Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T01:00:08.271Z Has data issue: false hasContentIssue false

30 - Significance of deprivation studies

from Section V - Functional significance

Published online by Cambridge University Press:  07 September 2011

Nishidh Barot
Affiliation:
Stanford University Medical Center
Clete Kushida
Affiliation:
Stanford University Medical Center
Birendra N. Mallick
Affiliation:
Jawaharlal Nehru University
S. R. Pandi-Perumal
Affiliation:
Somnogen Canada Inc, Toronto
Robert W. McCarley
Affiliation:
Harvard University, Massachusetts
Adrian R. Morrison
Affiliation:
University of Pennsylvania
Get access

Summary

Summary

Interest in the effects of total sleep deprivation dates back over one hundred years. After the discovery of rapid eye movement (REM) sleep in the 1950s, selective REM-deprivation studies have been performed in animals and humans. All studies have shown progressively higher pressure for REM sleep as REM deprivation increases. Studies also show that significant REM rebound occurs after selective REM deprivation and total sleep deprivation. Over the past few decades, newer methods have been developed to reduce confounding factors in REM- or paradoxical sleep-deprivation (PSD) studies of animals but, unfortunately, many findings cannot be generalized to humans. Most current PSD studies employ either the gentle handling or forced locomotion technique, and are most often carried out in rats. Forced locomotion techniques like the disk-over-water method have allowed the study of fairly prolonged PSD in rats. Total sleep deprivation (TSD) in rats leads to a host of sleep deprivation effects (SDEs), including eventual death. Development of SDEs seems to correlate with degree of PSD. Paradoxical sleep-deprivation studies in rats show almost identical results, but only occurring over a longer period of time. REM sleep appears to play a vital role in thermoregulation in rats, leading to considerable hypothermia. The heat-loss theory explains the inverse relationship between energy expenditure (EE) and temperature, which eventually is observed in TSD and PSD studies in animals. No human REM sleep-deprivation studies have indicated such profound changes, though no comparable studies have been conducted. From early on, REM sleep-deprivation studies in humans have focused on the cognitive effects of deprivation. Several studies suggest deficits in short-term memory consolidation with REM-sleep deprivation in both humans and animals, though the issue remains controversial. Recent studies suggest that sensitivity to pain increases with selective REM-sleep deprivation in animals, but no convincing evidence is found in human studies.

Type
Chapter
Information
Rapid Eye Movement Sleep
Regulation and Function
, pp. 301 - 310
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrous, D. N., Koehl, M. & Le Moal, M. (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85(2): –69.CrossRefGoogle ScholarPubMed
Albert, I., Cicala, G. A. & Siegel, J. (1970) The behavioral effects of REM sleep deprivation in rats. Psychophysiology 6(5): –60.CrossRefGoogle ScholarPubMed
Ambrosini, M. V. & Giuditta, A. (2001) Learning and sleep: the sequential hypothesis. Sleep Med Rev 5(6): –90.CrossRefGoogle ScholarPubMed
Asakura, W., Matsumoto, K., Ohta, H. & Watanabe, H. (1992) REM sleep deprivation decreases apomorphine-induced stimulation of locomotor activity but not stereotyped behavior in mice. Gen Pharmacol 23(3): –41.CrossRefGoogle Scholar
Bergmann, B. M., Everson, C. A., Kushida, C. A. . (1989a) Sleep deprivation in the rat: V. Energy use and mediation. Sleep 12(1): –41.CrossRefGoogle ScholarPubMed
Bergmann, B. M., Kushida, C. A., Everson, C. A. . (1989b) Sleep deprivation in the rat: II. Methodology. Sleep 12(1): –12.CrossRefGoogle ScholarPubMed
Bergmann, B. M., Seiden, L. S., Landis, C. A., Gilliland, M. A. & Rechtschaffen, A. (1994) Sleep deprivation in the rat: XVIII. Regional brain levels of monoamines and their metabolites. Sleep 17(7): –9.CrossRefGoogle ScholarPubMed
Bonnet, M. (2005) Acute sleep deprivation. In Principles and Practice of Sleep Medicine, eds. Kryger, M. H., Roth, T. & Dement, W. C.. Philadelphia: Elsevier Saunders, pp. 51–66.Google Scholar
Brunner, D. P., Dijk, D. J., Tobler, I. & Borbély, A. A. (1990) Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroenceph Clin Neurophysiol 75: –9.CrossRefGoogle ScholarPubMed
Carskadon, M. A. & Dement, W. C. (1979) Cumulative effects of total sleep loss on sleep tendency. Percept Mot Skills 48: –506.CrossRefGoogle Scholar
Carskadon, M. A. & Dement, W. C. (1985) Sleep loss in elderly volunteers. Sleep 8: –21.CrossRefGoogle ScholarPubMed
Cirelli, C. & Tononi, G. (2005) Total sleep deprivation. In Sleep Deprivation: Clinical Issues, Pharmacology, and Sleep Loss Effects. Vol 193: Lung Biology in Health and Disease, ed. C. Kushida, . New York: Marcel Dekker, pp. 1–27.Google Scholar
Dement, W. C. (1960) The effect of dream deprivation. Science 131: –7.CrossRefGoogle ScholarPubMed
Dement, W. C. (2005) History of sleep physiology and medicine. In Principles and Practice of Sleep Medicine, eds. M. H. Kryger & W. C. Dement. Philadelphia: Elsevier Saunders, pp. 2–12.Google Scholar
Endo, , T., Roth, C., Landolt, H. P. . (1998) Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am Jour Physiol Regulatory Integrative Comp Physiol 274: –94.Google ScholarPubMed
Everson, C. A., Bergmann, B. M. & Rechtschaffen, A. (1989a) Sleep deprivation in the rat: III. Total sleep deprivation. Sleep 12(1): –21.CrossRefGoogle ScholarPubMed
Everson, C. A., Gilliland, M. A., Kushida, C.A. . (1989b) Sleep deprivation in the rat: IX. Recovery. Sleep 12(1): –7.Google ScholarPubMed
Feng, P. F., Shaw, P., Bergmann, B. M. . (1995) Sleep deprivation in the rat: XX. Differences in wake and sleep temperatures during recovery. Sleep 18(9): –804.CrossRefGoogle ScholarPubMed
Gilliland, M. A., Bergmann, B. M. & Rechtschaffen, A. (1989) Sleep deprivation in the rat: VIII. High EEG amplitude sleep deprivation. Sleep 12(1): –9.CrossRefGoogle ScholarPubMed
Giuditta, A., Ambrosini, M. V., Montagnese, P. . (1995) The sequential hypothesis of the function of sleep. Behav Brain Res 69(1/2): –66.CrossRefGoogle ScholarPubMed
Graves, L., Pack, A. & Abel, T. (2001) Sleep and memory: a molecular perspective. Trends Neurosci 24(4): –43.CrossRefGoogle ScholarPubMed
Gross, C. G. (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1(1): –73.CrossRefGoogle ScholarPubMed
Guzman-Marin, R., Suntsova, N., Bashir, T. . (2008) Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 31(2): –75.CrossRefGoogle ScholarPubMed
Guzman-Marin, R., Ying, Z., Suntsova, N. . (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 15(575/3): –19.Google Scholar
Hendricks, J. (2005) Animal models of sleep deprivation. In Sleep Deprivation: Clinical Issues, Pharmacology, and Sleep Loss Effects, Vol 193: Lung Biology in Health and Disease, ed. Kushida, C.. New York: Marcel Dekker, pp. 1–27.Google Scholar
Hicks, R. A., Coleman, D. D., Ferrante, F., Sahatjian, M. & Hawkins, J. (1979) Pain thresholds in rats during recovery from REM sleep deprivation. Percept Mot Skills 48(3 Pt 1): –90.CrossRefGoogle ScholarPubMed
Hicks, R. A., Moore, J. D., Findley, P., Hirshfield, C. & Humphrey, V. (1978) REM sleep deprivation and pain thresholds in ratsPercept Mot Skills 47(3/1): –50.CrossRefGoogle ScholarPubMed
Horne, J. A. (1978) A review of the biological effects of total sleep deprivation. Biol Psychol 7: –102.CrossRefGoogle ScholarPubMed
Horne, J. A. (1985) Sleep function, with particular reference to sleep deprivation. Ann Clin Res 17(5): –208.Google ScholarPubMed
Ishikawa, A., Kanayama, Y., Matsumura, H. . (2006) Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci 24(1): –8.CrossRefGoogle ScholarPubMed
Johnson, L. C. (1969) Physiological and psychological effects following total sleep deprivation. In Sleep: Pathology and Physiology, ed. A. Kales, . Philadelphia: J. J. Lippincott Company, pp. 206–20.Google Scholar
Kales, A., Tan, T., Kollar, E. J. . (1970) Sleep patterns following 205 hours of sleep deprivation. Psychosom Med 32: 189–200.CrossRef
Kant, G. J., Genser, S. G., Thorne, D. R., Pfalser, J. L. & Mougey, E. H. (1984) Effects of 72 hour sleep deprivation on urinary cortisol and indices of metabolism. Sleep 7(2): –6.CrossRefGoogle Scholar
Karadzic, V. & Dement, W. C. (1967) Heart rate changes following selective deprivation of rapid eye movement (REM) sleep. Brain Res 6(4): –8.CrossRefGoogle ScholarPubMed
Karni, A., Tanne, D., Rubenstein, B. S., Askenasy, J. J. & Sagi, D. (1994) Dependence on REM sleep of overnight improvement of a perceptual skill. Science 29265(5172): –82.Google Scholar
Kim, E. Y., Mahmoud, G. S. & Grover, L. M. (2005) REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci Lett 18 388(3): –7.Google Scholar
Kushida, C. A., Bergmann, B. M. & Rechtschaffen, A. (1989) Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep 12(1): –30.CrossRefGoogle ScholarPubMed
Landis, C. A. (2005) Partial and sleep-state selective deprivation In Sleep Deprivation: Clinical Issues, Pharmacology, and Sleep Loss Effects, Vol 193: Lung Biology in Health and Disease, ed. Kushida, C.. New York: Marcel Dekker, pp. 20–1.Google Scholar
Landis, C. A., Bergmann, B. M., Ismail, M. M. & Rechtschaffen, A. (1992) Sleep deprivation in the rat: XV. Ambient temperature choice in paradoxical sleep-deprived rats. Sleep 15(1):–20.CrossRefGoogle ScholarPubMed
Lautenbacher, S., Kundermann, B. & Krieg, J. C. (2006) Sleep deprivation and pain perception. Sleep Med Rev 10(5): –69.CrossRefGoogle ScholarPubMed
Manaceine, M. (1894) Quelques observations experimentales sur l’influence de l’insomnie absolue. Arch Ital Biol 21: –5.Google Scholar
May, M. E., Harvey, M. T., Valdovinos, M. G. . (2005) Nociceptor and age specific effects of REM sleep deprivation induced hyperalgesia. Behav Brain Res 15 159(1): –94.Google Scholar
Meerlo, P., Mistlberger, R. E., Jacobs, B. L., Heller, H. C. & McGinty, D. (2009) New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev 13(3): –94.CrossRefGoogle ScholarPubMed
Mendelson, W.B. & Bergmann, B. M. (2000) Age-dependent changes in recovery sleep after 48 hours of sleep deprivation in rats. Neurobiol Aging 21(5): –93.CrossRefGoogle ScholarPubMed
Moldofsky, H. & Scarisbrick, P. (1976) Induction of neurasthenic musculoskeletal pain syndrome by selective sleep stage deprivation. Psychosom Med 38(1): –44.CrossRefGoogle ScholarPubMed
Moldofsky, H., Scarisbrick, P., England, R. & Smythe, H. (1975) Musculosketal symptoms and non-REM sleep disturbance in patients with “fibrositis syndrome” and healthy subjects. Psychosom Med 37(4): –51.CrossRefGoogle ScholarPubMed
Obermeyer, W., Bergmann, B. M. & Rechtschaffen, A. (1991) Sleep deprivation in the rat: XIV. Sleep comparison of waking hypothalamic and peritoneal temperatures. (4): 285–93.
Patrick, G. T. W. & Gilbert, (1896) On the effect of loss of sleep. Psychol Rev 3: –83.Google Scholar
Peigneux, P., Laureys, S., Delbeuck, X. & Maquet, P. (2001) Sleeping brain, learning brain. The role of sleep for memory systems. Neuroreport 21 12(18): –24.Google Scholar
Plihal, W. & Born, J. (1997) Effect of early and late nocturnal sleep on procedural and declarative memory. J Cogn Neurosci 9: –7.CrossRefGoogle Scholar
Plihal, W. & Born, J. (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36(5): –82.CrossRefGoogle ScholarPubMed
Prete, F. R., Bergmann, B. M., Holtzman, P., Obermeyer, W. & Rechtschaffen, A. (1991) Sleep deprivation in the rat: XII. Effect on ambient temperature choice. Sleep 14(2): –15.CrossRefGoogle ScholarPubMed
Rauchs, G., Bertran, F., Guillery-Girard, B. . (2004) Consolidation of strictly episodic memories mainly requires rapid eye movement sleep. Sleep 27(3): –401.CrossRefGoogle ScholarPubMed
Ravassard, P., Pachoud, B., Comte, J. C. . (2009) Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 32(2): –40.CrossRefGoogle ScholarPubMed
Rechtschaffen, A. & Bergmann, B. M. (2002) Sleep deprivation in the rat: an update of the 1989 paper. Sleep 25(1): –24.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A. & Gilliland, M. (1989) Sleep deprivation in the rat: I. Conceptual issues. Sleep 12(1): –4.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Bergmann, B. M., Everson, C. A., Kushida, C. A. & Gilliland, M. A. (2002) Sleep deprivation in the rat: X. Integration and discussion of the findings. Sleep 25(1): –87.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Bergmann, B. M., Gilliland, M. A. & Bauer, K. (1999) Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 122(1): –31.Google Scholar
Rechtschaffen, A., Gilliland, M. A., Bergmann, B. M. & Winter, J. B. (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 8 221(4606): –4.Google Scholar
Sampson, H. J. (1966) Psychological effects of deprivation of dreaming sleep. Nerv Ment Dis 143(4): –17.CrossRefGoogle ScholarPubMed
Saxvig, I. W., Lundervold, A. J., Grønli, J. . (2008) The effect of a REM sleep deprivation procedure on different aspects of memory function in humans. Psychophysiology 45(2): –17.CrossRefGoogle ScholarPubMed
Schilgen, B. & Tolle, R. (1980) Partial sleep deprivation as a therapy for depression. Arch Gen Psychiatry 37: –71.Google Scholar
Shaw, P. J., Bergmann, B. M. & Rechtschaffen, A. (1998) Effects of paradoxical sleep deprivation on thermoregulation in the rat. Sleep 21(1): –17.CrossRefGoogle ScholarPubMed
Smith, C. (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5(6): –506.CrossRefGoogle ScholarPubMed
Stern, W. C. & Morgane, P. J. (1974) Theoretical view of REM sleep function: maintenance of catecholamine systems in the central nervous system. Behav Biol 11: –32.CrossRefGoogle ScholarPubMed
Stickgold, R. (2005) Sleep-dependent memory consolidation. Nature 27 437(7063):–8.Google Scholar
Stickgold, R. & Walker, M. P. (2005) Memory consolidation and reconsolidation: what is the role of sleep?Trends Neurosci 28(8): –15.CrossRefGoogle Scholar
Stickgold, R., Whidbee, D., Schirmer, B., Patel, V. & Hobson, J. A. (2000) Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12(2): –54.CrossRefGoogle ScholarPubMed
Tilley, A. J. & Wilkinson, R. T. (1984) The effects of a restricted sleep regime on the composition of sleep and on performance. Psychophysiology 21: –12.CrossRefGoogle ScholarPubMed
Tsai, L. L., Bergmann, B. M., Perry, B. D. & Rechtschaffen, A. (1993) Effects of chronic total sleep deprivation on central noradrenergic receptors in rat brain. Brain Res 5 602(2): –7.Google Scholar
Tsai, L. L., Bergmann, B. M., Perry, B. D. & Rechtschaffen, A. (1994) Effects of chronic sleep deprivation on central cholinergic receptors in rat brain. Brain Res 11 642(1–2): –103.Google Scholar
Tsien, J. Z., Huerta, P. T. & Tonegawa, S. (1996) The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 27 87(7): –38.Google Scholar
Ukponmwan, O. E., Rupreht, J. & Dzoljic, M. R. (1984) REM sleep deprivation decreases the antinociceptive property of enkephalinase-inhibition, morphine and cold-water-swim. Gen Pharmacol 15(3): –8.CrossRefGoogle ScholarPubMed
Ukponmwan, O. E., Rupreht, J., Dzoljic, M. R. . (1986) An analgesic effect of enkephalinase inhibition is modulated by monoamine oxidase-B and REM sleep deprivations. Arch Pharmacol 332(4): –9.CrossRefGoogle ScholarPubMed
Vertes, R. P. & Eastman, K. E. (2000) The case against memory consolidation in REM sleep. Behav Brain Sci 23(6):––1121.CrossRefGoogle ScholarPubMed
Webb, W. B. & Agnew, H. W. (1965) Sleep: effects of a restricted regime. Science 150: –7.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×