transient. ApJ, 320, L111L115.Google Scholar
Lattimer, J. M., and Prakash, M. 2001. Neutron star structure and the equation of state. ApJ, 550, 426442.Google Scholar
Lattimer, J. M. 2012. The nuclear equation of state and neutron star masses. ARNPS, 62(1), 485515.Google Scholar
Lazaridis, K., Wex, N., Jessner, A., and 10 others. 2009. Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant. MNRAS, 400, 805814.Google Scholar
Lazio, T. J. W., and Cordes, J. M. 1998. Hyperstrong radio-wave scattering in the Galactic center. II. A likelihood analysis of free electrons in the Galactic Center. ApJ, 505, 715731.Google Scholar
Lazio, T. J. W., Bhaskaran, S., Cutler, C., Folkner, W. M., Park, R. S., Ellis, J. A., Ely, T., Taylor, S. R., and Vallisneri, M. 2018 (Aug.). Solar system ephemerides, pulsar timing, gravitational waves, & navigation. Pages 150153 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Lee, L. C. 1976. Strong scintillations in astrophysics. ApJ, 206, 744752.Google Scholar
Lee, L. C., and Jokipii, J. R. 1976. The irregularity spectrum in interstellar space. ApJ, 206, 735743.Google Scholar
Lentati, L., Shannon, R. M., Coles, W. A., and 80 others. 2016. From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release. MNRAS, 458(2), 21612187.Google Scholar
Lesch, H., Jessner, A., Kramer, M., and Kunzl, T. 1998. On the possibility of curvature radiation from radio pulsars. A&A, 332, L21L24.Google Scholar
Levin, L., Bailes, M., Bates, S., and 12 others. 2010. A radio-loud magnetar in X-ray quiescence. ApJ, 721, L33L37.Google Scholar
Lewandowski, W., Rozko, K., Kijak, J., Bhattacharyya, B., and Roy, J. 2015. The study of multi-frequency scattering of 10 radio pulsars. MNRAS, 454(3), 25172528.Google Scholar
Lewin, W. H. G., and Joss, P. C. 1981. X-ray bursters and the X-ray sources of the galactic bulge. Space Sci. Rev., 28, 387.Google Scholar
Lewin, W. H. G., and van Paradijs, J. 1986. Quasi-periodic oscillations, the ‘latest’ in X-ray astronomy. Comm. Astrophys., 11, 127134.Google Scholar
Lewin, W. H. G., Doty, J., Clark, G. W., and 11 others. 1976. The discovery of a rapidly repetitive X-ray burst from a new source in Scorpius. ApJ, 207, L95L99.Google Scholar
Li, J., Torres, D. F., Lin, T. T., Grondin, M.-H., Kerr, M., Lemoine-Goumard, M., and de Ona Wilhelmi, E. 2018. Observing and modeling the gamma-ray emission from pulsar/pulsar wind nebula complex PSR J0205+6449/3C 58. ApJ, 858(2), 2.Google Scholar
Li, X. H., and Han, J. L. 2003. The effect of scattering on pulsar polarization angle. A&A, 410, 253256.Google Scholar
Linares, M.. 2019. Super-massive neutron stars and compact binary millisecond pulsars. arXiv e-prints, Oct., arXiv:1910.09572.Google Scholar
Link, B. 2006. Incompatibility of long-period neutron star precession with creeping neutron vortices. A&A, 458, 881884.Google Scholar
Link, B., and Epstein, R. I. 2001. Precession interpretation of the isolated pulsar PSR 182811. ApJ, 556, 392398.CrossRefGoogle Scholar
Link, B., Epstein, R. I., and Baym, G. 1992. Postglitch behaviour of the Crab Pulsar: Evidence for external torque variations. ApJ, 390, L21L22.Google Scholar
Liu, K., Young, A., Wharton, R., and 20 others. 2019. Detection of pulses from the Vela pulsar at millimeter wavelengths with Phased ALMA. ApJ, 885(1), L10.Google Scholar
Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. 2005. High-mass X-ray binaries in the Magellanic Clouds. A&A, 442, 11351138.Google Scholar
Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. 2006. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition). A&A, 455, 11651168.Google Scholar
Liu, Q. Z., van Paradijs, J., and van den Heuvel, E. P. J. 2007. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). A&A, 469, 807810.Google Scholar
Livingstone, M. A., Kaspi, V. M., Gavriil, F. P., Manchester, R. N., Gotthelf, E. V. G., and Kuiper, L. 2007. New phase-coherent measurements of pulsar braking indices. Astrophys. Space Sci., 308(Apr.), 317323.Google Scholar
Livingstone, M. A., Kaspi, V. M., and Gavriil, F. P. 2010. Timing behavior of the magnetically active rotation-powered pulsar in the supernova remnant Kesteven 75. ApJ, 710(2), 17101717.Google Scholar
Lockhart, W., Gralla, S. E., Özel, F., and Psaltis, D. 2019. X-ray light curves from realistic polar cap models: Inclined pulsar magnetospheres and multipole fields. MNRAS, 490(2), 17741783.Google Scholar
Löhmer, O., Kramer, M., Driebe, T., Jessner, A., Mitra, D., and Lyne, A. G. 2004a. The parallax, mass and age of the PSR J2145-0750 binary system. A&A, 426, 631640.Google Scholar
Löhmer, O., Mitra, D., Gupta, Y., Kramer, M., and Ahuja, A. 2004b. The frequency evolution of interstellar pulse broadening from radio pulsars. A&A, 425, 569575.Google Scholar
Löhmer, O., Jessner, A., Kramer, M., Wielebinski, R., and Maron, O. 2008. Observations of pulsars at 9 millimetres. A&A, 480, 623628.Google Scholar
Lorimer, D. R. 2008. Binary and millisecond pulsars. Living Rev. Rel., 11.Google Scholar
Lorimer, D. R. 2010. The Galactic pulsar population. Highlights of Astronomy, 15(Nov.), 807807.Google Scholar
Lorimer, D. R. 2013. The galactic millisecond pulsar population. Pages 237242 of: van Leeuwen, Joeri (ed), Neutron Stars and Pulsars: Challenges and Opportunities after 80 Years, vol. 291.Google Scholar
Lorimer, D. R., Bailes, M., Dewey, R. J., and Harrison, P. A. 1993. Pulsar statistics: The birthrate and initial spin periods of radio pulsars. MNRAS, 263, 403415.Google Scholar
Lorimer, D. R., Festin, L., Lyne, A. G., and Nicastro, L. 1995. Birth rate of millisecond pulsars. Nature, 376, 393.Google Scholar
Lorimer, D. R., Bailes, M., and Harrison, P. A. 1997. Pulsar statistics IV: Pulsar velocities. MNRAS, 289, 592604.Google Scholar
Lorimer, D. R., Lyne, A. G., and Camilo, F. 1998. A search for pulsars in supernova remnants. A&A, 331, 10021010.Google Scholar
Lorimer, D. R., McLaughlin, M. A., Arzoumanian, Z., Xilouris, K. M., Cordes, J. M., Lommen, A. N., Fruchter, A. S., Chandler, A. M., and Backer, D. C. 2004. PSR J0609+2130: A disrupted binary pulsar? MNRAS, 347, L21L25.Google Scholar
Lorimer, D. R., Stairs, I. H., Freire, P. C., and 33 others. 2006a. Arecibo pulsar survey using ALFA. II. The young, highly relativistic binary pulsar J1906+0746. ApJ, 640, 428434.Google Scholar
Lorimer, D. R., Faulkner, A. J., Lyne, A. G, and 11 others. 2006b. The Parkes Multibeam pulsar survey – VI. Discovery and timing of 142 pulsars and a Galactic population analysis. MNRAS, 372, 777800.Google Scholar
Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J., and Crawford, F. 2007. A bright millisecond radio burst of extragalactic origin. Science, 318, 777.Google Scholar
Lu, F. J., Wang, Q. D., Aschenbach, B., Durouchoux, P., and Song, L. M. 2002. Chandra observation of supernova remnant G54.1+0.3: A close cousin of the Crab Nebula. ApJ, 568, L49L52.Google Scholar
Luken, K. J., Filipovic, M. D., and 18 others. 2020. Radio observations of supernova remnant G1.9+0.3. MNRAS, 492(2), 26062621.Google Scholar
Lundgren, S. C., Cordes, J. M., Ulmer, M., Matz, S. M., Lomatch, S., Foster, R. S., and Hankins, T. 1995. Giant pulses from the Crab Pulsar: A joint radio and gamma-ray study. ApJ, 453(Nov.), 433.Google Scholar
Lundmark, K. 1921. Suspected new stars recorded in old chronicles and among recent meridian observations. PASP, 33, 225238.Google Scholar
Lynch, R. S. 2018 (Aug.). The Green Bank North Celestial Cap pulsar survey: Status and future. Pages 1316 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Lynch, R. S., Ransom, S. M., Freire, P. C. C., and Stairs, I. H. 2011. Six new recycled globular cluster pulsars discovered with the Green Bank Telescope. arXiv:1101.1467.Google Scholar
Lynch, R. S., Swiggum, J. K., Kondratiev, V. I., and 37 others. 2018. The Green Bank North Celestial Cap pulsar survey. III. 45 new pulsar timing solutions. ApJ, 859(2), 2.Google Scholar
Lynden-Bell, D. 1969. Galactic nuclei as collapsed old quasars. Nature, 223(5207), 690694.Google Scholar
Lyne, A. G. 1971. The comparative properties of the pulsars. Pages 182194 of: Davies, R. D., and Smith, F. G. (eds), IAU Symp. 46. Reidel.Google Scholar
Lyne, A. G. 1984. Orbital inclination and mass of the binary pulsar PSR 0655+64. Nature, 310, 300302.Google Scholar
Lyne, A. G. 1987. A massive glitch in an old pulsar. Nature, 326, 569571.Google Scholar
Lyne, A. G., and Ashworth, M. 1983. The effect of nulls upon subpulse drift in PSRs 0809+74 and 0818-13. MNRAS, 204, 519536.Google Scholar
Lyne, A. G., and Lorimer, D. R. 1994. High birth velocities of radio pulsars. Nature, 369, 127129.Google Scholar
Lyne, A. G., and Manchester, R. N. 1988. The shape of pulsar radio beams. MNRAS, 234, 477508.Google Scholar
Lyne, A. G., and Rickett, B. J. 1968. Measurements of the pulse shape and spectra of the pulsating radio sources. Nature, 218, 326330.Google Scholar
Lyne, A. G., and Smith, F. G. 1968. Linear polarization in pulsating radio sources. Nature, 218, 124126.Google Scholar
Lyne, A. G., and Smith, F. G. 1982. Interstellar scintillation and pulsar velocities. Nature, 298, 825827.Google Scholar
Lyne, A. G., and Thorne, D. J. 1975. Anomalous scattering in the Crab Nebula. MNRAS, 172, 97108.Google Scholar
Lyne, A. G., Smith, F. G., and Graham, D. A. 1971. Characteristics of the radio pulses from the pulsars. MNRAS, 153, 337382.Google Scholar
Lyne, A. G., Anderson, B., and Salter, M. J. 1982. The proper motions of 26 pulsars. MNRAS, 201, 503520.Google Scholar
Lyne, A. G., Manchester, R. N., and Taylor, J. H. 1985. The Galactic population of pulsars. MNRAS, 213, 613639.Google Scholar
Lyne, A. G., Brinklow, A., Middleditch, J., Kulkarni, S. R., Backer, D. C., and Clifton, T. R. 1987. The discovery of a millisecond pulsar in the globular cluster M28. Nature, 328, 399401.Google Scholar
Lyne, A. G., Pritchard, R. S., and Smith, F G. 1988a. Crab Pulsar timing 1982-1987. MNRAS, 233, 667676.Google Scholar
Lyne, A. G., Biggs, J. D., Brinklow, A., Ashworth, M., and McKenna, J. 1988b. Discovery of a binary millisecond pulsar in the globular cluster M4. Nature, 332, 4547.Google Scholar
Lyne, A. G., Manchester, R. N., D’Amico, N., Staveley-Smith, L., Johnston, S., Lim, J., Fruchter, A. S., Goss, W. M., and Frail, D. 1990. An eclipsing millisecond pulsar in the globular cluster Terzan 5. Nature, 347, 650652.Google Scholar
Lyne, A. G., Pritchard, R. S., and Smith, F. G. 1993. 23 years of Crab Pulsar rotational history. MNRAS, 265, 10031012.Google Scholar
Lyne, A. G., Pritchard, R. S., Graham-Smith, F., and Camilo, F. 1996. Very low braking index for the Vela Pulsar. Nature, 381, 497498.Google Scholar
Lyne, A. G., Manchester, R. N., Lorimer, D. R., Bailes, M., D’Amico, N., Tauris, T. M., Johnston, S., Bell, J. F., and Nicastro, L. 1998. The Parkes Southern pulsar survey – II. Final results and population analysis. MNRAS, 295, 743755.Google Scholar
Lyne, A. G., Camilo, F., Manchester, R. N., and 8 others. 2000. The Parkes Multibeam pulsar survey: PSR J1811-1736 – A pulsar in a highly eccentric binary system. MNRAS, 312, 698702.Google Scholar
Lyne, A. G., Pritchard, R. S., and Graham-Smith, F. 2001. Pulsar reflections in the Crab Nebula. MNRAS, 321, 6770.Google Scholar
Lyne, A. G., Burgay, M., Kramer, M., and 9 others. 2004. A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics. Science, 303, 11531157.Google Scholar
Lyne, A. G., Hobbs, G., Kramer, M., Stairs, I., and Stappers, B. 2010. Switched magnetospheric regulation of pulsar spin-down. Science, 329, 408.Google Scholar
Lyne, A. G., Jordan, C. A., Graham-Smith, F., Espinoza, C. M., Stappers, B. W., and Weltevrede, P. 2015. 45 years of rotation of the Crab Pulsar. MNRAS, 446(Jan.), 857864.Google Scholar
Lyne, A. G., Stappers, B. W., Freire, P. C. C., and 31 others. 2017. Two long-term intermittent pulsars discovered in the PALFA survey. ApJ, 834(1), 1.Google Scholar
Lyne, A., Levin, L., Stappers, B., Mickaliger, M., Desvignes, G., and Kramer, M. 2018. Intense radio flare from the magnetar XTE J1810-197. The Astronomer’s Telegram, 12284(Dec.), 1.Google Scholar
Ma, C., Arias, E. F., Bianco, G., and 30 others. 2009. The second realization of the international celestial reference frame by very long baseline interferometry. IERS Technical Note, 35(Jan.), 1.Google Scholar
Maciesiak, K., Gil, J., and Ribeiro, V. A. R. M. 2011. On the pulse-width statistics in radio pulsars – I. Importance of the interpulse emission. MNRAS, 414(2), 13141328.Google Scholar
Macquart, J. P., Prochaska, J. X., McQuinn, M., and 13 others. 2020. A census of baryons in the Universe from localized fast radio bursts. Nature, 581(7809), 391395.Google Scholar
Malov, I. F., and Timirkeeva, M. A. 2019. On X-ray emission of radio pulsars. MNRAS, 485(4), 53195328.Google Scholar
Manchester, R. N., and Lyne, A. G. 1977. Pulsar interpulses – Two poles or one? MNRAS, 181, 761767.Google Scholar
Manchester, R. N., and Peterson, B. A. 1996. A search for optical pulsations in SN 1987A. ApJ, 456, L107L109.Google Scholar
Manchester, R. N., and Taylor, J. H. 1981. Observed and derived parameters for 330 pulsars. AJ, 86, 19531973.Google Scholar
Manchester, R. N., Taylor, J. H., and Van, Y.-Y. 1974. Detection of pulsar proper motion. ApJ, 189, L119L122.Google Scholar
Manchester, R. N., Taylor, J. H., and Huguenin, G. R. 1975. Observations of pulsar radio emission II. Polarisation of individual radio pulses. ApJ, 196, 83102.Google Scholar
Manchester, R. N., Lyne, A. G., Taylor, J. H., Durdin, J. M., Large, M. I., and Little, A. G. 1978. The second Molonglo pulsar survey – Discovery of 155 pulsars. MNRAS, 185, 409421.Google Scholar
Manchester, R. N., Lyne, A. G., Robinson, C., D’Amico, N., Bailes, M., and Lim, J. 1991. Discovery of ten millisecond pulsars in the globular cluster 47 Tucanae. Nature, 352, 219221.Google Scholar
Manchester, R. N., Lyne, A. G., D’Amico, N., Bailes, M., Johnston, S., Lorimer, D. R., Harrison, P. A., Nicastro, L., and Bell, J. F. 1996. The Parkes southern pulsar survey I. Observing and data analysis systems and initial results. MNRAS, 279, 12351250.Google Scholar
Manchester, R. N., Lyne, A. G., Camilo, F., and 9 others. 2001. The Parkes multi-beam pulsar survey – I. Observing and data analysis systems, discovery and timing of 100 pulsars. MNRAS, 328, 1735.Google Scholar
Manchester, R. N., Bell, J. F., Camilo, F., and 9 others. 2002. Young pulsars from the Parkes multibeam pulsar survey and their associations. ASP Conf. Ser., 271, 31.Google Scholar
Manchester, R. N., Fan, G., Lyne, A. G., Kaspi, V. M., and Crawford, F. 2006. Discovery of 14 radio pulsars in a survey of the Magellanic Clouds. ApJ, 649, 235242.Google Scholar
Mao, S. A., Gaensler, B. M., Haverkorn, M., Zweibel, E. G., Madsen, G. J., McClure-Griffiths, N. M., Shukurov, A., and Kronberg, P. P. 2010. A survey of extragalactic Faraday rotation at high Galactic latitude: The vertical magnetic field of the Milky Way toward the Galactic poles. ApJ, 714, 11701186.Google Scholar
Maoz, D., Mannucci, F., Li, W., Filippenko, A. V., Della Valle, M., and Panagia, N. 2011. Nearby supernova rates from the Lick observatory supernova search – IV. A recovery method for the delay-time distribution. MNRAS, 412(3), 15081521.Google Scholar
Markwardt, C. B., Swank, J. H., Strohmayer, T. E., Zand, J. J., and Marshall, F. E. 2002. Discovery ofa second millisecond accreting pulsar: XTE J1751-305. ApJ, 575, L21L24.Google Scholar
Marsh, T. R., Gänsicke, B. T., Hümmerich, S., and 23 others. 2016. A radio-pulsing white dwarf binary star. Nature, 537(7620), 374377.Google Scholar
Martinez, J. G., Stovall, K., Freire, P. C. C., Deneva, J. S., Jenet, F. A., McLaughlin, M. A., Bagchi, M., Bates, S. D., and Ridolfi, A. 2015. Pulsar J0453+1559: A double neutron star system with a large mass asymmetry. ApJ, 812(2), 2.Google Scholar
Martinez, J. G., Gentile, P., Freire, P. C. C., Stovall, K., Deneva, J. S., Desvignes, G., Jenet, F. A., McLaughlin, M. A., Bagchi, M., and Devine, T. 2019. The discovery of six recycled pulsars from the Arecibo 327 MHz drift-scan pulsar survey. ApJ, 881(2), 2.Google Scholar
Matheson, H., and Safi-Harb, S. 2010. The Plerionic supernova remnant G21.5-0.9 powered by PSR J1833-1034: New spectroscopic and imaging results revealed with the Chandra X-ray observatory. ApJ, 724, 572587.Google Scholar
Matsakis, D. N., Taylor, J. H., Eubanks, T. M., and Marshall, T. 1997. A statistic for describing pulsar and clock stabilities. A&A, 326, 924928.Google Scholar
Mayer-Hasselwander, H. A., Bennett, K., Bignami, G. F., and 13 others. 1982. Large-scale distribution of galactic gamma radiation observed by COS-B. A&A, 105(1), 164175.Google Scholar
Maza, J., and van den Bergh, S. 1976. Statistics of extragalactic supernovae. ApJ, 204, 519529.Google Scholar
Mazets, E. P., Golenetskii, S. V., and Gur’yan, Yu. A. 1979. Soft gamma-ray bursts from the source B1900+14. Sov. Astron. Lett., 5, 343344.Google Scholar
Mazets, E. P., Golenskii, S. V., Aptekar, R. L., Guryan, Y. A., and Ilyinskii, V. N. 1981. Cyclotron and annihilation lines in gamma-ray bursts. Nature, 290, 378382.Google Scholar
McCarthy, D. D., and Petit, G (eds). 2004. IERS Conventions 2003, IERS Technical Note 32. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.Google Scholar
McConnell, D., McCulloch, P. M., Hamilton, P. A., Ables, J. G., Hall, P. J., Jacka, C. E., and Hunt, A. J. 1991. Radio pulsars in the Magellanic Clouds. MNRAS, 249, 654657.Google Scholar
McCulloch, P. M., Hamilton, P. A., Royle, G. W. R., and Manchester, R. N. 1983. Daily observations of a large period jump of the Vela Pulsar. Nature, 302, 319321.Google Scholar
McKee, J. W., Janssen, G. H., Stappers, B. W., and 17 others. 2016. A glitch in the millisecond pulsar J0613-0200. MNRAS, 461(3), 28092817.Google Scholar
McKee, J. W., Lyne, A. G., Stappers, B. W., Bassa, C. G., and Jordan, C. A. 2018. Temporal variations in scattering and dispersion measure in the Crab Pulsar and their effect on timing precision. MNRAS, 479(3), 42164224.Google Scholar
McKee, J. W., Stappers, B. W., Bassa, C. G., and 13 others. 2019. A detailed study of giant pulses from PSR B1937+21 using the Large European Array for pulsars. MNRAS, 483(4), 47844802.Google Scholar
McKinnon, M. M. 1997. Birefringence as a mechanism for the broadening and depolarization of pulse average profiles. ApJ, 475, 763769.Google Scholar
McKinnon, M. M., and Stinebring, D. R. 2000. The mode-separated pulse profiles of pulsar radio emission. ApJ, 529, 435446.Google Scholar
McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., and 11 others. 2006. Transient radio bursts from rotating neutron stars. Nature, 439, 817820.Google Scholar
Medin, Z., and Lai, D. 2007. Condensed surfaces of magnetic neutron stars, thermal surface emission, and particle acceleration above pulsar polar caps. MNRAS, 382(4), 18331852.Google Scholar
Melatos, A., and Drummond, L. V. 2019. Pulsar glitch activity as a statedependent poisson process: Parameter estimation and epoch prediction. ApJ, 885(1), 3752.Google Scholar
Melatos, A., and Warszawski, L. 2009. Superfluid vortex unpinning as a coherent noise process, and the scale invariance of pulsar glitches. ApJ, 700, 15241540.Google Scholar
Melrose, D. B. 1979. Propagation effects on the polarization of pulsar radio emission. Aust. J. Phys., 32, 6170.Google Scholar
Melrose, D. B, and Gedalin, M. E. 1999. Relativistic plasma emission and pulsar radio emission: A critique. ApJ, 521, 351361.Google Scholar
Melrose, D. B., and Stoneham, R. J. 1977. The natural wave modes in a pulsar magnetosphere. PASA, 3, 120.Google Scholar
Melzer, D. W., and Thorne, K. S. 1966. Normal modes of radial pulsation of stars at the end-point of thermo nuclear evolution. ApJ, 145, 514543.Google Scholar
Mestel, L. 2003. Stellar Magnetism. Oxford University Press.Google Scholar
Michilli, D., Hessels, J. W. T., Donner, J. Y., and 17 others. 2018. Low-frequency pulse profile variation in PSR B2217+47: Evidence for echoes from the interstellar medium. MNRAS, 476(2), 27042716.Google Scholar
Mickaliger, M. B., McLaughlin, M. A., Lorimer, D. R., Langston, G. I., Bilous, A. V., Kondratiev, V. I., Lyutikov, M., Ransom, S. M., and Palliyaguru, N. 2012. A giant sample of giant pulses from the Crab Pulsar. ApJ, 760(1), 1.Google Scholar
Middleditch, J., and Pennypacker, C. 1985. Optical pulsation in the Large Magellanic Cloud remnant 0540-69.3. Nature, 313, 659661.Google Scholar
Middleditch, J., Marshall, F. E., Wang, Q. D., Gotthelf, E. V., and Zhang, W. 2006. Predicting the starquakes in PSR J0537-6910. ApJ, 652(Dec.), 15311546.Google Scholar
Mignani, R. P., Paladino, R., Rudak, B., and 8 others. 2017. The first detection of a pulsar with ALMA. ApJ, 851(1), L10.Google Scholar
Mignani, R. P., Shearer, A., de Luca, A., and 9 others. 2019. The first ultraviolet detection of the Large Magellanic Cloud pulsar PSR B0540-69 and its multi-wavelength properties. ApJ, 871(2), 2.Google Scholar
Miller, M. C., and Lamb, F. K. 1998. Bounds on the compactness of neutron stars from brightness oscillations during X-ray bursts. ApJ, 499(1), L37L40.Google Scholar
Miller, M. C., and Lamb, F. K. 2016. Observational constraints on neutron star masses and radii. Eur. Phys. J. A, 52, 63.Google Scholar
Minkowski, R. 1964. Supernovae and supernova remnants. Ann. Rev. Astr. Ap., 2, 247266.Google Scholar
Mirabel, I. F., and Rodrigues, I. 2003. The origin of Scorpius X-1. A&A, 398, L25L28.Google Scholar
Mitra, D., Wielebinski, R., Kramer, M., and Jessner, A. 2003. The effect of HII regions on rotation measure of pulsars. A&A, 398, 9931005.Google Scholar
Mitra, D., Arjunwadkar, M., and Rankin, J. M. 2015. Polarized quasiperiodic structures in pulsar radio emission reflect temporal modulations of non-stationary plasma flow. ApJ, 806(2), 2.Google Scholar
Moehler, S., and Bono, G. 2008. White dwarfs in globular clusters. arXiv:0806.4456.Google Scholar
Morii, M., Sato, R., Kataoka, J., and Kawai, N. 2003. Chandra observation of the anomalous X-Ray pulsar 1E 1841-045. PASJ, 55, L45L48.Google Scholar
Morsink, S. M., Stergioulas, N., and Blattnig, S. R. 1999. Quasi-normal modes of rotating relativistic stars: Neutral modes for realistic equations of state. ApJ, 510, 854861.Google Scholar
Mukherjee, S., and Kembhavi, A. 1997. Magnetic field decay in single radio pulsars: A statistical study. ApJ, 489, 928.Google Scholar
Murakami, T., Fujii, M., Hayashida, K., and 10 others. 1988. Evidence for a cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga. Nature, 335, 234235.Google Scholar
Murray, S. S., Slane, P. O., Seward, F. D., Ransom, S. M., and Gaensler, B. M. 2002. Discovery of X-ray pulsations from the compact central source in the supernova remnant 3C 58. ApJ, 568, 226231.Google Scholar
Muslimov, A., and Page, D. 1996. Magnetic and spin history of very young pulsars. ApJ, 458, 347354.Google Scholar
Mutel, R. L., Broderick, J. J., Carr, T. D., Lynch, M., Desch, M., Warnock, W. W., and Klemperer, W. K. 1974. VLB observations of the Crab Nebula and the wavelength dependence of interstellar scattering. ApJ, 193, 279282.Google Scholar
Narayan, R. 1987. The birthrate and initial spin period of single radio pulsars. ApJ, 319, 162179.Google Scholar
Narayan, R., and Vivekanand, M. 1983. Evidence for evolving elongated pulsar beams. A&A, 122, 4553.Google Scholar
Navasardyan, H., Petrosian, A. R., Turatto, M., Cappellaro, E., and Boulesteix, J. 2001. Supernovae in isolated galaxies, in pairs and in groups of galaxies. MNRAS, 328, 11811192.Google Scholar
Nice, D. J., Fruchter, A. S., and Taylor, J. H. 1995. A search for fast pulsars along the Galactic plane. ApJ, 449, 156163.Google Scholar
Nice, D. J., Sayer, R. W., and Taylor, J. H. 1996. PSR J1518+4904: A mildly relativistic binary pulsar system. ApJ, 466, L87L90.Google Scholar
Noutsos, A., Sobey, C., Kondratiev, V. I., and 52 others. 2015. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. A&A, 576(Apr.), A62.Google Scholar
Olausen, S. A., and Kaspi, V. M. 2014. The McGill magnetar catalog. ApJS, 212(1), 1.Google Scholar
Olausen, S. A., Kaspi, V. M., Lyne, A. G., and Kramer, M. 2010. XMM-Newton X-ray observation of the high-magnetic-field radio pulsar PSR J1734-3333. ApJ, 725, 985989.Google Scholar
Oort, J., and Walraven, Th. 1956. Polarization and composition of the Crab Nebula. Bull. Astr. Inst. Netherlands, 12, 285308.Google Scholar
Oppenheimer, J. R., and Volkoff, G. 1939. On massive neutron cores. Phys. Rev., 55, 374381.Google Scholar
Ord, S. M., van Straten, W., Hotan, A. W., and Bailes, M. 2004. Polarimetric profiles of 27 millisecond pulsars. MNRAS, 352, 804814.Google Scholar
Ostriker, J. P. 1968. Possible model for a rapidly pulsating radio source. Nature, 217, 12271228.Google Scholar
Oswald, L., Karastergiou, A., and Johnston, S. 2020. Pulsar polarimetry with the Parkes ultra-wideband receiver. MNRAS, 496(2), 14181429.Google Scholar
Oswald, L. S., Karastergiou, A., Posselt, B., and 13 others. 2021. The Thousand-Pulsar- Array programme on MeerKAT – V. Scattering analysis of single-component pulsars. arXiv e-prints, Apr., arXiv:2104.01081.Google Scholar
Özel, F., and Freire, P. 2016. Masses, radii, and the equation of state of neutron stars. Ann. Rev. Astr. Ap., 54(Sept.), 401440.Google Scholar
Pacini, F. 1967. Energy emission from a neutron star. Nature, 216, 567568.Google Scholar
Pacini, F. 1968. Rotating neutron stars, pulsars, and supernova remnants. Nature, 219, 145146.Google Scholar
Pacini, F., and Salpeter, E. E. 1968. Some models for pulsed radio sources. Nature, 218, 733734.Google Scholar
Papitto, A., Hessels, J. W. T., Burgay, M., Ransom, S., Rea, N., Possenti, A., Stairs, I., Ferrigno, C., and Bozz, E. 2013. The transient low-mass X-ray binary IGR J18245- 2452 is again active as a radio pulsar. The Astronomer’s Telegram, 5069(May), 1.Google Scholar
Parent, E., Kaspi, V. M., Ransom, S. M., and 18 others. 2019. Eight millisecond pulsars discovered in the Arecibo PALFA survey. ApJ, 886(2), 2.Google Scholar
Paschalidis, V., and Stergioulas, N. 2017. Rotating stars in relativity. Living Rev. Rel., 20(1), 1.Google Scholar
Pechenick, K. R., Ftaclas, C., and Cohen, J. M. 1983. Hot spots on neutron stars – The near-field gravitational lens. ApJ, 274(Nov.), 846857.Google Scholar
Pen, Ue-Li, and Levin, Yuri. 2014. Pulsar scintillations from corrugated reconnection sheets in the interstellar medium. MNRAS, 442(4), 33383346.Google Scholar
Perera, B. B. P., McLaughlin, M. A., Kramer, M., and 9 others. 2010. The evolution of PSR J0737-3039B and a model for relativistic spin precession. ApJ, 721, 11931205.Google Scholar
Perera, B. B. P., Stappers, B. W., Lyne, A. G., Bassa, C. G., Cognard, I., Guillemot, L., Kramer, M., Theureau, G., and Desvignes, G. 2017. Evidence for an intermediatemass black hole in the globular cluster NGC 6624. MNRAS, 468(2), 21142127.Google Scholar
Perera, B. B. P., Barr, E. D., Mickaliger, M. B., and 11 others. 2019a. The dynamics of Galactic centre pulsars: Constraining pulsar distances and intrinsic spin-down. MNRAS, 487(1), 10251039.Google Scholar
Perera, B. B. P., DeCesar, M. E., Demorest, P. B., and 72 others. 2019b. The International Pulsar Timing Array: Second data release. MNRAS, 490(4), 46664687.Google Scholar
Peters, P. C. 1964. Gravitational radiation and the motion of two point masses. Phys. Rev., 136, 12241232.Google Scholar
Pethick, C. J., and Ravenhall, D. G. 1991. An introduction to matter at subnuclear densities. Pages 320 of: Ventura, J., and Pines, D. (eds), Neutron Stars: Theory and Observation. Dordrecht: Kluwer.Google Scholar
Pethick, C. J., and Ravenhall, D. G. 1995. The physics of neutron star crusts. Pages 5970 of: Alpar, A., Kiziloğlu, Ü, and van Paradis, J. (eds), The Lives of the Neutron Stars (NATO ASI Series). Dordrecht: Kluwer.Google Scholar
Petroff, E., Hessels, J. W. T., and Lorimer, D. R. 2019. Fast radio bursts. Astron. Astrophys. Rev., 27(1), 1.Google Scholar
Philippov, A., Timokhin, A., and Spitkovsky, A. 2020. Origin of pulsar radio emission. Phys. Rev. Lett., 124(24), 24.Google Scholar
Phillips, J. A. 1992. Radio emission altitudes in the pulsar magnetosphere. ApJ, 385, 282.Google Scholar
Phinney, E. S. 1992. Pulsars as probes of newtonian dynamical systems. Philos. Trans. Roy. Soc. London A, 341, 3975.Google Scholar
Phinney, E. S., and Blandford, R. D. 1981. Analysis of the pulsar PP distribution. MNRAS, 194, 137148.Google Scholar
Pilia, M., Hessels, J. W. T., Stappers, B. W., and 84 others. 2016. Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR. A&A, 586(Feb.), A92.Google Scholar
Pilkington, J. D. H., Hewish, A., Bell, S. J., and Cole, T. W. 1968. Observations of some further pulsed radio sources. Nature, 218, 126129.Google Scholar
Pitkin, M., Reid, S., Rowan, S., and Hough, J. 2011. Gravitational wave detection by interferometry (ground and space). arXiv:1102.3355.Google Scholar
Pivovaroff, M. J., Kaspi, V. M., Camilo, F., Gaensler, B. M., and Crawford, F. 2001. X-ray observations of the new pulsar-supernova remnant system PSR J1119-6127 and SNR G292.2-0.5. ApJ, 554, 161172.Google Scholar
Platts, E., Weltman, A., Walters, A., Tendulkar, S. P., Gordin, J. E. B., and Kandhai, S. 2019. A living theory catalogue for fast radio bursts. Phys. Rep., 821(Aug.), 127.Google Scholar
Pletsch, H. J., Guillemot, L., Fehrmann, H., and 150 others. 2012. Binary millisecond pulsar discovery via gamma-ray pulsations. Science, 338(6112), 6112.Google Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A., and Pfahl, E. 2004. The effects of binary evolution on the dynamics of core collapse and neutron star kicks. ApJ, 612, 10441051.Google Scholar
Polzin, E. J., Breton, R. P., Clarke, A. O., and 10 others. 2018. The low-frequency radio eclipses of the black widow pulsar J1810+1744. MNRAS, 476(2), 19681981.Google Scholar
Pons, J. A., Walter, F. M., Lattimer, J. M., Prakash, M., Neuhäuser, R., and An, P. 2002. Towards a mass and radius determination of the nearby isolated neutron star RX J185635-3754. ApJ, 564, 9811006.Google Scholar
Popov, M. V., Bartel, N., Gwinn, C. R., and 13 others. 2017. PSR B0329+54: Substructure in the scatter-broadened image discovered with RadioAstron on baselines up to 330 000 km. MNRAS, 465(1), 978985.Google Scholar
Popov, M. V., Andrianov, A. S., Burgin, M. S., Zuga, V. A., Rudnitskii, A. G., Smirnova, T. V., Soglasnov, V. A., and Fadeev, E. N. 2019. Anisotropic scattering of the radio emission of the pulsar B0833-45 in the Vela supernova remnant. Astron. Rep, 63(5), 391403.Google Scholar
Popov, S. B., Pons, J. A., Miralles, J. A., Boldin, P. A., and Posselt, B. 2010. Population synthesis studies of isolated neutron stars with magnetic field decay. MNRAS, 401(4), 26752686.Google Scholar
Possenti, A., Cerutti, R., Colpi, M., and Mereghetti, S. 2002. Re-examining the X-ray versus spin-down luminosity correlation of rotation powered pulsars. A&A, 387, 9931002.Google Scholar
Prager, B. J., Ransom, S. M., Freire, P. C. C., Hessels, J. W. T., Stairs, I. H., Arras, P., and Cadelano, M. 2017. Using long-term millisecond pulsar timing to obtain physical characteristics of the bulge globular cluster Terzan 5. ApJ, 845(2), 2.Google Scholar
Prentice, A. J. R., and ter Haar, D. 1969. On H II regions and pulsar distances. MNRAS, 146, 423444.Google Scholar
Prince, T. A., Anderson, S. B., Kulkarni, S. R., and Wolszczan, A. 1991. Timing observations of the 8 hour binary pulsar 2127 + 11C in the globular cluster M15. ApJ, 374, L41L44.Google Scholar
Psaltis, D., Özel, F., and Chakrabarty, D. 2014. Prospects for measuring neutron-star masses and radii with X-ray pulse profile modeling. ApJ, 787(2), 2.Google Scholar
Putney, A. 1999. Magnetic white dwarf stars – A review. Page 195 of: Solheim, S. E., and Meistas, E. G. (eds), 11th European Workshop on White Dwarfs. Astronomical Society of the Pacific Conference Series, vol. 169.Google Scholar
Radhakrishnan, V., and Cooke, D. J. 1969. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett., 3, 225229.Google Scholar
Radhakrishnan, V., and Manchester, R. N. 1969. Detection of a change of state in the pulsar PSR 0833-45. Nature, 222, 228229.Google Scholar
Rajwade, K. M., Lorimer, D. R., and Anderson, L. D. 2017. Detecting pulsars in the Galactic Centre. MNRAS, 471(1), 730739.Google Scholar
Rajwade, K., Chennamangalam, J., Lorimer, D., and Karastergiou, A. 2018. The Galactic halo pulsar population. MNRAS, 479(3), 30943100.Google Scholar
Ramachandran, R., Mitra, D., Deshpande, A. A., McConnell, D. M., and Ables, J. G. 1997. Measurement of scatter broadening for 27 pulsars at 327 MHz. MNRAS, 290, 260264.Google Scholar
Rand, R. J., and Kulkarni, S. R. 1989. The local Galactic magnetic field. ApJ, 343, 760772.Google Scholar
Rankin, J. M. 1990. Toward an empirical theory of pulsar emission. IV. Geometry of the core emission region. ApJ, 352, 247257.Google Scholar
Rankin, J. M. 1993. Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. ApJ, 405, 285297.Google Scholar
Ransom, S. M. 2007. Parsec-scale constraints on the ionized interstellar medium with the Terzan 5 pulsars. Page 265 of: Haverkorn, M., and Goss, W. M. (eds), SINS – Small Ionized and Neutral Structures in the Diffuse Interstellar Medium. Astronomical Society of the Pacific Conference Series, vol. 365.Google Scholar
Ransom, S. M., Eikenberry, S. S., and Middleditch, J. 2002. Fourier techniques for very long astrophysical time-series analysis. AJ, 124, 17881809.Google Scholar
Ransom, S. M., Hessels, J. W. T., Stairs, I. H., Freire, P. C. C., Camilo, F., Kaspi, V. M., and Kaplan, D. L. 2005. Twenty-one millisecond pulsars in Terzan 5 using the Green Bank Telescope. Science, 307(Feb.), 892896.Google Scholar
Ravi, V., Manchester, R. N., and Hobbs, G. 2010. Wide radio beams from gamma-ray pulsars. ApJ, 716, L85L89.Google Scholar
Ray, P. S., Thorsett, S. E., Jenet, F. A., van Kerkwijk, M. H., Kulkarni, S. R., Prince, T. A., Sandhu, J. S., and Nice, D. J. 1996. A survey for millisecond pulsars. ApJ, 470, 11031110.Google Scholar
Ray, P. S., Abdo, A. A., Parent, D., and 29 others. 2012. Radio searches of Fermi LAT sources and blind search pulsars: The Fermi Pulsar Search Consortium. arXiv e-prints, May, arXiv:1205.3089.Google Scholar
Raymond, J. C. 1984. Observations of supernova remnants. Ann. Rev. Astr. Ap., 22, 7595.Google Scholar
Rea, N., and Esposito, P. 2011. Magnetar outbursts: An observational review. Astrophys. Space Sci. Proc., 21(Jan.), 247.Google Scholar
Readhead, A. C. S., and Duffett-Smith, P. J. 1975. The scale-height of interstellar ionised hydrogen. A&A, 42, 151153.Google Scholar
Reardon, D. J., Hobbs, G., Coles, W., and 18 others. 2016. Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array. MNRAS, 455(2), 17511769.Google Scholar
Reardon, D. J., Coles, W. A., Hobbs, G., Ord, S., Kerr, M., Bailes, M., Bhat, N. D. R., and Venkatraman Krishnan, V. 2019. Modelling annual and orbital variations in the scintillation of the relativistic binary PSR J1141-6545. MNRAS, 485(3), 43894403.Google Scholar
Reardon, D. J., Coles, W. A., Bailes, M., and 17 others. 2020. Precision orbital dynamics from interstellar scintillation arcs for PSR J0437-4715. arXiv e-prints, Sept., arXiv:2009.12757.Google Scholar
Redman, S. L., Wright, G. A. E., and Rankin, J. M. 2005. Pulsar PSR B2303+30: A single system of drifting subpulses, moding and nulling. MNRAS, 357(3), 859872.Google Scholar
Reichley, P. E., and Downs, G. S. 1969. Observed decrease in the periods of pulsar PSR0833-45. Nature, 222, 229230.Google Scholar
Renaud, M., Marandon, V., Gotthelf, E. V., Rodriguez, J., Terrier, R., Mattana, F., Lebrun, F., Tomsick, J. A., and Manchester, R. N. 2010. Discovery of a highly energetic pulsar associated with IGR J14003-6326 in the young uncataloged Galactic supernova remnant G310.6-1.6. ApJ, 716, 663670.Google Scholar
Reynolds, S. P., Borkowski, K. J., Green, D. A., Hwang, U., Harrus, I., and Petre, R. 2008. The youngest Galactic supernova remnant: G1.9+0.3. ApJ, 680, L41L44.Google Scholar
Richards, D. W., and Comella, J. M. 1969. The period of pulsar NP 0532. Nature, 222, 551552.Google Scholar
Rickett, B. J. 1969. Frequency structure of pulsar intensity fluctuations. Nature, 221, 158159.Google Scholar
Rickett, B. J. 1990. Radio propagation through the turbulent interstellar plasma. Ann. Rev. Astr. Ap., 28, 561605.Google Scholar
Rickett, B. J. 2007 (July). What do scintillations tell us about the ionized ISM? Page 207 of: Haverkorn, M., and Goss, W. M. (eds), SINS – Small Ionized and Neutral Structures in the Diffuse Interstellar Medium. Astronomical Society of the Pacific Conference Series, vol. 365.Google Scholar
Rickett, B. J., Hankins, T. H., and Cordes, J. M. 1975. The radio spectrum of micropulses from pulsar PSR 0950+08. ApJ, 201, 425430.Google Scholar
Rickett, B. J., Coles, W. A., and Bourgois, G. 1984. Slow scintillation in the interstellar medium. A&A, 134, 390395.Google Scholar
Rickett, B. J., Lyne, A. G., and Gupta, Y. 1997. Interstellar fringes from PSR B0834+06. MNRAS, 287, 739752.Google Scholar
Ridley, J. P., Crawford, F., Lorimer, D. R., Bailey, S. R., Madden, J. H., Anella, R., and Chennamangalam, J. 2013. Eight new radio pulsars in the Large Magellanic Cloud. MNRAS, 433(1), 138146.Google Scholar
Rigoselli, M., Mereghetti, S., Suleimanov, V., Potekhin, A. Y., Turolla, R., Taverna, R., and Pintore, F. 2019. XMM-Newton observations of PSR J0726-2612, a radio-loud XDINS. A&A, 627(July), A69.Google Scholar
Roberts, J. A., and Ables, J. G. 1982. Dynamic spectra of pulsar scintillations at frequencies near 0.34, 0.41, 0.63, 1.4, 1.7, 3.2 and 5.0 GHz. MNRAS, 201, 11191138.Google Scholar
Roberts, M. S. E. 2011. New black widows and redbacks in the galactic field. Pages 127130 of: Burgay, M., D’Amico, N., Esposito, P., Pellizzoni, A., and Possenti, A. (eds), Radio Pulsars: An Astrophysical Key to Unlock the Secrets of the Universe. American Institute of Physics Conference Series, vol. 1357.Google Scholar
Romani, R. W. 1996. Gamma-ray pulsars: Radiation processes in the outer magnetosphere. ApJ, 470, 469478.Google Scholar
Romani, R. W., and Yadigaroglu, I.-A. 1995. Gamma-ray pulsars: Emission zones and viewing geometries. ApJ, 438, 314321.Google Scholar
Rookyard, S. C., Weltevrede, P., and Johnston, S. 2015. Constraints on viewing geometries from radio observations of γ -ray-loud pulsars using a novel method. MNRAS, 446(4), 33673388.Google Scholar
Ruderman, M. 1974. Matter in superstrong magnetic fields. Pages 117131 of: Hansen, C. J. (ed), IAU Symposium 53. Reidel.Google Scholar
Ruderman, M. 1991. Neutron star crustal plate tectonics. I. Magnetic Dipole evolution in millisecond pulsars and low-mass X-Ray binaries. ApJ, 366, 261269.Google Scholar
Ruderman, M., Zhu, T., and Chen, K. 1998. Neutron star magnetic field evolution, crust movement, and glitches. ApJ, 492, 267280.Google Scholar
Ruderman, M. A., and Sutherland, P. G. 1975. Theory of pulsars: Polar gaps, sparks, and coherent microwave radiation. ApJ, 196, 5172.Google Scholar
Ryba, M. F., and Taylor, J. H. 1991. High-precision timing of millisecond pulsars. II – Astrometry, orbital evolution, and eclipses of PSR 1957+20. ApJ, 380, 557563.Google Scholar
Safi-Harb, S., Harrus, I. M., Petre, R., Pavlov, G. G., Koptsevich, A. B., and Sanwal, D. 2001. X-ray observations of the supernova remnant G21.5-0.9. ApJ, 561, 308320.Google Scholar
Sanchez, N., and Romani, R. W. 2017. B-ducted heating of black widow companions. ApJ, 845(1), 1.Google Scholar
Sanidas, S., Cooper, S., Bassa, C. G., and 20 others. 2019. The LOFAR Tied-Array All-Sky Survey (LOTAAS): Survey overview and initial pulsar discoveries. A&A, 626(June), A104.Google Scholar
Saz Parkinson, P. M., Dormody, M., Ziegler, M., and 34 others. 2010. Eight γ -ray pulsars discovered in blind frequency searches of Fermi LAT data. ApJ, 725(1), 571584.Google Scholar
Scargle, J., and Harlan, E. 1970. Activity in the Crab Nebula following the pulsar spin-up of 1969 September. ApJ, 159, L143L146.Google Scholar
Scheuer, P. A. G. 1968. Amplitude variations of pulsed radio sources. Nature, 218, 920922.Google Scholar
Schönhardt, R. E., and Sieber, W. 1973. Pulsars: Properties of PSR 0301+19 and PSR2020+28. Astrophys. Lett., 14, 6164.Google Scholar
Segelstein, D. J., Rawley, L. A., Stinebring, D. R., Fruchter, A. S., and Taylor, J. H. 1986. New millisecond pulsar in a binary system. Nature, 322, 714717.Google Scholar
Seidelmann, P. K., and Fukushima, T. 1992. Why new time scales? A&A, 265, 833838.Google Scholar
Seward, F. D., and Charles, P. A. 1995. Exploring the X-Ray Universe.Google Scholar
Seward, F. D., and Harnden, F. R. Jr. 1982. A new, fast X-ray pulsar in the supernova remnant MSH 15-52. ApJ, 256, L45L47.Google Scholar
Shannon, R. M., and Cordes, J. M. 2010. Assessing the role of spin noise in the precision timing of millisecond pulsars. ApJ, 725(2), 16071619.Google Scholar
Shapiro, I. I. 1964. Fourth test of general relativity. Phys. Rev. Lett., 13, 789.Google Scholar
Shapiro, S. L., and Teukolsky, S. A. 1983. Black Holes, White Dwarfs and Neutron Stars. The Physics of Compact Objects. New York: Wiley-Interscience.Google Scholar
Shearer, A., Redfern, R. M., Gorman, G., and 8 others. 1997. Pulsed optical emission from PSR 0656+14. ApJ, 487, L181L185.Google Scholar
Shearer, A., Golden, A., Harfst, S., and 9 others. 1998. Possible pulsed optical emission from Geminga. A&A, 335(July), L21L24.Google Scholar
Shearer, A., Stappers, B., O’Connor, P., Golden, A., Strom, R., Redfern, M., and Ryan, O. 2003. Enhanced optical emission during Crab giant radio pulses. Science, 301, 493495.Google Scholar
Shemar, S. L., and Lyne, A. G. 1996. Observations of pulsar glitches. MNRAS, 282, 677690.Google Scholar
Shishov, V. I., Smirnova, T. V., Gwinn, C. R., Andrianov, A. S., Popov, M. V., Rudnitskiy, A. G., and Soglasnov, V. A. 2017. Interstellar scintillations of PSR B1919+21: Spaceground interferometry. MNRAS, 468(3), 37093717.Google Scholar
Shitov, Yu. P. 1983. Period dependence of the spectrum and the phenomenon of twisting of the magnetic fields of pulsars. Sov. Astron., 27, 314321.Google Scholar
Shklovsky, I. S. 1970. Possible causes of the secular increase in pulsar periods. Sov. Astron., 13, 562565.Google Scholar
Shklovsky, I. S. 1953. On the nature of the radiation from the Crab Nebula. Dokl. Akad. Nauk. USSR, 90, 983.Google Scholar
Shklovsky, I. S. 1967. On the nature of the source of X-ray emission of SCO XR-1. ApJ, 148, L1.Google Scholar
Sieber, W. 1973. Pulsar spectra – A summary. A&A, 28, 237252.Google Scholar
Sieber, W. 1982. Causal relationship between pulsar long-term intensity variations and the interstellar medium. A&A, 113, 311313.Google Scholar
Sieber, W., and Oster, L. 1975. Drifting subpulse behavior of PSRs 0943+10 and 2303+30. A&A, 38, 325327.Google Scholar
Siemens, X., Ellis, J., Jenet, F., and Romano, J. D. 2013. The stochastic background: Scaling laws and time to detection for pulsar timing arrays. Classical and Quantum Gravity, 30(22), 22.Google Scholar
Sigurdsson, S., and Thorsett, S. E. 2005. Update on pulsar B1620-26 in M4: Observations, models, and implications. ASP Conf. Ser., 328, 213.Google Scholar
Simard, D., Pen, U. L., Marthi, V. R., and Brisken, W. 2019. Disentangling interstellar plasma screens with pulsar VLBI: Combining auto- and cross-correlations. MNRAS, 488(4), 49634971.Google Scholar
Slee, O. B., Dulk, G. A., and Otrupek, R. E. 1980. Culgoora radio heliograph measurements of interstellar scattering of pulsar signals. PASA, 4, 100106.Google Scholar
Slowikowska, A., Kanbach, G., Kramer, M., and Stefanescu, A. 2009. Optical polarization of the Crab Pulsar: Precision measurements and comparison to the radio emission. MNRAS, 397, 103123.Google Scholar
Smart, W. M. 1977. Textbook on Spherical Astronomy. Cambridge University Press.Google Scholar
Smith, D. A., Guillemot, L., Kerr, M., Ng, C., and Barr, E. 2017. Gamma-ray pulsars with Fermi. arXiv e-prints, June, arXiv:1706.03592.Google Scholar
Smith, F. G. 1968. Measurement of the interstellar magnetic field. Nature, 218, 325326.Google Scholar
Smith, F. G. 1973. The pulse energy distribution in pulsars. MNRAS, 161, 9P.Google Scholar
Smith, F. G., and Wright, N. C. 1985. Frequency drift in pulsar scintillation. MNRAS, 214, 97107.Google Scholar
Sobey, C., Bilous, A. V., Grieβmeier, J. M., and 22 others. 2019. Low-frequency Faraday rotation measures towards pulsars using LOFAR: Probing the 3D Galactic halo magnetic field. MNRAS, 484(3), 36463664.Google Scholar
Spitkovsky, A. 2006. Time-dependent force-free pulsar magnetospheres: Axisymmetric and oblique rotators. ApJ, 648, L51L54.Google Scholar
Spitler, L. G., Cordes, J. M., Hessels, J. W. T., and 29 others. 2014. Fast radio burst discovered in the Arecibo pulsar ALFA survey. ApJ, 790(Aug.), 101.Google Scholar
Splaver, E. M., Nice, D. J., Stairs, I. H., Lommen, A. N., and Backer, D. C. 2005. Masses, parallax, and relativistic timing of the PSR J1713+0747 binary system. ApJ, 620, 405415.Google Scholar
Spoelstra, T. A. T. 1984. Linear polarization of the galactic radio emission at frequencies between 408 and 1411 MHz. II – Discussion. A&A, 135, 238248.Google Scholar
Spolon, A., Zampieri, L., Burtovoi, A., Naletto, G., Barbieri, C., Barbieri, M., Patruno, A., and Verroi, E. 2019. Timing analysis and pulse profile of the Vela Pulsar in the optical band from Iqueye observations. MNRAS, 482(1), 175183.Google Scholar
Staelin, D. H. 1969. Fast folding algorithm for detection of periodic pulse trains. Proc. I. E. E. E., 57, 724725.Google Scholar
Staelin, D. H., and Reifenstein, E. C. III 1968. Pulsating radio sources near the Crab Nebula. Science, 162, 14811483.Google Scholar
Stairs, I. H. 2002. Pulsar observations II. Coherent dedispersion polarimetry, and timing. ASP Conf. Proc., 278, 251269.Google Scholar
Stairs, I. H., Splaver, E. M., Thorsett, S. E., Nice, D. J., and Taylor, J. H. 2000a. A baseband recorder for radio pulsar observations. MNRAS, 314, 459467. (astro-ph/9912272).Google Scholar
Stairs, I. H., Lyne, A. G., and Shemar, S. 2000b. Evidence for free precession in a pulsar. Nature, 406, 484486.Google Scholar
Stairs, I. H., Thorsett, S. E., Taylor, J. H., and Wolszczan, A. 2002. Studies of the relativistic binary pulsar PSR B1534+12: I. Timing analysis. ApJ, 581, 501508.Google Scholar
Stairs, I. H., Thorsett, S. E., and Arzoumanian, Z. 2004. Measurement of gravitational spinorbit coupling in a binary-pulsar system. Phys. Rev. Lett., 93, 141101.Google Scholar
Standish, E. M. 1982. Orientation of the JPL ephemerides, DE200/LE200, to the dynamical equinox of J 2000. A&A, 114, 297302.Google Scholar
Standish, E. M. 2004. An approximation to the errors in the planetary ephemerides of the Astronomical Almanac. A&A, 417, 11651171.Google Scholar
Stappers, B. W., Bessell, M. S., and Bailes, M. 1996. Detection of an irradiated pulsar companion. ApJ, 473, L119L121.Google Scholar
Stappers, B. W., Jones, D. H., and Gaensler, B. M. 2002. The H-alpha bow-shock nebula around PSR B0740-28. ASP Conf. Ser., 271, 141.Google Scholar
Stappers, B. W., Archibald, A., Bassa, C., Hessels, J., Janssen, G., Kaspi, V., Lyne, A., Patruno, A., and Hill, A. B. 2013. State-change in the “transition” binary millisecond pulsar J1023+0038. The Astronomer’s Telegram, 5513(Oct.), 1.Google Scholar
Steiner, A. W., Gandolfi, S., Fattoyev, F. J., and Newton, W. G. 2015. Using neutron star observations to determine crust thicknesses, moments of inertia, and tidal deformabilities. Phys. Rev. C, 91(1), 1.Google Scholar
Stinebring, D. 2007 (July). Pulsar scintillation arcs and the ionized ISM. Page 254 of: Haverkorn, M., and Goss, W. M. (eds), SINS – Small Ionized and Neutral Structures in the Diffuse Interstellar Medium. Astronomical Society of the Pacific Conference Series, vol. 365.Google Scholar
Stinebring, D. R., Cordes, J. M., Rankin, J. M., Weisberg, J. M., and Boriakoff, V. 1984. Pulsar polarization fluctuations. I. 1408 MHz statistical summaries. ApJS, 55, 247277.Google Scholar
Stinebring, D. R., McLaughlin, M. A., Cordes, J. M., Becker, K. M., Goodman, J. E. E., Kramer, M. A., Sheckard, J. L., and Smith, C. T. 2001. Faint scattering around pulsars: Probing the interstellar medium on Solar System size scales. ApJ, 549, L97L100.Google Scholar
Stokes, G. H., Taylor, J. H., Weisberg, J. M., and Dewey, R. J. 1985. A survey for short period pulsars. Nature, 317, 787788.Google Scholar
Stollman, G. M. 1986. A possible discrimination between two luminosity laws for radio pulsars. A&A, 170, 4854.Google Scholar
Story, S. A., Gonthier, P. L., and Harding, A. K. 2007. Population synthesis of radio and γ -ray millisecond pulsars from the Galactic disk. ApJ, 671(1), 713726.Google Scholar
Stovall, K., Lynch, R. S., Ransom, S. M., and 29 others. 2014. The Green Bank Northern Celestial Cap pulsar survey. I. Survey description, data analysis, and initial results. ApJ, 791(1), 1.Google Scholar
Strader, J., Swihart, S., Chomiuk, L., and and 12 others. 2019. Optical spectroscopy and demographics of redback millisecond pulsar binaries. ApJ, 872(1), 4258.Google Scholar
Strömgren, B. 1939. The physical state of interstellar hydrogen. ApJ, 89, 526547.Google Scholar
Sutton, J. M., Staelin, D. H., and Price, R. M. 1971. Individual radio pulses from NP 0531. Pages 97102 of: Davies, R. D., and Smith, F. G. (eds), IAU Symp. No. 46. Reidel.Google Scholar
Swartz, D. A., Ghosh, K. K., McCollough, M. L., Pannuti, T. G., Tennant, A. F., and Wu, K. 2003. Chandra X-ray observations of the spiral galaxy M81. ApJS, 144, 213242.Google Scholar
Szary, A., van Leeuwen, J., Weltevrede, P., and Maan, Y. 2020. Single-pulse modeling and the bi-drifting subpulses of radio pulsar B1839-04. ApJ, 896(2), 2.Google Scholar
Tammann, G. A., Löffler, W., and Schröder, A. 1994. The galactic supernova rate. ApJS, 92, 487493.Google Scholar
Tan, C. M., and LOTAAS Group. 2018 (Aug.). The LOFAR Tied-Array All-Sky Survey for pulsars and fast transients. Pages 912 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Tan, C. M., Bassa, C. G., Cooper, S., and 16 others. 2018. LOFAR discovery of a 23.5 s radio pulsar. ApJ, 866(1), 1.Google Scholar
Tauris, T. M., and Konar, S. 2001. Torque decay in the pulsar (P) diagram. A&A, 376, 543552.Google Scholar
Tauris, T. M., and Manchester, R. N. 1998. On the evolution of pulsar beams. MNRAS, 298, 625636.Google Scholar
Tavani, M., Barbiellini, G., Argan, A., and 49 others. 2008. The AGILE space mission. Nuclear Instruments and Methods in Physics Research A, 588(1-2), 5262.Google Scholar
Taylor, J. H. 1974. A sensitive method for detecting dispersed radio emission. A&AS, 15, 367369.Google Scholar
Taylor, J. H. 1992. Pulsar timing and relativistic gravity. Philos. Trans. Roy. Soc. London A, 341, 117134.Google Scholar
Taylor, J. H., and Cordes, J. M. 1993. Pulsar distances and the Galactic distribution of free electrons. ApJ, 411, 674684.Google Scholar
Taylor, J. H., and Huguenin, G. R. 1971. Observations of rapid fluctuations of intensity and phase in pulsar emissions. ApJ, 167, 273291.Google Scholar
Taylor, J. H., and Weisberg, J. M. 1982. A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16. ApJ, 253, 908920.Google Scholar
Taylor, J. H., Huguenin, G. R., Hirsch, R. M., and Manchester, R. N. 1971. Polarisation of the drifting subpulses of pulsar 0809+74. Astrophys. Lett., 9, 205208.Google Scholar
Tendulkar, S. P., Cameron, P. B., and Kulkarni, S. R. 2012. Proper motions and origins of SGR 1806-20 and SGR 1900+14. ApJ, 761(1), 1.Google Scholar
Tendulkar, S. P., Bassa, C. G., Cordes, J. M., and 24 others. 2017. The host galaxy and redshift of the repeating fast radio burst FRB 121102. ApJ, 834(2), L7.Google Scholar
Thompson, C., and Duncan, R. C. 1995. The soft gamma repeaters as very strongly magnetized neutron stars – I. Radiative mechanism for outbursts. MNRAS, 275, 255300.Google Scholar
Thompson, C., and Duncan, R. C. 1996. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent neutrino, X-ray, and Alfven wave emission. ApJ, 473, 322342.Google Scholar
Thompson, C., Blandford, R. D., Evans, C. R., and Phinney, E. S. 1994. Physical processes in eclipsing pulsars: Eclipse mechanisms and diagnostics. ApJ, 422, 304335.Google Scholar
Thorne, K. S., and Zytkow, A. N. 1977. Stars with degenerate neutron cores. I. Structure of equilibrium models. ApJ, 212(Mar.), 832858.Google Scholar
Thornton, D., Stappers, B., Bailes, M., and 17 others. 2013. A population of fast radio bursts at cosmological distances. Science, 341(6141), 5356.Google Scholar
Thorsett, S. E. 1991. Frequency dependence of pulsar integrated profile. ApJ, 377, 263267.Google Scholar
Thorsett, S. E., and Dewey, R. J. 1996. Pulsar timing limits on very low frequency stochastic gravitational radiation. Phys. Rev. D, 53, 3468.Google Scholar
Tiburzi, C., and Verbiest, J. P. W. 2018 (Aug.). The effect of the solar wind on low-frequency observations of pulsars. Pages 279282 of: Weltevrede, P., Perera, B. B. P., Preston, L. L., and Sanidas, S. (eds), Pulsar Astrophysics the Next Fifty Years, vol. 337.Google Scholar
Timokhin, A. N. 2010. A model for nulling and mode changing in pulsars. MNRAS, 408, L41L45.Google Scholar
Tong, H., and Kou, F. F. 2017. Possible evolution of the pulsar braking index from larger than three to about one. ApJ, 837(2), 2.Google Scholar
Toscano, M., Britton, M. C., Manchester, R. N., Bailes, M., Sandhu, J. S., Kulkarni, S. R., and Anderson, S. B. 1999. Parallax of PSR J1744–1134 and the local interstellar medium. ApJ, 523, L171L175.Google Scholar
Trang, F. S., and Rickett, B. J. 2007. Modeling of interstellar scintillation arcs from pulsar B1133+16. ApJ, 661(2), 10641072.Google Scholar
Trümper, J., Pietsch, W., Reppin, C., Voges, W., Staubert, R., and Kendziorra, E. 1978. Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1. ApJ, 219, L105L110.Google Scholar
Unwin, S. C., Readhead, A. C. S., Wilkinson, P. N., and Ewing, M. S. 1978. Phase stability in the drifting subpulse pattern of PSR 0809+74. MNRAS, 182, 711721.Google Scholar
Uscinski, B. J. 1968. The multiple scattering of waves in irregular media. Philos. Trans. Roy. Soc. London A, 262, 609640.Google Scholar
Uscinski, B. J. 1974. The propagation and broadening of pulses in weakly irregular media. Philos. Trans. Roy. Soc. London A, 336, 379392.Google Scholar
Usov, V. V. 1987. On two-stream instability in pulsar magnetospheres. ApJ, 320, 333335.Google Scholar
Uyaniker, B., Reich, W., Yar, A., and Fürst, E. 2004. Radio emission from the Cygnus Loop and its spectral characteristics. A&A, 426(Nov.), 909924.Google Scholar
van den Bergh, S. 1988. Classification of supernovae and their remnants. ApJ, 327, 156163.Google Scholar
van den Bergh, S., and McClure, R. D. 1994. Rediscussion of extragalactic supernova rates derived from Evans’s 1980-1988 observations. ApJ, 425, 205209.Google Scholar
van den Heuvel, E. P. J. 1992. Formation and evolution of neutron star binaries. Pages 233256 of: van den Heuvel, E. P. J., and Rappaport, S. A. (eds), X-ray Binaries and Recycled Pulsars. Dordrecht: Kluwer.Google Scholar
van der Hulst, H. C. 1967. Observing the Galactic magnetic field. Ann. Rev. Astr. Ap., 5, 167182.Google Scholar
van der Klis, M. 2000. Millisecond oscillations in X-ray binaries. Ann. Rev. Astr. Ap., 38, 717760.Google Scholar
van Kerkwijk, M. H., and Kaplan, D. L. 2007. Isolated neutron stars: Magnetic fields, distances, and spectra. Astrophys. Space Sci., 308, 191201.Google Scholar
van Kerkwijk, M. H., Breton, R. P., and Kulkarni, S. R. 2011. Evidence for a massive neutron star from a radial-velocity study of the companion to the black-widow pulsar PSR B1957+20. ApJ, 728, 95102.Google Scholar
van Leeuwen, A. G. J., Stappers, B. W., Ramachandran, R., and Rankin, J. M. 2003. Probing drifting and nulling mechanisms through their interaction in PSR B0809+74. A&A, 399, 223229.Google Scholar
van Straten, W., Bailes, M., Britton, M., Kulkarni, S. R., Anderson, S. B., Manchester, R. N., and Sarkissian, J. 2001. A test of general relativity from the three-dimensional orbital geometry of a binary pulsar. Nature, 412, 158160.Google Scholar
Vandenberg, N. R., Clark, T. A., Erickson, W. C., Resch, G. M., Broderick, J. J., Payne, R. R., Knowles, S. H., and Youmans, A. B. 1973. VLBI observations of the Crab Nebula pulsar. ApJ, 180, L27L29.Google Scholar
Vashakidze, M. A. 1954. Polarization observations of nearby extragalactic nebulae and the Crab Nebula. Astr. Circ., 147, 1113.Google Scholar
Vaughan, A. E., and Large, M. I. 1969. Pulsar observations at Molonglo. PASA, 1, 220223.Google Scholar
Verbiest, J. P. W., Bailes, M., van Straten, W., Hobbs, G. B., Edwards, R. T., Manchester, R. N., Bhat, N. D. R., Sarkissian, J. M., Jacoby, B. A., and Kulkarni, S. R. 2008. Precision timing of PSR J0437-4715: An accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant. ApJ, 679, 675680.Google Scholar
Verbiest, J. P. W., Bailes, M., Coles, W. A., and 11 others. 2009. Timing stability of millisecond pulsars and prospects for gravitational-wave detection. MNRAS, 400, 951968.Google Scholar
Verbiest, J. P. W., Weisberg, J. M., Chael, A. A., Lee, K. J., and Lorimer, D. R. 2012. On pulsar distance measurements and their uncertainties. ApJ, 755(1), 1.Google Scholar
Verbunt, F., Igoshev, A., and Cator, E. 2017. The observed velocity distribution of young pulsars. A&A, 608(Dec.), A57.Google Scholar
Voges, W., Aschenbach, B., Boller, T., and 17 others. 1999. The ROSAT all-sky survey bright source catalogue. A&A, 349, 389405.Google Scholar
von Hoensbroech, A., and Xilouris, K. M. 1997. Effelsberg multifrequency pulsar polarimetry. A&AS, 126, 121149.Google Scholar
von Hoensbroech, A., Kijak, J., and Krawczyk, A. 1998. On the high frequency polarization of pulsar radio emission. A&A, 334, 571584.Google Scholar
Vranesevic, N., and Melrose, D. B. 2011. Pulsar current revisited. MNRAS, 410, 23632369.Google Scholar
Wakatsuki, S., Hikita, A., Sato, N., and Itoh, N. 1992. The nonexponential evolution of pulsar magnetic fields. ApJ, 392, 628636.Google Scholar
Walker, M. A., Koopmans, L. V. E., Stinebring, D. R., and van Straten, W. 2008. Interstellar holography. MNRAS, 388, 12141222.Google Scholar
Wallace, P. T., Peterson, B. A., Murdin, P. G., and 9 others. 1977. Detection of optical pulses from the Vela Pulsar. Nature, 266, 692694.Google Scholar
Wang, J. B., Coles, W. A., Hobbs, G., and 23 others. 2017. Comparison of pulsar positions from timing and very long baseline astrometry. MNRAS, 469(1), 425434.Google Scholar
Wang, N., Manchester, R. N., and Johnston, S. 2007. Pulsar nulling and mode changing. MNRAS, 377(3), 13831392.Google Scholar
Warszawski, L., and Melatos, A. 2008. A cellular automaton model of pulsar glitches. MNRAS, 390, 175191.Google Scholar
Watts, A. L. 2012. Thermonuclear burst oscillations. Ann. Rev. Astr. Ap., 50(Sept.), 609640.Google Scholar
Weatherall, J. C. 1998. Pulsar radio emission by conversion of plasma wave turbulence: Nanosecond time structure. ApJ, 506, 341346.Google Scholar
Weekes, T. C., Cawley, M. F., Fegan, D. J., and 9 others. 1989. Observation of TeV gamma rays from the Crab Nebula using the atmospheric Cerenkov imaging technique. ApJ, 342, 379395.Google Scholar
Weiler, K. W., and Sramek, R. A. 1988. Supernovae and Supernova Remnants. Ann. Rev. Astr. Ap., 26, 295341.Google Scholar
Weiler, K. W., Van Dyk, S. D., Sramek, R. A., and Panagia, N. 1996. Radio supernovae. Pages 283297 of: McCray, R., and Wang, Z. (eds), IAU Colloquium 145: Supernovae and Supernova Remnants. Cambridge University Press.Google Scholar
Weisberg, J. M., and Huang, Y. 2016. Relativistic measurements from timing the binary pulsar PSR B1913+16. ApJ, 829(1), 1.Google Scholar
Weisberg, J. M., and Taylor, J. H. 1984. Observations of post-Newtonian timing effects in the binary pulsar PSR1913+16. Phys. Rev. Lett., 52, 13481350.Google Scholar
Weisberg, J. M., and Taylor, J. H. 2002. General relativistic geodetic spin precession in binary pulsar B1913+16: Mapping the emission beam in two dimensions. ApJ, 576, 942949.Google Scholar
Weisberg, J. M., and Taylor, J. H. 2005. The relativistic binary pulsar B1913+16: Thirty years of observations and analysis. ASP Conf. Ser., 328, 25.Google Scholar
Weisberg, J. M., Romani, R. W., and Taylor, J. H. 1989. Evidence for geodetic spin precession in the binary pulsar 1913+16. ApJ, 347, 10301033.Google Scholar
Weisberg, J. M., Cordes, J. M., Lundgren, S. C., Dawson, B. R., Despotes, J. T., Morgan, J. J., Weitz, K. A., Zink, E. C., and Backer, D. C. 1999. Arecibo 1418 MHz polarimetry of 98 pulsars: Full Stokes profiles and morphological classifications. ApJS, 121, 171217.Google Scholar
Weisberg, J. M., Nice, D. J., and Taylor, J. H. 2010. Timing measurements of the relativistic binary pulsar PSR B1913+16. ApJ, 722, 10301034.Google Scholar
Weisskopf, M. C., Hester, J. J., Tennant, A. F., and 8 others. 2000. Discovery of spatial and spectral structure in the X-ray emission from the Crab Nebula. ApJ, 536, L81L84.Google Scholar
Weltevrede, P., and Johnston, S. 2008. The population of pulsars with interpulses and the implications for beam evolution. MNRAS, 387, 17551760.Google Scholar
Weltevrede, P., Edwards, R. T., and Stappers, B. W. 2006. The subpulse modulation properties of pulsars at 21 cm. A&A, 445(Jan.), 243272.Google Scholar
Weltevrede, P., Stappers, B. W., and Edwards, R. T. 2007. The subpulse modulation properties of pulsars at 92 cm and the frequency dependence of subpulse modulation. A&A, 469(2), 607631.Google Scholar
Weltevrede, P., Johnston, S., and Espinoza, C. M. 2011. The glitch-induced identity changes of PSR J1119-6127. MNRAS, 411(Mar.), 19171934.Google Scholar
Wheeler, J. A. 1966. Superdense stars. Ann. Rev. Astr. Ap., 4, 393432.Google Scholar
Whelan, J., and Iben, I. 1973. Binaries and supernovae of Type I. ApJ, 186, 10071014.Google Scholar
White, N. E., Swank, J. H., and Holt, S. S. 1983. Accretion-powered X-ray pulsars. ApJ, 270, 711734.Google Scholar
White, N. E., Nagase, F., and Parmar, A. N. 1995. The properties of X-ray Binaries. Pages 157 of: Lewin, W. H. G., van Paradijs, J., and van den Heuvel, E. P. J. (eds), X-ray Binaries. Cambridge University Press.Google Scholar
Wijnands, R., and van der Klis, M. 1998. A millisecond pulsar in an X-ray binary system. Nature, 394, 344346.Google Scholar
Wilkinson, A., and Smith, F. G. 1974. Characteristics of the local Galactic magnetic field determined from background polarization surveys. MNRAS, 167, 593611.Google Scholar
Will, C. M. 1993. Theory and Experiment in Gravitational Physics. Cambridge University Press.Google Scholar
Williamson, I. P. 1973. Pulse broadening due to multiple scattering in the interstellar medium. MNRAS, 163, 345356.Google Scholar
Williamson, I. P. 1974. Pulse broadening due to irregular scattering in the interstellar medium – III. MNRAS, 166, 499512.Google Scholar
Willstrop, R. V. 1969. Optical flashes from the Crab Nebula M1. Nature, 221, 10231025.Google Scholar
Wolszczan, A. 1982. A frequency correlation analysis of pulsar scintillation Spegtra. MNRAS, 204, 591602.Google Scholar
Wolszczan, A. 1991. A nearby 37.9 ms radio pulsar in a relativistic binary system. Nature, 350, 688690.Google Scholar
Wolszczan, A., and Frail, D. A. 1992. A planetary system around the millisecond pulsar PSR1257+12. Nature, 355, 145147.Google Scholar
Woltjer, L. 1972. Supernova remnants. Ann. Rev. Astr. Ap., 10, 129158.Google Scholar
Woods, P. M., and Thompson, C. 2006. Soft gamma repeaters and anomalous X-ray pulsars: Magnetar candidates. Compact Stellar X-Ray Sources. Vol. 39. Cambridge University Press. Pages 547586.Google Scholar
Woosley, S. E., and Weaver, T. A. 1986. The physics of supernova explosions. Ann. Rev. Astr. Ap., 24, 205253.Google Scholar
Wright, G. A., and Fowler, L. A. 1981. Mode-changing and quantized subpulse drift-rates in pulsar PSR2319+60. A&A, 101, 356361.Google Scholar
Wright, G., and Weltevrede, P. 2017. Pulsar bi-drifting: Implications for polar cap geometry. MNRAS, 464(3), 25972608.Google Scholar
Xilouris, K. M., Kramer, M., Jessner, A., Wielebinski, R., and Timofeev, M. 1996. Emission properties of pulsars at mm-wavelengths. A&A, 309, 481.Google Scholar
Xilouris, K. M., Kramer, M., Jessner, A., von Hoensbroech, A., Lorimer, D., Wielebinski, R., Wolszczan, A., and Camilo, F. 1998. The characteristics of millisecond pulsar emission: II. Polarimetry. ApJ, 501, 286306.Google Scholar
Yan, W. M., Manchester, R. N., van Straten, W., and 14 others. 2011. Polarization observations of 20 millisecond pulsars. arXiv 1102.2274.Google Scholar
Yao, J. M., Manchester, R. N., and Wang, N. 2017. A new electron-density model for estimation of pulsar and FRB distances. ApJ, 835(1), 1.Google Scholar
Young, M. D., Manchester, R. N., and Johnston, S. 2000. A radio pulsar with an 8.5-s period challenges emission models. ASP Conf. Ser., 202, 185.Google Scholar
Yuen, R., and Melrose, D. B. 2014. Visibility of pulsar emission: Motion of the visible point. PASA, 31(Oct.), e039.Google Scholar
Zdunik, J. L., Fortin, M., and Haensel, P. 2017. Neutron star properties and the equation of state for the core. A&A, 599(Mar.), A119.Google Scholar
Zel’dovich, Ya. B., and Guseynov, O. K. 1964. Collapsed stars in binaries. ApJ, 144, 840841.Google Scholar
Zhu, W. W., Freire, P. C. C., Knispel, B., and 15 others. Mass Measurements for Two Binary Pulsars Discovered in the PALFA Survey. ApJ, 881(2), 165174.Google Scholar
Zoccali, M., Renzini, A., Ortolani, S., and 9 others. 2001. The white dwarf distance to the globular cluster 47 Tucanae and its age. ApJ, 553, 733743.Google Scholar
Zou, W. Z., Hobbs, G., Wang, N., Manchester, R. N., Wu, X. J., and Wang, H. X. 2005. Timing measurements and proper motions of 74 pulsars using the Nanshan radio telescope. MNRAS, 362, 11891198.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×