Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-14T20:44:32.789Z Has data issue: false hasContentIssue false

Types of Stroke

from Part III - Modern Era, Mid-Twentieth Century to the Present

Published online by Cambridge University Press:  13 December 2022

Louis R. Caplan
Affiliation:
Beth Israel Deaconess Medical Centre
Aishwarya Aggarwal
Affiliation:
John F. Kennedy Medical Center
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stories of Stroke
Key Individuals and the Evolution of Ideas
, pp. 107 - 248
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Notes and References

Kussmaul, A. Zwi Falle spontaner allmaliger Verschliessung grosser Halsarterienstamme. Deutsch. Klin. 1872;24:461465.Google Scholar
Gowers, WR. On a case of simultaneous embolism of central retinal and middle cerebral arteries. Lancet 1875;2:794796.CrossRefGoogle Scholar
Chiari, H. Uber das Verhalten des Tielungswinkels der Carotis communis bei der Endarteritis chronica deformans. Verhandl. deutschpath. Gesellsch. 1905;9:326330.Google Scholar
Chiari, Hans. Wikipedia. Available at https://en.wikipedia.org/wiki/Hans_Chiari.Google Scholar
Gowers, WR. A Manual of Diseases of the Nervous System, 2nd ed., vol. 2. Philadelphia: Blakiston’s Sons and Co., 1906, pp. 421429. Gowers’s textbook of neurology is discussed in Chapter 14.Google Scholar
Hunt, JR. The role of the carotid arteries in the causation of vascular lesions of the brain, with remarks on certain special features of the symptomatology. Am. J. Med. Sci. 1914;147:704771.Google Scholar
Hunt, James Ramsay. Wikipedia. Available at https://en.wikipedia.org/wiki/James_Ramsay_Hunt.Google Scholar
Moniz, E, Lima, A, de Lacerda, R. Par thrombose de la carotide interne. Presse Med. 1937;45:977. Moniz’s contributions are discussed in detail in Chapter 31.Google Scholar
Sjöqvist, O. Über intrakranielle Aneurysmen der Arteria carotis und deren Beziehung zur ophthalmoplegischen Migräne. Nervenarzt 1936;9:233241.Google Scholar
Hultquist, GT, Jena, GF. Uber Thrombose und Embolie der Arteria carotis und hierbei vorkommende Gehirnstorungen.Google ScholarGoogle Scholar
Krayenbühl, H, Weber, G. Die Thrombose der Arteria carotis interna und ihre Beziehung zur Endangiitis obliterans v. Winiwarter-Buerger. Helvet. Med. Acta 1944;11:289333.Google Scholar
Johnson, HC, Walker, AE. The angiographic diagnosis of spontaneous thrombosis of the internal and common carotid arteries. J. Neurosurg. 1951;8:631639.CrossRefGoogle ScholarPubMed
Fisher, CM. Occlusion of the internal carotid artery. Arch. Neurol. Psychiatry 1951;65:346377. Miller Fisher and his career and contributions is the topic of Chapter 29.Google ScholarGoogle ScholarGoogle Scholar
Hollenhorst, RW. Significance of bright plaques in the retinal arterioles. JAMA 1961;178:123129.Google Scholar
Fisher, CM. Occlusion of the carotid arteries: Further experiences. Arch. Neurol. Psychiatry 1954;72:187204.CrossRefGoogle ScholarPubMed
Mohr, J. Distal field infarction. Neurology 1969;19:279.Google Scholar
Fisher, CM. The microembolic theory of transient ischemic attacks. In Scheinberg, P (ed.), Proceedings of the 10th Princeton Conference for Cerebrovascular Diseases. New York: Raven Press, 1976, pp. 5053.Google Scholar
Pessin, MS, Duncan, GW, Mohr, JP, et al. Clinical and angiographic features of carotid transient ischemic attacks. N. Engl. J. Med. 1977;296:38362.Google Scholar
Pessin, MS, Hinton, RC, Davis, KR, et al. Mechanisms of acute carotid stroke. Ann. Neurol. 1979;6:245252.CrossRefGoogle ScholarPubMed
Caplan, LR, Hennerici, M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch. Neurol. 1998;55:14751482.Google ScholarGoogle Scholar
Fisher, CM. Facial pulses in internal carotid artery occlusion. Neurology 1970;20:476478.CrossRefGoogle ScholarPubMed
Caplan, LR. The frontal artery sign: A bedside indicator of internal carotid occlusive disease. N. Engl. J. Med. 1973;288:10081009.CrossRefGoogle ScholarPubMed
Imparato, AM, Riles, TS, Gorstein, F. The carotid bifurcation plaque: Pathologic findings associated with cerebral ischemia. Stroke 1979;10:238245.Google Scholar
Fisher, CM, Ojemann, RG. A clinico-pathologic study of carotid endarterectomy plaques. Rev. Neurol. (Paris) 1986;142:573589.Google ScholarPubMed
Spence, DJ, Hackam, DG. Treating arteries instead of risk factors: A paradigm change in management of atherosclerosis. Stroke 2010;41:11931199.Google Scholar
Baber, U, Mehran, R, Sartori, S, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: The BioImage study. J. Am. Coll. Cardiol. 2015 Mar 24;65(11):10651074.Google Scholar
Kamel, H, Navi, BB, Merkler, AE, et al. Reclassification of ischemic stroke etiological subtypes on the basis of high-risk nonstenosing carotid plaque. Stroke 2020;51:504510.CrossRefGoogle ScholarPubMed

Notes and References

Charcot, JM, Goetz, CG. Charcot, the clinician: The Tuesday lessons: Excerpts from nine case presentations on general neurology delivered at the Salpêtrière Hospital in 1887–88. In Charcot, JM. Lectures on the Diseases of the Nervous System. Trans. George Sigerson. London: Sydenham Society, 1877.Google Scholar
Ferrand, J. Essai sur l’hemiplegie des vieillards: les lacunes de desintegration cerebrale. Thesis, University of Paris, 1902.Google Scholar
Marie, P. Des foyers lacunaires de désintégration et des différents autres états cavitaires du cerveau. Revue de Médeciné (Paris) 1901;21:281298.Google ScholarGoogle Scholar
Hauw, J-J. The history of lacunes. In Donnan, G, Norrving, B, Bamford, J Bogousslavsky, J (eds.), Lacunar and Other Subcortical Infarcts. Oxford: Oxford University Press, 1995, pp. 315.Google Scholar
Dechambre, A. Mémoire sur la curabilité du ramollissement cérérebral. Gaz. Méd. Paris 1838;6:305314.Google Scholar
Durand-Fardel, M. Memoire sur une alteration particuliere de la substance cérébrale. Gaz. Méd. Paris 1842;10:2326, 33–38.Google Scholar
Durand-Fardel, M. Traite des ramollisements du cerveau. Paris: Bailliere, 1843.Google Scholar
Fisher, CM. Lacunes, small deep cerebral infarcts. Neurology 1965;15:774784.Google Scholar
Fisher, CM. The vascular lesion in lacunae. Transactions of the American Neurological Association 1965;90:243245.Google ScholarGoogle Scholar
Fisher, CM, Caplan, LR. Basilar artery branch occlusion: A cause of pontine infarction. Neurology 1971; 21:900905.Google ScholarGoogle Scholar
Caplan, LR. Intracranial branch atheromatous disease: A neglected, understudied and underused concept. Neurology 1989;39:12461250.CrossRefGoogle ScholarPubMed
Clinical syndromes are discussed in Chapter 26 and are reported in Fisher, CM. Pure motor hemiplegia of vascular origin. Arch. Neurol. 1965;13:3044.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Poirier, J, Derouesné, C. Le concept de lacune cérébrale de 1838 à nos jours. Rev. Neurol. (Paris) 1985;141:317.Google Scholar
Poirier, J, Derouesné, C. Cerebral lacunae: A proposed new classification (letter). Clin. Neuropathol. 1984;3:266.Google Scholar
Besson, G. Les infarctus lacunaires, evaluation clinque et par l’imagerie par resonance magnetique. Thesis, University of Grenoble, 1989.Google Scholar
Fisher, CM. Lacunar infarcts – A review. Cerebrovasc. Dis. 1991;1:311320.Google ScholarGoogle ScholarGoogle Scholar
Wardlaw, JM, Smith, EE, Biessels, GJ, Cordonnier, C, Fazekas, F, Frayne, R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822838.Google Scholar
Loos, CMJ, Makin, SDJ, Staals, J, Dennis, MS, van Oostenbrugge, RJ, Wardlaw, JM. Long-term morphological changes of symptomatic lacunar infarcts and surrounding white matter on structural magnetic resonance imaging. Stroke 2018;49(5):11831188.CrossRefGoogle ScholarPubMed
Binswanger, O. Die abgrenzung der allgemeinen progressiven paralyse. Klin. Wochenschr. 1894;49:11031105; 1895;50:1137–1139; 1895;52:1180–1186.Google ScholarGoogle Scholar
Alzheimer, A. Die Seelenstorungen auf arteriosklerotischer grundlage. Z. Psych. 1902;59:695711.Google ScholarGoogle Scholar
Nissl, F. Zur kasuistic der artenoskleriotischen demenz. ein fall von sogenannten “encephalitis subcorticalis.” Z. Neurol. Psychiatr. 1920;19:438443.Google Scholar
Olszewski, J. Subcortical arteriosclerotic encephalopathy. Review of the literature on the so-called Binswanger’s disease and presentation of two cases. World Neurol. 1962;3:359375.Google ScholarPubMed
Caplan, LR, Schoene, WC. Clinical features of subcortical arteriosclerotic encephalopathy (Binswanger disease). Neurology 1978;28:12061215.Google Scholar
Caplan, LR. Binswanger’s disease revisited. Neurology 1995;45:626633.Google Scholar
Tournier-Lasserve, E, Joutel, A, Melki, J, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat. Genet. 1993;3:256259.Google ScholarGoogle Scholar
Yanagawa, S, Ito, N, Arima, K, Ikeda, S. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 2002;58:817820.Google Scholar
Rosenberg, GA, Sullivan, N, Esiri, NM. White matter damage is associated with matrix metalloproteinases in vascular dementia. Stroke 2001;32:11621168.Google ScholarGoogle Scholar
Regenhardt, RW, Das, AS, Lo, EH, Caplan, LR. Advances in understanding the pathophysiology of lacunar stroke: A review. JAMA Neurol. 2018;75(10):12731281.Google Scholar
Caplan, LR. Microbleeds. Circulation 2015;132:479480.CrossRefGoogle ScholarPubMed

Notes and References

Sections and parts of this chapter have appeared in Caplan, LR. Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management. Boston: Blackwell Scientific, 1996;Google ScholarGoogle ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affecto. Schaffhausen: J. Caspari Suteri, 1658.Google Scholar
Wolf, JK. The Classical Brain Stem Syndromes. Springfield, IL: Charles C. Thomas, 1971. The various brainstem syndromes are discussed in Chapter 10.Google Scholar
Wallenberg, A. Acute bulbaraffection (Embolie der art. cerebellar post. inf.sinistr.?). Arch. Psychiat. Nervenkr. 1895;27:504540.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Duret, H. Sur la distribution des arteres nouricierres du bulb rachidien. Arch. Physiol. Norm. Path. 1873 5:97113.Google ScholarGoogle Scholar
Stopford, JSB. The arteries of the pons and medulla oblongata. J. Anat. Physiol. 1916;50:131163, 255–280.Google Scholar
Caplan, LR. Charles Foix, the first modern stroke neurologist. Stroke 1990;21:348356. The career and contribution of Foix are the topic of Chapter 27.Google Scholar
Kubik, C, Adams, R. Occlusion of the basilar artery: A clinical and pathologic study. Brain 1946;69:73121.Google Scholar
Hutchinson, EC, Yates, PO. The cervical portion of the vertebral artery, a clinicpathological study. Brain 1956;79:319331.Google ScholarGoogle Scholar
Fisher, CM. Occlusion of the vertebral arteries. Arch. Neurol. 1970;22:1319.Google Scholar
Reivich, M, Holling, E, Roberts, B, Toole, JF. Reversal of blood flow through the vertebral artery and its effect on cerebral circulation. N. Engl. J. Med. 1961;265:878885.Google Scholar
Hennerici, M, Klemm, C, Rautenberg, W. The subclavian steal phenomenon; a common vascular disorder with rare neurological deficits. Neurology 1988;88:669673.Google Scholar
Millikan, C, Siekert, R. Studies in cerebrovascular disease. The syndrome of intermittent insufficiency of the basilar arterial system. Mayo Clin. Proc. 1955;30:6168.Google ScholarGoogle ScholarGoogle Scholar
Millikan, C, Siekert, R, Shick, R. Studies in cerebrovascular disease: The use of anticoagulant drugs in the treatment of insufficiency or thrombosis within the basilar arterial system. Mayo Clin. Proc. 1955;30:116126.Google Scholar
Chimowitz, M, Lynn, MJ, Howlett-Smith, H, et al. for the Warfarin-Aspirin Symptomatic Intracranial Disease Trial investigators. Comparison of warfarin and aspirin for symptomatic Intracranial arterial stenosis. N. Engl. J. Med. 2005;352:13051316.Google Scholar
Denny-Brown, D. Basilar artery syndromes. Bull. N. Engl. Med. Center 1953;15:5360.Google ScholarPubMed
Caplan, LR. Vertebrobasilar Ischemia and Hemorrhage: Clinical Findings, Diagnosis, and Management of Posterior Circulation Disease. Cambridge: Cambridge University Press, 2014.Google Scholar
Caplan, LR, Chung, C-S, Wityk, RJ, et al. New England Medical Center posterior circulation stroke registry: I. Methods, data base, distribution of brain lesions, stroke mechanisms, and outcomes. J. Clin. Neurol. 2005;1:1430.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812.Google Scholar
Dana, CL. Acute bulbar paralysis due to hemorrhage and softening of the pons and medulla with reports of cases and autopsies. Med. Rec. 1903;64:361374.Google Scholar
Duret, H. Etudes experimentales et cliniques sur les traumatismes cerebraux. Paris: V. Adrien Delahayes, 1878.Google ScholarGoogle Scholar
Kornyey, S. Rapidly fatal pontine hemorrhage: Clinical and anatomical report. Arch. Neurol. Psychiatry 1939;41:793799.Google Scholar
Childs, T. A case of apoplexy of the cerebellum. Amer. Med. Month. 1858;9:13.Google Scholar
Mitchell, N, Angrist, A. Spontaneous cerebellar hemorrhage: Report of fifteen cases. Amer. J. Path. 1942;18:935953.Google Scholar
McKissock, W, Richardson, A, Walsh, L. Spontaneous cerebellar hemorrhage. Brain 1960;83:19.Google Scholar
Fisher, CM, Picard, EH, Polak, A, Dalal, P, Ojemann, R. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J. Nerv. Ment. Dis. 1965;140:3857.Google Scholar
Chung, C-S, Caplan, LR, Han, W, Pessin, MS, Lee, K-H, Kim, S-M. Thalamic haemorrhage. Brain 1996;119:18731886.CrossRefGoogle ScholarPubMed

Notes and References

Two detailed biographies describe the main life events and accomplishments of Harvey Cushing: Fulton, J. Harvey Cushing: A Biography – The Story of a Great Medical Pioneer. Springfield, IL: Charles C. Thomas, 1946.Google ScholarGoogle Scholar
Cushing, H. Surgery of the head. In Keen, WW (ed.), Surgery: Its Principles and Practice. Philadelphia: WB Saunders, 1911.Google Scholar
Cushing, H. Tumors of the Nervus Acusticus and the Syndrome of the Cerebellopontile Angle. Philadelphia: WB Saunders, 1917.Google ScholarGoogle Scholar
Biographical information about Sir Charles Symonds was derived from the entry for Charles Symonds in Wikipedia. Available at https://en.wikipedia.org/wiki/Charles_Symonds. Shorvon, S, Compston, A. Queen Square: A History of the Natil Hospital and Its Institute of Neurology. Cambridge: Cambridge University Press, 2019, pp. 239249.Google ScholarGoogle Scholar
Symonds, C. Contributions to the clinical study of intracranial aneurysms, with Harvey Cushing. Guy’s Hospital Reports 1923;73:139158.Google ScholarGoogle Scholar
Symonds, C. Spontaneous subarachnoid haemorrhage. Quarterly Journal of Medicine 1924;18:93122.Google ScholarGoogle ScholarGoogle Scholar
Quincke, HI. Verhandlungen des Congresses Innere Medizin. Wiesbaden, 1891, 10:321331.Google ScholarGoogle Scholar
Froin, G. Les hémorrhagies sous-arachnoidïennes et le méchanism de l’hématolyse en général. Thesis, Hôpitaux de Paris, 1904.Google Scholar
Hippocrates’s work is described in Chapter 1 of this book. Clark, E. Apoplexy in the Hippocratic writings. Bulletin of the History of Medicine 1963;37:301314.Google ScholarGoogle ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affecto. Schaffhausen: J. Caspari Suteri, 1658. Wepfer’s contributions are described in Chapter 8.Google Scholar
Chapter 7 contains much more detail about Morgagni and his life, works, and influence. Morgagni, GB. The Seats and Causes of Diseases Investigated by Anatomy. Trans. Alexander, B.. London: Miller and Cadell, 1769.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812. Reprinted in The Classics of Neurology and Neurosurgery Library, Division of Gryphon editions, New York, 1986. Cheyne’s work is discussed in Chapter 8.Google Scholar
Abercrombie, J. Pathological and Practical Researches on Diseases of the Brain and Spinal Cord. Edinburgh: Waugh and Innes, 1828. Reprinted in The Classics of Neurology and Neurosurgery Library, Division of Gryphon editions, New York, 1993.Google Scholar
Bright, R. Reports of Medical Cases, Selected with a View of Illustrating the Symptoms and Cure of Diseases by a Reference to Morbid Anatomy. vol. II: Diseases of the Brain and Nervous System. London: Longman, Rees, Orme, Brown, and Green, 1831. Bright and his work is described in more detail in Chapter 9.Google Scholar
Bright, R. Cases illustrative of the effects produced when the arteries and brain are diseased. Guy’s Hospital Reports 1836;1:916.Google Scholar
Biumi, F. Observations anatomicae, scholiis ilustratae. Observatio V. In Sandifort, E (ed.), Thesaurus dissertationum, vol. 3. Leyden: S et J Luchtmans, 1778, pp. 373379.Google Scholar
Blane, C. Case of aneurisms of the carotid arteries. Trans. Soc. Improv. Med. Chir. Knowledge (London) 1800;2.Google Scholar
The quote is from Gull, WW. Cases of aneurism of the cerebral vessels. Guy’s Hospital Reports 1859; 5:281304.Google ScholarGoogle Scholar
The topic of cerebral angiography is discussed in more detail in Chapter 25 and in Krayenbühl, H. History of cerebral angiography and its development since Egaz Moniz. In Egas Moniz Centenary: Scientific Reports. Lisbon: Comissao Executiva das Comemoracoes do Centenario do Nascimento do Prof. Egas Moniz, 1977, pp. 6374.Google ScholarGoogle ScholarGoogle Scholar
Seldinger, SI. Catheter replacement of the needle in percutaneous arteriography. Acta Radiol. 1953;39:368376.Google Scholar
Reviews of the natural history of aneurysmal SAH are found in Locksley, HB. Report of the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage: Sec. V, part II. Natural history of subarachnoid hemorrhage, intracranial aneurysms, and arteriovenous malformation. J. Neurosurg. 1966;25:321368.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Hunt, WE, Meagher, JN, Hess, RM. Intracranial aneurysm: A nine-year study. Ohio State Med. J. 1966 Nov;62(11):11681171.Google ScholarGoogle Scholar
Broderick, JP, Brott, TG, Duldner, JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 1994;25:13421347.Google ScholarGoogle Scholar
Mullan, S, Dawley, J. Antifibrinolytic therapy for intracranial aneurysms. J. Neurosurg. 1968 Jan;28(1):2123.Google ScholarGoogle Scholar
Crompton, MR. The pathogenesis of cerebral infarction following rupture of cerebral berry aneurysms. Brain 1964;87:491510.Google Scholar
Crompton, MR. Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 1963;86:301314.CrossRefGoogle ScholarPubMed
Chapter 29 discusses Fisher’s life and contributions to stroke. Fisher’s life story is described in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.CrossRefGoogle Scholar
Fisher, CM, Roberson, GH, Ojemann, RG. Cerebral vasospasm with ruptured saccular aneurysm: The clinical manifestations. Neurosurgery 1977;1:245248.Google ScholarGoogle Scholar
Kistler, JP, Crowell, RM, Davis, KR, Heros, R, Ojemann, RG, Zervas, NT, Fisher, CM. The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: A prospective study. Neurology 1983;33:424437.Google Scholar
Conway, LW, McDonald, LW. Structural changes of the intradural arteries following subarachnoid hemorrhage. J. Neurosurg. 1972;37:715723.Google ScholarGoogle ScholarGoogle Scholar
Heros, RC, Zervas, NT, Varsos, V. Cerebral vasospasm after subarachnoid hemorrhage: An update. Ann. Neurol. 1983;14:599608.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Pickard, JD, Murray, GD, Illingworth, R, et al. Effect of oral nimodipine in cerebral infarction and outcome after subarachnoid hemorrhage: British aneurysm nimodipine trial. BMJ 1981;298:636642.Google ScholarGoogle Scholar
Feigin, VL, Rinkel, GJE, Algra, A, et al. Calcium antagonists in patients with aneurysmal subarachnoid hemorrhage: A systematic review. Neurology 1998;50:876883.Google Scholar
Higashida, RT, Halbach, VV, Cahan, LD, et al. Transluminal angioplasty for treatment of intracranial arterial vasospasm. J. Neurosurg. 1989;71:648653.Google ScholarGoogle Scholar
Chapter 34 discusses the history of ultrasound and of transcranial Doppler imaging. Aaslid, R (ed.). Transcranial Doppler Sonography. Wien: Springer-Verlag, 1986.Google Scholar
Sloan, MA, Haley, EC, Kassell, NF, et al. Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology 1989;391:15141518.Google ScholarGoogle ScholarGoogle Scholar
Graff-Radford, NR, Torner, J, Adams, HP, Kassell, NF. Factors associated with hydrocephalus after subarachnoid hemorrhage. Arch. Neurol. 1989;46:744752.Google Scholar
Caplan, LR, Hurst, JW. Cardiac and cardiovascular findings in patients with nervous system diseases. In Caplan, LR, Hurst, JW, Chimowitz, MI (eds.), Clin. Neurocardiol. New York: Marcel Dekker, 1999, pp. 298312.Google Scholar
Lee, VH, Connolly, HM, Fulgham, JR, Manno, EM, Brown, RD Jr, Wijdicks, EF. Takotsubo cardiomyopathy in aneurismal subarachnoid hemorrhage: An underappreciated ventricular dysfunction. J. Neurosurg. 2006;105:264270.Google Scholar
Ciongoli, AK, Poser, CM. Pulmonary edema secondary to subarachnoid hemorrhage. Neurology 1972;22:867870.Google ScholarGoogle Scholar
Takaku, A, Shindo, K, Tanaki, S, et al. Fluid and electrolyte disturbances in patients with intracranial aneurysms. Surg. Neurol. 1979;11:349356.Google ScholarGoogle ScholarGoogle Scholar
Van Gijn, J, Kerr, RS, Rinkel, GJE. Subarachnoid haemorrhage. Lancet 2007;369:306318.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Rinkel, GJE, Djibuti, M, Algra, A, van Gijn, J. Prevalence and risk of rupture of intracranial aneurysms: A systematic review. Stroke 1998;29:251256.Google ScholarGoogle ScholarGoogle Scholar
Van Gijn, J, van Dongen, KJ, Vermeulan, M, et al. Perimesencephalic hemorrhage: A nonaneurysmal and benign form of subarachnoid hemorrhage. Neurology 1985;35:483487.Google ScholarGoogle Scholar
Schievink, WI, Wijdicks, EFM. Pretruncal subarachnoid hemorrhage: An anatomically correct description of the perimesencephalic subarachnoid hemorrhage. Stroke 1997;28:2572.Google Scholar
Kumar, S, Goddeau, RP, Selim, MH, Thomas, A, Schlaug, G, Alhazzani, A, Searls, DE, Caplan, LR. Atraumatic convexal subarachnoid hemorrhage: Clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893899.Google Scholar

Notes and References

Chapter 8 discusses writings about apoplexy in detail.Google Scholar
Grmek, MD. Les maladies à l’aube de la civilisation occidentale. Paris: Payot, 1994.Google Scholar
Poirier, J, Derouesné, C. Apoplexy and Stroke. Cambridge: Cambridge University Press, 1993.Google Scholar
Corvisier, JN. Santé et société en Grèce ancienne. Paris: Economica, 1985Google Scholar
Morgagni, G. De sedibus et causis morborum per anatomen indagates (The seats and causes of diseases investigated by anatomy). London: Millar and T. Cadell, 1769. Morgani’s life and contributions is the topic of Chapter 7.Google Scholar
Lidell, JA. A Treatise on Apoplexy, Cerebral Hemorrhage, Cerebral Embolism, Cerebral Gout, Cerebral Rheumatism, and Epidemic Cerebrospinal Meningitis. New York: William Wood and Co., 1873. Reprinted as part of the Classics of Neurology and Neurosurgery Library. Birmingham, AL: Gryphon Editions, 1990, quote on p. 128.Google Scholar
Charcot, JM, Bouchard, C. Nouvelle recherches sur la pathogenie de l’hemorrhagie cerebrale. Arch. Physiol. Norm. Pathol. 1868;1:110127, 634–665, 725–734.Google ScholarGoogle Scholar
Wepfer, JJ. Observationes anatomicae ex cadaveribus eorum, quos sustulit apoplexia, cum exercitatione de ejus loco affect. Schaffhausen: J. Caspari Suteri, 1658.Google Scholar
Cheyne, J. Cases of Apoplexy and Lethargy with Observations upon the Comatose Diseases. London: J. Moyes printer, 1812.Google Scholar
Dana, CL. Acute bulbar paralysis due to hemorrhage and softening of the pons and medulla with reports of cases and autopsies. Med. Rec. 1903;64:361374.Google Scholar
Gowers, WR. A Manual of Diseases of the Nervous System. London: J. and A. Churchill, 1893.Google Scholar
Osler, W. The Principles and Practice of Medicine, 5th ed. New York: D. Appleton and Co., 1903, pp. 9971008.Google Scholar
The story of the introduction of the sphygmomanometer into medical practice is discussed in Chapter 49.Google Scholar
Kornyey, S. Rapidly fatal pontile hemorrhage: Clinical and anatomic report. Arch. Neurol. Psychiatry 1939;41:793799.Google Scholar
The career and contributions including those related to ICH are covered in Chapter 29 and in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM. Pathology and pathogenesis of intracerebral hemorrhage in pathogenesis and treatment of cerebrovascular disease. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 295317.Google Scholar
Fisher, CM. Pathological observations in hypertensive cerebral hemorrhages. J. Neuropathol. Exp. Neurol. 1971;30:536550.Google Scholar
Fisher, CM. Clinical syndromes in cerebral hemorrhage in pathogenesis and treatment of cerebrovascular disease. In Fields, W (ed.), Proceedings of the Annual Meeting of the Houston Neurological Society. Springfield, IL: Charles C. Thomas, 1961, pp. 318342.Google Scholar
Fisher, CM, Picard, EH, Polak, A, Dalal, P, Ojemann, RG. Acute hypertensive cerebellar hemorrhage: Diagnosis and surgical treatment. J. Nerv. Ment. Dis. 1965;140:3857.Google Scholar
Cole, F, Yates, P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1967;90:759768.Google Scholar
Rosenblum, WI. Miliary aneurysms and “fibrinoid’’ degeneration of cerebral blood vessels. Hum. Pathol. 1977;8:133139.Google Scholar
Mizukami, M, Araki, G, Mihara, H, Tomita, T, Fuginaga, R. Arteriographically visualized extravasation in hypertensive intracerebral hemorrhage; report of seven cases. Stroke 1972; 3: 527537.Google ScholarGoogle Scholar
Caplan, LR. Drugs. In Kase, CS, Caplan, LR (eds.), Intracerebral Hemorrhage. Boston: Butterworth-Heinemann, 1994, pp. 201220.Google Scholar
Caplan, LR, Neely, S, Gorelick, PB. Cold-related intracerebral hemorrhage. Arch. Neurol. 1984;41:227.Google Scholar
Barbas, N, Caplan, LR, Baquis, G, et al. Dental chair intracerebral hemorrhage. Neurology 1987;37:511512.Google ScholarGoogle Scholar
Haines, S, Maroon, J, Janetta, P. Supratentorial intracerebral hemorrhage following posterior fossa surgery. J. Neurosurg. 1978;49:881886.Google ScholarGoogle Scholar
Wilson, SAK, Bruce, AN. Neurology, 2nd ed. London: Butterworth, 1955, pp. 13671383.Google Scholar
Broderick, JP, Brott, TG, Tomsick, T, Barsan, W, Spilker, J. Ultra-early evaluation of intracerebral hemorrhage. J. Neurosurg. 1990; 72: 195199.Google Scholar
Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage: Incidence and time course. Stroke 1996;27:17831787.Google ScholarGoogle Scholar
Oppenheim, G. Uber “drusige Nekrosen” in der Großhirnrinde. Neurol. Centralbl. 1909;28:410413.Google Scholar
Scholz, W. Studien zur pathologie der hirngefabe II: Die drusige entartung der hirnarterienundcapillaren. Z. gesamte Neurol. Psychiatr. 1938;162:694715.Google Scholar
Pantelakis, S. A particular type of senile angiopathy of the central nervous system: Congophilic angiopathy, topography and frequency. Monatsschr. Psychiatr. Neurol. 1954;128:219256.Google Scholar
Jellinger, K. Cerebral hemorrhage in amyloid angiopathy. Ann. Neurol. 1977;1:604.Google ScholarGoogle Scholar
Okazaki, H, Reagan, TJ, Campbell, RJ. Clinicopathologic studies of primary cerebral amyloid angiopathy. Mayo Clin. Proc. 1979;54(1):2231.Google Scholar
Greenberg, SM, Vonsattel, JP, Stakes, JW, Gruber, M, Finklestein, SP. The clinical spectrum of cerebral amyloid angiopathy: Presentations without lobar hemorrhage. Neurology 1993;43(10):20732079.Google Scholar
Knudsen, K, Rosand, AJ, Karluk, D, Greenberg, SM. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston criteria. Neurology 2001;56(4):537539.Google Scholar

Notes and References

Hunter, W. Further observations upon a particular species of aneurysm. Observ. Inquiries 1762;2:390414.Google Scholar
Virchow, R. Die krankhaften Geschwulste. Berlin: Aug. Hirschwald, 1863, vol. 3, pp. 456461. Rudolph Virchow’s career and contributions are discussed in Chapter 13.Google Scholar
Steinheil, SO. Ueber einen Fall von varix aneurysmaticus im bereit der gehirngefoesse. Inaugural dissertation, Wurzburg, 1895.Google Scholar
Cushing, H, Bailey, P. Tumors Arising from the Blood-Vessels of the Brain. Angiomatous Malformations and Hemangioblastomas. Springfield, IL: Charles C. Thomas, 1928. Harvey Cushing is introduced in Chapter 18 on aneurysms and subarachnoid hemorrhages.Google Scholar
Dandy, WE. Arteriovenous aneurysm of the brain. Arch. Surg. 1928;17:190243.Google Scholar
Bucy, Paul C. Percival Bailey 1892–1973. Washington, DC: National Academy of Sciences, 1989.Google Scholar
Pool, JL. Arteriovenous malformations of the brain. In Vinken, PJ, Bruyn, GW (eds.) Handbook of Clinical Neurology, vol. 12, part II: Vascular Diseases of the Nervous System. Amsterdam: North-Holland, 1972, pp. 227266.Google Scholar
Moniz and his role in the introduction of cerebral angiography into clinical medicine are discussed in Chapter 31.Google Scholar
Paterson, JH, McKissock, W. A clinical survey of intracranial angiomas with special reference to their mode of progression and surgical treatment: A report of 110 cases. Brain 1956;79:233266.Google ScholarGoogle ScholarGoogle Scholar
Perret, G, Nishioka, H. Report on the Cooperative Study of Intracranial Aneurysms and Subarachnoid Hemorrhage. Section VI. Arteriovenous malformations. An analysis of 545 cases of cranio-cerebral arteriovenous malformations and fistulae reported to the Cooperative Study. J. Neurosurg. 1966;25:467490.Google Scholar
McCormick, William F., MD. Marquis Who’s Who Top Doctors. Available at https://marquistopdoctors.com/2019/07/01/william-f-mccormick/.Google Scholar
McCormick, WF. The pathology of vascular (“arteriovenous”) malformations. J. Neurosurg. 1966;24:807816.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Rigamonti, D, Hadley, M, Drayer, B, et al. Cerebral cavernous malformations: Incidence and familial occurrence. N. Engl. J. Med. 1988;319:343347.Google ScholarGoogle Scholar
Labauge, P, Denier, C, Bergametti, F, Tournier-Lasserve, E. Genetics of cavernous angiomas. Lancet Neurol. 2007;6(3):237244.Google Scholar
Flemming, KD, Link, MJ, Christianson, TJH, Brown, RD Jr. Prospective hemorrhage risk of intracerebral cavernous malformations. Neurology 2012;78(9):632636.Google Scholar
Truwit, C. Venous angiomas of the brain: History, significance, and imaging findings. Am. J. Radiol. 1992;159:12991307.Google ScholarGoogle ScholarGoogle Scholar
Wilms, G, Bleus, E, Demaerel, P, et al. Simultaneous occurrence of developmental venous anomalies and cavernous angiomas. AJNR Am. J. Neuroradiol. 1994;15:12471254.Google ScholarGoogle Scholar
Kerber, CW, Newton, TH. The macro and microvasculature of the dura mater. Neuroradiology 1973;6:175179.Google Scholar
Castaigne, P, Bories, J, Brunet, P, et al. Les fistules arterio-veineuse meningees pures a drainage veineux cortical. Rev. Neurol. 1976;132:169181.Google ScholarGoogle Scholar
Houser, OW, Campbell, JK, Campbell, RJ. Arteriovenous malformation affecting the transverse dural venous sinus: An acquired lesion. Mayo Clin. Proc. 1979;54:651661.Google Scholar

Notes and References

Garcin, R, Pestel, M. Thrombophlébites cérébrales. Paris: Masson et Cie, 1949.Google Scholar
Ribes, MF. Des recherches faites sur la phlébite. Revue Médicale Française et Etrangère et Journal de Clinique de l’Hôtel-Dieu et de la Charité de Paris 1825;3:541.Google Scholar
Abercrombie, J. Pathological and Practical Researches on Diseases of the Brain and the Spinal Cord. Edinburgh, 1828.Google Scholar
Quinke, H. Ueber meningitis serosa und verwandte Zustande. Dtsch. Z. Nervenheilk. 1896;9:149168.Google Scholar
Hutinel, VH. Contribution à l’étude des troubles de la circulation veineuse chez l’enfant et en particulier chez le nouveau-né. V. Adrien Delahaye et Cie, 1877.Google Scholar
Von Hösslin, R. Die Schwangerschaftlähmungen der Mutter. Arch. für Psychiatrie 1904;38:779; 1905;40:445Google ScholarGoogle Scholar
Purdon Martin, J, Sheehan, HL. Primary thrombosis of cerebral veins (following childbirth). BMJ 1941 Mar 8:349–353.Google Scholar
Stansfield, FR. Puerperal cerebral thrombophlebitis treated by heparin. BMJ 1942 April 4;1(4239):436438.Google Scholar
Eagleton, WP. Cavernous Sinus Thrombophlebitis, and Allied Septic and Traumatic Lesions of the Basal Venous Sinuses. New York: Macmillan, 1926.Google Scholar
Fraser, JS. Septic otitic thrombosis of the cranial blood sinuses and jugular bulb. Edinb. Med. J. 1924 Apr;31(4):T75T89. PMID: 29647779; PMCID: PMC5305757.Google Scholar
Symonds, CP. Otitic hydrocephalus. Brain 1931;54, part I:5572.Google ScholarGoogle Scholar
Tonnellé, ML. Mémoire sur les maladies des sinus veineux de la dure-mère. J. hebd. Méd. 1829;5:337403.Google Scholar
Cruveilhier, J. Anatomie pathologique du corps humain: Descriptions avec figures lithographiées et caloriées des diverses alterations morbides dont le corps humain est susceptible. Paris: JB Bailliere, 1835–1842.Google Scholar
Von Dusch, T. On Thrombosis of the Cerebral Sinus. London: New Sydenham Society, 1861.Google Scholar
Ross, J. A Treatise on the Diseases of the Nervous System, 2nd ed., vol. 2. London, 1883, pp. 385390.Google Scholar
Kalbag, RM, Woolf, AL. Cerebral Venous Thrombosis, vol. 1. London: Oxford University Press, 1967.Google Scholar
Ray, BS, Dunbar, HS, Dotter, CT. Dural sinus venography as an aid to diagnosis in intracranial disease. J. Neurosurg. 1951;8(1):2337.Google Scholar
Moniz, E, Lima, A. Phlébographie cérébrale. Essai de détermination de la vitesse du sang dans les capillaires du cerveau chez l’homme. Comptes rendus des séances de la Société de biologie. Société de biologie de Lisbonne. Séance du 29 Janvier 1932, t CIX, p. 1037.Google ScholarGoogle Scholar
Krayenbühl, HA. Cerebral venous thrombosis; diagnostic value of cerebral angiography. Schweiz. Arch. Neurol. Psychiat. 1954;74:261287.Google ScholarGoogle Scholar
Bousser, MG, Chiras, J, Bories, J, Castaigne, P. Cerebral venous thrombosis: A review of 38 cases. Stroke 1985;16:199213.Google ScholarGoogle ScholarGoogle Scholar
Einhäupl, KM, Villringer, A, Haberl, RL, et al. Clinical spectrum of sinus venous thrombosis. In Einhäupl, K, Kempski, O, Baethmann, A (eds.), Cerebral Sinus Thrombosis. Boston: Springer, 1990, pp. 149155.Google Scholar
Einhäupl, KM, Villringer, A, Mehraein, S, et al. Heparin treatment in sinus venous thrombosis. Lancet 1991;338:597600.Google Scholar
Srinivasan, K. Cerebral venous and arterial thrombosis in pregnancy and puerperium. A study of 135 patients. Angiology 1983 Nov;34(11):731746.Google Scholar
Cantu, C, Barinagarrementeria, F. Cerebral venous thrombosis associated with pregnancy and puerperium. Review of 67 cases. Stroke 1993;24(12):18801884.Google Scholar
Daif, A, Awada, A, Al-Rajeh, S, et al. Cerebral venous thrombosis in adults: A study of 40 cases from Saudi Arabia. Stroke 1995;26(7):11931195.Google Scholar
Preter, M, Tzourio, C, Ameri, A, Bousser, MG. Long-term prognosis in cerebral venous thrombosis: follow-up of 77 patients. Stroke 1996;27(2):243246.Google Scholar
de Bruijn, SF, de Haan, RJ, Stam, J. Clinical features and prognostic factors of cerebral venous sinus thrombosis in a prospective series of 59 patients. For the Cerebral Venous Sinus Thrombosis Study Group. J. Neurol. Neurosurg. Psychiatry 2001;70(1):105108.Google ScholarGoogle Scholar
Ferro, JM, Correia, M, Pontes, C, Baptista, MV, Pita, F. Cerebral vein and dural sinus thrombosis in Portugal: 1980–1998. Cerebrovascular Diseases 2001;11(3):177182.Google ScholarGoogle Scholar
The career and contributions of Gabrielle deVeber are discussed in detail in Chapter 40.Google Scholar
deVeber, G, Andrew, M, Adams, C, et al., Canadian Pediatric Ischemic Stroke Study Group. Cerebral sinovenous thrombosis in children. N. Engl. J. Med. 2001 Aug 9;345(6):417423.Google Scholar
Ferro, JM, Canhão, P, Stam, J, Bousser, MG, Barinagarrementeria, F, ISCVT Investigators. Prognosis of cerebral vein and dural sinus thrombosis: Results of the International Study on Cerebral Vein and Dural Sinus Thrombosis (ISCVT). Stroke 2004;35:664670.Google Scholar
Canhão, P, Ferro, JM, Lindgren, AG, Bousser, MG, Stam, J, Barinagarrementeria, F, ISCVT Investigators. Causes and predictors of death in cerebral venous thrombosis. Stroke 2005;36:17201725.Google Scholar
Ferro, JM, Bacelar-Nicolau, H, Rodrigues, T, et al. Risk score to predict the outcome of patients with cerebral vein and dural sinus thrombosis. Cerebrovasc. Dis. 2009;28(1):3944.Google Scholar
Canhão, P, Cortesão, A, Cabral, M, et al. Are steroids useful to treat cerebral venous thrombosis? Stroke 2008;39(1):105110.Google Scholar
Kenet, G, Kirkham, F, Niederstadt, T, et al. Risk factors for recurrent venous thromboembolism in the European collaborative paediatric database on cerebral venous thrombosis: A multicentre cohort study. Lancet Neurol. 2007 Jul 1;6(7):595603.Google Scholar
Cotlarciuc, I, Marjot, T, Khan, MS, et al. Towards the genetic basis of cerebral venous thrombosis – The BEAST Consortium: A study protocol. BMJ Open 2016 Nov 1;6(11).CrossRefGoogle Scholar
Duman, T, Uluduz, D, Midi, I, et al. A multicenter study of 1144 patients with cerebral venous thrombosis: The VENOST study. J. Stroke Cerebrovasc. Dis. 2017;26(8):18481857.Google Scholar
Wasay, M, Kaul, S, Menon, B, et al. Asian study of cerebral venous thrombosis. J. Stroke Cerebrovasc. Dis. 2019;28(10):104247.Google Scholar

Notes and References

Caplan, LR, Biller, J. Uncommon Causes of Stroke, 3rd ed. Cambridge: Cambridge University Press, 2017.Google Scholar
Nicholls, F. 1761. Observations concerning the body of His Late Majesty. Philos. Trans. Royal Soc. Lond. 1761;52:265275.Google Scholar
Shennan, T. Dissecting Aneurysms, Medical Research Council, Special Report Series 193. London: His Majesty’s Stationery Office, 1934.Google Scholar
Hirst, AE Jr, Johns, VJ, Kime, SW. 1958. Dissecting aneurysm of the aorta: A review of 505 cases. Medicine 1958;37:217279.Google Scholar
Moersch, FP, Sayre, GP. 1950. Neurologic manifestations associated with dissecting aneurysm of the aorta. JAMA 1950;144:11411148.Google Scholar
Ojemann, RG, Fisher, CM, Rich, JC. Spontaneous dissecting aneurysms of the internal carotid artery. Stroke 1972;3:434440.Google Scholar
Fisher, CM. Memoirs of a Neurologist, vol. 1. Rutland, VT: Sharp & Co. Printers, 2006, p. 157.Google ScholarGoogle Scholar
Caplan, LR, Zarins, CK, Hemmati, M. Spontaneous dissection of the extracranial vertebral arteries. Stroke 1985;16:10301038.Google ScholarGoogle ScholarGoogle Scholar
Caplan, LR: Dissections of brain-supplying arteries. Nat. Clin. Pract. Neurol. 2008;4:3442.Google ScholarGoogle ScholarGoogle Scholar
Biller, J, Sacco, RL, Albuquerque, FC, Demaerschalk, BM, Fayad, P, et al. Cervical arterial dissections and association with cervical manipulative therapy: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2014;45:31553174.Google Scholar
Arnold, M, Sturznegger, M. Cervicocephalic arterial dissections. In Biller, J, Caplan, LR (eds.), Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2018, pp. 509533.Google Scholar
Chaves, C, Estol, C, Esnaola, MM, et al. Spontaneous intracranial internal carotid artery dissection. Arch. Neurol. 2002;59:977981.Google Scholar
Caplan, LR, Baquis, G, Pessin, MS, et al. Dissection of the intracranial vertebral artery. Neurology 1988;38:868879.Google ScholarGoogle Scholar
Caplan, LR, Estol, CJ, Massaro, AR. Dissection of the posterior cerebral arteries. Arch. Neurol. 2005;62:11381143.Google Scholar
Caplan, LR. Fibromuscular dysplasia in uncommon causes of stroke. In Biller, J, Caplan, LR (eds.), Uncommon Causes of Stroke. Cambridge: Cambridge University Press, 2018, pp. 575580.Google ScholarGoogle ScholarGoogle Scholar
McCormack, LJ, Hazard, JB, Poutasse, EF. Obstructive lesions of the renal artery associated with remediable hypertension. Amer. J. Pathol. 1958;34:582.Google Scholar
Palubinskas, AJ, Ripley, HR. Fibromuscular hyperplasia in extrarenal arteries. Radiology 1964;82:451455.Google Scholar
Sandok, BA. Fibromuscular dysplasia of the internal carotid artery. In Barnett, HJM (ed.), Neurologic Clinics, vol. 1. Philadelphia: Saunders, 1983, 1726.Google ScholarGoogle Scholar
Olin, JW, Froehlich, J, Gu, X, et al. The United States Registry for Fibromuscular Dysplasia: Results in the first 447 patients. Circulation 2012;125:31823190.Google Scholar
Yonekawa, Y, Handa, H, Okuno, T. Moyamoya disease: Diagnosis, treatment, and recent achievement. In Barnett, HJM, Mohr, JP, Stein, B, Yatsu, FM (eds.), Stroke: Pathophysiology, Diagnosis, and Management, vol. 2. New York: Churchill-Livingstone, 1986, pp. 805829.Google Scholar
Suzuki, J, Kowada, M, Asahi, M, Takaku, A. A study on disease showing singular cerebral-angiographical findings which seem to be new collateral circulation. Proceedings of the 22nd Meeting of the Japan Society, 1963.Google ScholarGoogle ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Suzuki, J, Takaku, A, Kodama, N, et al. An attempt to treat cerebrovascular Moyamoya disease in children. Child Brain 1975;1:193206.Google Scholar
Bruno, A, Adams, HOP, Bilbe, J, et al. Cerebral infarction due to Moyamoya disease in young adults. Stroke 1988;19:826833.Google Scholar
Matsushima, T, Inoue, TK, Suzuki, SO, Inoue, T, Ikezaki, K, Fukui, M, et al. Surgical techniques and the results of a fronto-temporo-parietal combined indirect bypass procedure for children with Moyamoya disease: A comparison with the results of encephalo-duro arterio-synangiosis alone. Clin. Neurol. Neurosurg. 1997;99:123127.Google ScholarGoogle Scholar
Sainte-Rose, C, Oliveira, R, Puget, S, Beni-Adani, L, Boddaert, N, Thorne, J, et al. Multiple burr hole surgery for the treatment of Moyamoya disease in children. J. Neurosurg. 2006;105:437443.Google Scholar
Kamada, F, Aoki, Y, Narisawa, A, et al. A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J. Hum. Genet. 2011;56(1):3440.Google Scholar
Raso, A, Biassoni, R, Mascelli, S, et al. Moyamoya vasculopathy shows a genetic mutational gradient decreasing from East to West. J. Neurosurg. Sci. 2020;64(2):165172.Google Scholar
Call, GK, Fleming, MC, Sealfon, S, Levine, H, Kistler, JP, Fisher, CM. Reversible cerebral segmental vasoconstriction. Stroke 1988;19(9):11591170.Google Scholar
Dodick, DW. Reversible segmental cerebral vasoconstriction (Call-Fleming syndrome): The role of calcium antagonists. Cephalalgia 2003;23(3):163165.Google Scholar
Singhal, AB. Cerebral vasoconstriction without subarachnoid blood: Associated conditions, clinical and neuroimaging characteristics. Ann. Neurol. 2002;52(3S):5960.Google ScholarGoogle ScholarGoogle ScholarGoogle Scholar
Ducros, A, Boukobza, M, Porcher, R, Sarov, M, Valade, D, Bousser, MG. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome: A prospective series of 67 patients. Brain 2007;130(12):30913101.Google ScholarGoogle Scholar
Bogousslavsky, J, Despland, PA, Regli, F, Dubuis, PY. Postpartum cerebral angiopathy: Reversible vasoconstriction assessed by transcranial Doppler ultrasound. Eur. Neurol. 1989;29:102105.Google Scholar

Notes and References

Malpighi, Marcello. De polypo cordis. Bologna, 1666.Google Scholar
Müller, Johannes. Handbuch der Physiologie des Menschen. 4 editions. Coblenz: J. Hölscher, 1835–1840.Google Scholar
Safavi-Abbasi, S, Reis, C, Talley, MC, et al. Rudolf Ludwig Karl Virchow: Pathologist, physician, anthropologist, and politician. Implications of his work for the understanding of cerebrovascular pathology and stroke. Neurosurg. Focus 2006 Jun 15;20(6):E1.Google Scholar
Dickson, BC. Venous thrombosis: On the history of Virchow’s Triad. University of Toronto Medical Journal 2004;166–171.Google Scholar
Virchow, Rudolf. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: A. Hirschwald, 1858.Google Scholar
Virchow, Rudolf. Über die akute Entzündung der Arterien. Arch. Path. Anat. Physiol. 1847;1:272378.Google Scholar
Schiller, F. Concepts of stroke before and after Virchow. Med. Hist. 1970;14:115131.Google Scholar
Schmidt, A. Neue Untersuchungen ueber die asserstoffesgerinnung. Pflügers Archiv für die gesamte Physiologie 1872;6:413538.Google Scholar
Ribatti, D, Crivellato, E. Giulio Bizzozero and the discovery of platelets. Leukemia Research 2007;31(10):13391341.Google Scholar
Boulton, F. A hundred years of cascading – Started by Paul Morawitz (1879–1936), a pioneer of haemostasis and of transfusion. Transfus. Med. 2006;16(1):110.Google Scholar
Morawitz, P. Die Chemie der Blutgerinnung. Ergebnisse der Physiologie 1905;4:307423.CrossRefGoogle Scholar
Dirckx, JH. Armand, J. Quick: Pioneer and prophet of coagulation research. Ann. Intern. Med. 1980;92(4):553558.Google Scholar
Ebel, EM. The Quick Tests: The Life and Work of Dr. Armand J. Quick. Blacksburg, VA: Pocahontas Press, 1995.Google Scholar
Quick, AJ. The development and use of the prothrombin tests. Circulation 1959;19(1):9296.Google Scholar
Rosenberg, RD, Aird, WC. Vascular-bed-specific hemostasis and hypercoagulable states. N. Engl. J. Med. 1999;340(20):15551564.Google Scholar
Bauer, KA. Inherited and acquired hypercoagulable states. In Loscalzo, J, Schafer, AK (eds.), Thrombosis and Hemorrhage, 2nd ed. Baltimore, MD: Williams & Wilkins, 1998, pp. 863900.Google Scholar
Dahlbäck, B, Carlsson, M, Svensson, PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: Prediction of a cofactor to activated protein C. Proc. Natl. Acad. Sci. USA 1993;90:10041008.Google Scholar
Bertina, RM, Koeleman, BP, Koster, T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369(6475):6467.Google Scholar
Voorberg, J, Roelse, J, Koopman, R, et al. Association of idiopathic venous thromboembolism with single point-mutation at Arg506 of factor V. Lancet 1994;343(8912):15351536.Google ScholarGoogle ScholarGoogle Scholar
Koster, MDT, Vandenbrouke, JPV, Rosendaal, FR, de Ronde, H, Bertina, RM. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993;342:15031506.Google Scholar
Rosendaal, FR, Koster, T, Vandenbroucke, JP, Reitsma, PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995;85(6):15041508.Google Scholar
Poort, SR, Rosendaal, FR, Reitsma, PH, Bertina, RM. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996;88(10):36983703.Google Scholar
Leroyer, C, Mercier, B, Oger, E, et al. Prevalence of 20210 A allele of the prothrombin gene in venous thromboembolism patients. Thromb. Haemost. 1998;80(1):4951.Google Scholar
McCully, KS. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969;56(1):111128.Google Scholar
Carson, NAJ, Neill, DW. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch. Dis. Child 1962;37:505513.Google Scholar
Clarke, R, Daly, L, Robinson, K, et al. Hyperhomocysteinemia: An independent risk factor for vascular disease. N. Engl. J. Med. 1991;324(17):11491155.Google ScholarGoogle Scholar
Mudd, SH, Skovby, F, Levy, HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am. J. Hum. Genet. 1985;37:131.Google Scholar
Kang, SS, Zhou, J, Wong, PW, Kowalisyn, J, Strokosch, G. Intermediate homocysteinemia: A thermolabile variant of methylenetetrahydrofolate reductase. Am. J. Hum. Genet. 1988;43(4):414421.Google Scholar
Selhub, J, Jacques, PF, Wilson, PW, Rush, D, Rosenberg, IH. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993;270(22):26932698.Google Scholar
Svenungsson, E, Antovic, A. The antiphospholipid syndrome – often overlooked cause of vascular occlusions? J. Intern. Med. 2020;7(4):349372.Google Scholar
Mueller, JF, Ratnoff, O, Heinle, RW. Observations on the characteristics of an unusual circulating anticoagulant. J. Lab. Clin. Med. 1951;8(2):254261.Google Scholar
Conley, CL, Hartmann, RC. A hemorrhagic disorder caused by circulating anticoagulant in patients with disseminated lupus erythematosus. J. Lab. Clin. Invest. 1952;31:621622.Google ScholarGoogle Scholar
Hughes, GR, Asherson, RA, Khamashta, MA. Antiphospholipid syndrome: Linking many specialties. Ann. Rheum. Dis. 1989;48:355356.Google Scholar
de Groot, PG, Meijers, JCM. β(2)-Glycoprotein I: Evolution, structure and function. J. Thromb. Haemost. 2011;9(7):12751284.Google Scholar
Wilson, WA, Gharavi, AE, Koike, T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: Report of an international workshop. Arthritis Rheum. 1999;42:13091311.Google ScholarGoogle Scholar
Levine, JS, Ware Branch, D, Rauch, J. The antiphospholipid syndrome. N. Engl. J. Med. 2002;346(10):752763.Google Scholar
Ziporen, L, Goldberg, I, Arad, M, et al. Libman-Sacks endocarditis in the antiphospholipid syndrome: Immunopathologic findings in deformed heart valves. Lupus 1996;5(3):196205.Google Scholar
Provenzale, JM, Barboriak, DP, Allen, NB, Ortel, TL. Antiphospholipid antibodies: Findings at arteriography. AJNR Am. J. Neuroradiol. 1998;19:611616.Google Scholar
Levine, SR, Brey, RL, Tilley, BC, Thompson, JL, et al. Antiphospholipid antibodies and subsequent thrombo-occlusive events in patients with ischemic stroke. JAMA 2004;291:576584.Google Scholar
Urbanus, RT, Siegerink, B, Roest, M, Rosendaal, FR, et al. Antiphospholipid antibodies and risk of myocardial infarction and ischemic stroke in young women in the RATIO study: A case control study. Lancet Neurol. 2009;8:9981005.Google Scholar
Asherton, RA. The catastrophic antiphospholipid syndrome. J. Rheumatol. 1992;19:508512.Google Scholar
Bucciarelli, S, Espinosa, G, Cervera, R. The CAPS Registry: Morbidity and mortality of the catastrophic antiphospholipid syndrome. Lupus 2009;18(10):905912.Google Scholar

Notes and References

Wexler, B. Genetics and Genetic Engineering. Detriot, MI: Thomson/Gale Group, 2005.Google Scholar
Charles Darwin: Theory, Book & Quotes. Biography.com. Available at www.biography.com/scientist/charles-darwin.Google Scholar
Mendel, Gregor. Biography.com. Available at www.biography.com/scientist/gregor-mendel.Google Scholar
Edwards, AWF. G. H. Hardy (1908) and Hardy-Weinberg equilibrium. Genetics 2008;179(3):11431150.Google Scholar
Miko, I. Thomas Hunt Morgan and sex linkage. Nature Education 2008;1(1):143. Available at www.nature.com/scitable/topicpage/thomas-hunt-morgan-and-sex-linkage-452.Google Scholar
The Nobel Prize in Physiology or Medicine, 1983. NobelPrize.org. Available at www.nobelprize.org/prizes/medicine/1983/mcclintock/facts/.Google Scholar
The Discovery of the Double Helix, 1951–1953. National Library of Medicine. Profiles in Science: Francis Crick. Available at https://profiles.nlm.nih.gov/spotlight/sc/feature/doublehelix.Google Scholar
The Meselson-Stahl Experiment (1957–1958), by Matthew Meselson and Franklin Stahl. The Embryo Project Encyclopedia. Available at https://embryo.asu.edu/pages/meselson-stahl-experiment-1957-1958-matthew-meselson-and-franklin-stahl.Google Scholar
The Human Genome Project. Genome.gov. Available at www.genome.gov/human-genome-project.Google Scholar
CRISPR. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=CRISPR&oldid=1037242001. Nobel Prize in Chemistry 2020. NobelPrize.org. Available at www.nobelprize.org/prizes/chemistry/2020/press-release/. Isaacson, W. The Code Breaker. New York: Simon & Schuster, 2021.Google Scholar
Lindgren, A. Stroke genetics: A review and update. J. Stroke 2014 Sep;16(3):114123.Google Scholar
Debette, S, Caplan, L. Genetics of stroke. In Caplan, L (ed.), Caplan’s Stroke: A Clinical Approach, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 129144.Google Scholar
Rosand, Jonathan, MD. International Stroke Genetics Consortium. Available at www.strokegenetics.org/node/372.Google Scholar
What is the ISGC? International Stroke Genetics Consortium. Available at www.strokegenetics.org/what_is_isgc. Raffeld, MR, Debette, S, Woo, D. International Stroke Genetics Consortium Update. Stroke. 2016 Apr 1;47(4):11441145.Google Scholar
Chabriat, H, Joutel, A, Tournier-Lasserve, E, Bousser, MG. CADASIL: Yesterday, today, tomorrow. Eur. J. Neurol. 2020;27(8):15881595. The Discovery of CADASIL. BrainFacts.org. Available at www.brainfacts.org/Diseases-and-Disorders/Injury/2019/The-Discovery-of-CADASIL-040319.Google Scholar
Chabriat, H, Joutel, A, Dichgans, M, Tournier-Lasserve, E, Bousser, M-G. CADASIL. Lancet Neurol. 2009;8(7):643653.Google Scholar
Fukutake, T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): From discovery to gene identification. J. Stroke Cerebrovasc. Dis. 2011;20(2):8593.Google Scholar
Bowler, JV, Hachinski, V.Progress in the genetics of cerebrovascular disease: Inherited subcortical arteriopathies. Stroke 1994;25(8):16961698.Google Scholar
Grand, MG, Kaine, J, Fulling, K, Atkinson, J, Dowton, SB, Farber, M, et al. Cerebroretinal vasculopathy: A new hereditary syndrome. Ophthalmology 1988;95(5):649659.Google Scholar
Autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=Autosomal_dominant_retinal_vasculopathy_with_cerebral_leukodystrophy&oldid=989941105.Google Scholar
Gould, DB, Phalan, FC, Breedveld, GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:11671171.Google ScholarGoogle Scholar
Lanfranconi, S, Markus, HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: A systematic review. Stroke 2010;41(8):e513e518.Google Scholar
Sickle cell disease. Wikipedia. Available at https://en.wikipedia.org/wiki/Sickle_cell_disease. Serjeant, GR. One hundred years of sickle cell disease. British Journal of Haematology 2010 Dec;151(5):425–429. https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2141.2010.08419.x.Google Scholar
Mehta, A, Beck, M, Linhart, A, Sunder-Plassmann, G, Widmer, U. History of lysosomal storage diseases: An overview. In Mehta, A, Beck, M, Sunder-Plassmann, G (eds.), Fabry Disease: Perspectives from 5 Years of FOS. Oxford: Oxford PharmaGenesis, 2006. Available at www.ncbi.nlm.nih.gov/books/NBK11615/. Fabry disease. Wikipedia. Available at https://en.wikipedia.org/w/index.php?title=Fabry_disease&oldid=1037635440.Google Scholar
Pavlakis, SG, Phillips, PC, DiMauro, S, De Vivo, DC, Rowland, LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: A distinctive clinical syndrome. Ann. Neurol. 1984;16(4):481488.Google Scholar
Debette, S, Germain, DP. Neurologic manifestations of inherited disorders of connective tissue. Handb. Clin. Neurol. 2014;119:565576.Google Scholar
Cerebral amyloid angiopathy is also discussed in Chapter 19 on intracerebral cemorrhages. See also Biffi, A, Greenberg, SM. Cerebral amyloid angiopathy: A systematic review. J. Clin. Neurol. 2011;7(1):19.Google Scholar

Notes and References

Middlemore, R. A Treatise the Diseases of the Eye and Its Appendages. London: Longmans & Co., 1835, p. 303.Google ScholarGoogle Scholar
Friedenwald, H. The history of the invention and of the development of the ophthalmoscope. JAMA 1902;38;549552.Google Scholar
Gowers, W. A Manual and Atlas of Medical Ophthalmoscopy. London: Churchill, 1879.Google Scholar
Gowers, WR. General principles of the diagnosis of the diseases of the nervous system. Lancet 1892;139:403405; also cited inGoogle ScholarGoogle Scholar
C. Miller Fisher is the subject of Chapter 29. The history of his observations and research on visual loss and stroke and carotid artery disease is contained in Caplan, LR. C. Miller Fisher: Stroke in the 20th Century. New York: Oxford University Press, 2020.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. Trans. Am. Neurol. Assoc. 1951;76:154158.Google Scholar
Fisher, CM: Occlusion of the internal carotid artery. Am. Med. Assoc. Arch. Neurol. Psych. 1951;65:346377.Google ScholarGoogle Scholar
Fisher, CM. Disease of carotid arteries: A clinico-pathological correlation. In Report of the Annual Meeting and Proceedings of the Royal College of Physicians and Surgeons of Canada. October 3–4, 1952, pp. 60–67.Google Scholar
Fisher, CM. Transient monocular blindness associated with hemiplegia. AMA Arch. Ophthalmol. 1952;47:167203.Google Scholar
Fisher, CM. Observations of the fundus oculi in transient monocular blindness. Neurology 1959;9:333347.Google Scholar
Hollenhorst, RW. Significance of bright plaques in the retinal arterioles. JAMA 1961;178:2329.Google ScholarGoogle Scholar
Carotid artery disease and its history are discussed in detail in Chapters 15, 29, 54, and 55.Google Scholar
Ross Russell, RW. Observations on the retinal blood vessels in monocular blindness. Lancet 1961;2:14221428.Google ScholarGoogle ScholarGoogle Scholar
Ross Russell, RW. Observations on intracranial aneurysms. Brain 1963;86:425442.Google ScholarGoogle ScholarGoogle Scholar
Gautier, J-C. Clinical presentation and differential diagnosis of amaurosis fugax. In Bernstein, EF (ed.), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp. 2442.Google Scholar
Atlee, WE. Talc and cornstarch emboli in the eyes of drug abusers. JAMA 1972;219:4951.Google ScholarGoogle Scholar
Hedges, TR. Ophthalmoscopic findings in internal carotid artery occlusion. Am. J. Ophthalmol. 1963;55:10071012.Google ScholarGoogle Scholar
Hayreh, SS. Chronic ocular ischemic syndrome in internal carotid artery occlusive disease. In Bernstein, EF (ed.), Amaurosis Fugax. New York: Springer-Verlag, 1988, pp. 135158.Google ScholarGoogle Scholar
Fisher, CM. Dilated pupil in carotid occlusion. Trans. Am. Neurol. Assoc. 1966;91:230231.Google Scholar
Furlan, AJ, Whisnant, JP, Kearns, TP. Unilateral visual loss in bright light: An unusual symptom of carotid artery occlusive disease. Arch. Neurol. 1979;36: 675676.Google Scholar
Winterkorn, JM, Teman, AJ. Recurrent attacks of amaurosis fugax treated with calcium channel blockers. Ann. Neurol. 1991;30:423425.Google ScholarGoogle Scholar
Burger, SK, Saul, RF, Selhorst, JB, Thurston, SE. Transient monocular blindness caused by vasospasm. N. Engl. J. Med. 1991;325:870873.Google Scholar
Hayreh, SS. Anterior ischemic optic neuropathy. 1. Terminology and pathogenesis. Br. J. Ophthalmol. 1974;58:955963.Google Scholar
Glaser, J. The ischemic optic neuropathies. In Levin, L, Iessell, S (eds.), Principles and Practices of Ophthalmology, vol. 5: Neuroophthalmology, 2nd ed. Philadelphia: WB Saunders, 2000.Google Scholar
Hutchinson, Jonathan. Wikipedia. Available at https://en.wikipedia.org/wiki/Jonathan_Hutchinson.Google Scholar
Hutchinson, J. Diseases of the arteries. Arch. Surg. 1890;1:323333.Google ScholarGoogle Scholar
Capobianco, DJ, Swanson, JW. Historical vignette: Neurological contributions of Bayard T. Horton. Mayo Clin. Proceed. 1998;73(9):912915.Google Scholar
Horton, BT, Magath, TB, Brown, GE. An undescribed form of arteritis of the temporal vessels. Proc. Staff Meet. Mayo Clin. 1932;7:700701.Google ScholarGoogle ScholarGoogle Scholar

Notes and References

Brock, RC. The Life and Work of Astley Cooper. Edinburgh: E&S Livingstone, 1952. Astley Cooper. Wikipedia. Available at https://en.wikipedia.org/wiki/Astley_Cooper.Google ScholarGoogle Scholar
Pearce, JMS. Henry Charlton Bastian (1837–1915): Neglected neurologist and scientist. Eur. Neurol. 2010;63:7378.Google Scholar
Shorvon, S, Compston, A. Queen Square: A History of the National Hospital and its Institute of Neurology. Cambridge: Cambridge University Press, 2019, p. 107.Google Scholar
Bastian, HC. Special diseases of the spinal cord. In Quain, R (ed.), A Dictionary of Medicine: By Various Writers. London: Longmans, Green & Co., 1882, pp. 14791483.Google Scholar
Bastian, HC. Thrombotic softening of the spinal cord: A case of so-called “acute myelitis.” Lancet 1910;2:15311534.Google Scholar
McHenry, LC. Garrison’s History of Neurology. Springfield, IL: Charles C. Thomas, 1969, pp. 331332.Google Scholar
Spiller, WG. Thrombosis of the cervical anterior median spinal artery. J. Nerv. Ment. Dis. 1909;36:601613.Google Scholar
Chung, M-F. A study of thirty-four cases of rapidly developing syphilitic paraplegia. Arch. Derm. Syphilol. 1926;14(2):111121.Google Scholar
The works of Adamkiewitz and colleagues is described in Chapter 12 on vascular anatomy.Google Scholar
Erichsen, John E. On Concussion of the Spine. London: Longmans, Green and Co., 1875.Google Scholar
Blackwood, W. Discussion on vascular disease of the spinal cord. Proc. R. Soc. Med. 1958;51:543.Google Scholar
Bramwell, B. Diseases of the Spinal Cord, 2nd ed. New York: William Wood and Co., 1884.Google Scholar
Dana, CL. Textbook of Nervous Diseases, 4th ed. New York: William Wood and Co., 1897.Google Scholar
Osler, W. The Principles and Practice of Medicine, 5th ed. New York: D. Appleton and Co., 1903.Google Scholar
The topic of carotid artery disease is discussed in Chapters 15, 29, 54, and 55.Google Scholar
Duckett, S, Said, G. Jean Lapresle, MD (1921–2000). Neurology May 2001 May;56(9):1167.Google ScholarGoogle Scholar
Gruner, J, Lapresle, J. Étude anatomo-pathologique des médullopathies d’origine vasculaire. Rev. Neurol. 1962;107:592631.Google Scholar
Garland, H, Greenberg, J, Harriman, DGF. Infarction of the spinal cord. Brain 1966;89:645662.Google Scholar
The history about recognition of aortic dissection is discussed briefly in Chapter 22.Google Scholar
Moersch, FP, Sayre, GP. Neurologic manifestations associated with dissecting aneurysm of the aorta. JAMA 1950;144:11411148.Google Scholar
Hirst, AE Jr, Johns, VJ, Kime, SW. Dissecting aneurysm of the aorta: A review of 505 cases. Medicine 1958;37:217279.Google Scholar
Szilagyi, DE, Hageman, JH, Smith, RF, et al. Spinal cord damage in surgery of the abdominal aorta. Surgery 1978;83(1):3856.Google Scholar
Hamdy, A, Ramadan, ME, El Sayad, HF, et al. Spinal cord injury after thoracic endovascular aortic aneurysm repair. Can. J. Anaesth. 2017;64(12):12181235.Google Scholar
Brewer, LA, Fosburg, RG, Mulder, GA, Verska, JJ. Spinal cord complications following surgery for coarctation of the aorta: A study of 66 cases. J. Thoracic Cardiovasc. Surgery 1972;64(3):368381.Google ScholarGoogle Scholar
Caronna, J, Finkelstein, S. Neurologic syndromes after cardiac arrest. Stroke 1978;9:517520.Google ScholarGoogle Scholar
Azzarelli, B, Roessmann, U. Diffuse “anoxic” myelopathy. Neurology 1977;27:10491052.Google ScholarGoogle Scholar
Zülch, KJ, Kurth-Schumacher, R. The pathogenesis of “intermittent spinovascular insufficiency” (“spinal claudication of Dejerine”) and other vascular syndromes of the spinal cord. Vasc. Surg. 1970;4(2):116136.Google Scholar
Zulch, K. On the circulatory disturbances in the borderline zones of the cerebral and spinal vessels. In Greenfield, JG, Russell, D (eds.), Proceedings of the Second International Congress on Neuropathology, vol. 8. Amsterdam: Excerpta Medica, 1955, pp. 894895.Google ScholarGoogle Scholar
Huckman, M. Memorial: Giovanni Di Chiro (1926–1997). Am. J. Neuroradiol. 1998;19:10071010.Google Scholar
DiChiro, G, Doppman, JL, Ommaya, AK. Radiology of spinal cord arteriovenous malformations. Prog. Neurol. Surg. 1971;4:329354.Google ScholarGoogle ScholarGoogle Scholar
Animoff, Michael Jeffrey. Wikipedia. Available at https://en.wikipedia.org/wiki/Michael_Jeffrey_Aminoff.Google Scholar
Aminoff, MJ, Logue, V. Clinical features of spinal vascular malformations. Brain 1974; 97:197210.Google ScholarGoogle Scholar
Aminoff, MJ. Spinal Angiomas. Oxford: Blackwell, 1976.Google Scholar
Satran, R. Spinal cord infarction. Current concepts of cerebrovascular disease. Stroke 1987;22:1317.Google Scholar
Novy, J, Carruzzo, A, Maeder, P, Bogousslavsky, J. Spinal cord ischemia: Clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch. Neurol. 2006;63:11131120.Google Scholar
Caplan, LR, Massaro, A. Spinal cord vascular disease. In Caplan, LR (ed.), Caplan’s Stroke, 5th ed. Cambridge: Cambridge University Press, 2016, pp. 534543.Google ScholarGoogle ScholarGoogle Scholar
Haribhai, HC, Bhigjee, AI, Bill, PL, et al. Spinal cord schistosomiasis: A clinical, laboratory and radiological study, with a note on therapeutic aspects. Brain 1991;114:709726.Google Scholar
Caplan, LR, Noronha, A, Amico, L. Syringomyelia and arachnoiditis. J. Neurol. Neurosurg. Psychiatry 1990;53:106113.Google Scholar
Brust, JCM. Stroke and substance abuse. In Caplan, LR (ed.), Uncommon Causes of Stroke, 2nd ed. Cambridge: Cambridge University Press, 2008, pp. 365370.Google Scholar
Chang, CW, Donovan, DJ, Liem, LK, et al. Surfers’ myelopathy: A case series of 19 novice surfers with nontraumatic myelopathy. Neurology 2012;79(22):21712176.Google Scholar
Nakamoto, BK, Siu, AM, Hashiba, KA, Sinclair, BT, Baker, BJ, Gerber, MS, McMurtray, AM, Pearce, AM, Pearce, JW. Surfer’s myelopathy: A radiologic study of 23 cases. Am. J. Neurorad. 2013;34(12):23932398.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×