Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T04:19:14.351Z Has data issue: false hasContentIssue false

Association between cortical thickness or surface area and divergent thinking in patients with bipolar disorder

Published online by Cambridge University Press:  16 April 2024

Pei-Chi Tu*
Affiliation:
Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
Wan-Chen Chang
Affiliation:
Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
Yi-Hsuan Kuan
Affiliation:
Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
Mu-Hong Chen
Affiliation:
Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
Tung-Ping Su
Affiliation:
Department of Psychiatry, Faculty of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
*
Corresponding author: Pei-Chi Tu; Email: peichitu@gmail.com

Abstract

Objective:

Divergent thinking is a critical creative cognitive process. Its neural mechanisms have been well-studied through structural and functional imaging in healthy individuals but are less explored in patients with bipolar disorder (BD). Because of the traditional link between creativity and BD, this study investigated the structural correlates of divergent thinking in patients with BD through surface-based morphometry.

Methods:

Fifty-nine patients diagnosed with BD I or BD II (35.3 ± 8.5 years) and 56 age- and sex-matched controls (33.9 ± 7.4 years) were recruited. The participants underwent structural magnetic resonance imaging and an evaluation of divergent thinking by using the Chinese version of the Abbreviated Torrance Test for Adults (ATTA). FreeSurfer 7.0 was used to generate thickness and surface area maps for each participant. Brainwise regression of the association between cortical thickness or surface area and ATTA performance was conducted using general linear models.

Results:

Divergent thinking performance did not differ significantly between the patients with BD and the healthy controls. In these patients, total ATTA score was negatively correlated with cortical thickness in the right middle frontal gyrus, right occipital, and left precuneus but positively correlated with the surface area of the right superior frontal gyrus. By contrast, total ATTA scores and cortical thickness or surface area were not significantly correlated among the controls.

Conclusion:

The findings indicate that divergent thinking involves cerebral structures for executive control, mental imagery, and visual processing in patients with BD, and the right prefrontal cortex might be the most crucial of these structures.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Scandinavian College of Neuropsychopharmacology

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beaty, RE, Thakral, PP, Madore, KP, Benedek, M, Schacter, DL (2018) Core network contributions to remembering the past, imagining the future, and thinking creatively. Journal of Cognitive Neuroscience 30(12), 19391951.CrossRefGoogle ScholarPubMed
Brawer, J and Amir, O (2021) Mapping the ‘funny bone’: neuroanatomical correlates of humor creativity in professional comedians. Social Cognitive and Affective Neuroscience 16(9), 915925.CrossRefGoogle ScholarPubMed
Cavanna, AE and Trimble, MR (2006) The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129(3), 564583.CrossRefGoogle ScholarPubMed
Chen, CY (2006) Abbreviated Torrance Test for Adults manual in Chinese Version. Taipei: Psychology Publisher.Google Scholar
Chen, Q-L, Xu, T, Yang, W-J, Li, Y-D, Sun, J-Z, Wang, K-C, Beaty, RE, Zhang, Q-L, Zuo, X-N, Qiu, J (2015) Individual differences in verbal creative thinking are reflected in the precuneus. Neuropsychologia 75, 441449.CrossRefGoogle ScholarPubMed
Chrysikou, EG, Wertz, C, Yaden, DB, Kaufman, SB, Bacon, D, Wintering, NA, Jung, RE, Newberg, AB (2020) Differences in brain morphometry associated with creative performance in high- and average-creative achievers. Neuroimage 218, 116921.CrossRefGoogle ScholarPubMed
Cogdell‐Brooke, LS, Sowden, PT, Violante, R, Thompson, HE (2020) A meta-analysis of functional magnetic resonance imaging studies of divergent thinking using activation likelihood estimation. Human Brain Mapping 41(17), 50575077.CrossRefGoogle ScholarPubMed
Dale, AM, Fischl, B and Sereno, MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9(2), 179194.CrossRefGoogle ScholarPubMed
de Souza, LC, Guimarães, HC, Teixeira, AL, Caramelli, P, Levy, R, Dubois, B, Volle, E (2014) Frontal lobe neurology and the creative mind. Frontiers in Psychology 5, 761.CrossRefGoogle ScholarPubMed
Eliot, L, Beery, AK, Jacobs, EG, et al. (2023) Why and how to account for sex and gender in brain and behavioral research. Journal of Neuroscience 43(37), 63446356.CrossRefGoogle ScholarPubMed
Fink, A, Koschutnig, K, Hutterer, L, et al. (2014) Gray matter density in relation to different facets of verbal creativity. Brain Structure & Function 219(4), 12631269.CrossRefGoogle ScholarPubMed
First, MB, Spitzer, RL, Gibbon, M, Janet, BWW (1997) User’s Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version. American Psychiatric Press.Google Scholar
Fischl, B and Dale, AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of The National Academy of Sciences of The United States of America 97(20), 1105011055.CrossRefGoogle ScholarPubMed
Fischl, B, Sereno, MI and Dale, AM (1999a) Cortical surface-based analysis: ii: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2), 195207.CrossRefGoogle Scholar
Fischl, B, Sereno, MI, Tootell, RBH, and Dale, AM (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping 8, 272284.3.0.CO;2-4>CrossRefGoogle Scholar
Goff, K and Torrance, EP (2002) Abbreviated Torrance Test for Adults manual. Bensenville, IL: Scholastic Testing Service, Inc.Google Scholar
Hamilton, M (1960) A rating scale for depression. Journal of Neurology, Neurosurgery & Psychiatry 23(1), 5662.CrossRefGoogle ScholarPubMed
Jauk, E, Neubauer, AC, Dunst, B, Fink, A, Benedek, M (2015) Gray matter correlates of creative potential: a latent variable voxel-based morphometry study. Neuroimage 111, 312320.CrossRefGoogle ScholarPubMed
Jung, RE, Segall, JM, Jeremy Bockholt, H, Flores, RA, Smith, SM, Chavez, RS, Haier, RJ (2010) Neuroanatomy of creativity. Human Brain Mapping 31(3), 398409.CrossRefGoogle ScholarPubMed
Kubera, KM, Schmitgen, MM, Maier-Hein, KH, Thomann, PA, Hirjak, D, Wolf, RC (2018) Differential contributions of cortical thickness and surface area to trait impulsivity in healthy young adults. Behavioural Brain Research 350, 6571.CrossRefGoogle ScholarPubMed
Kuperberg, GR, Broome, MR, McGuire, PK, David, AS, Eddy, M, Ozawa, F, Goff, D, West, WC, Williams, SCR, van der Kouwe, AJW, Salat, DH, Dale, AM, Fischl, B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60(9), 878888.CrossRefGoogle ScholarPubMed
Kyaga, S, Landén, M, Boman, M, Hultman, CM, Långström, N, Lichtenstein, P (2013) Mental illness, suicide and creativity: 40-year prospective total population study. Journal of Psychiatric Research 47(1), 8390.CrossRefGoogle ScholarPubMed
Lu, LH, Dapretto, M, O’Hare, ED, Kan, E, McCourt, ST, Thompson, PM, Toga, AW, Bookheimer, SY, Sowell, ER (2009) Relationships between brain activation and brain structure in normally developing children. Cerebral Cortex 19(11), 25952604.CrossRefGoogle ScholarPubMed
Madore, KP, Thakral, PP, Beaty, RE, Addis, DR, Schacter, DL (2017) Neural mechanisms of episodic retrieval support divergent creative thinking. Cerebral Cortex 29(1), 150166.CrossRefGoogle Scholar
Mayseless, N, Eran, A and Shamay-Tsoory, SG (2015) Generating original ideas: the neural underpinning of originality. Neuroimage 116, 232239.CrossRefGoogle ScholarPubMed
Minds, S (1969) Manual of SA Creativity Test. Tokyo, Japan: Tokyo Shinri Corporation.Google Scholar
Pintzka, CWS, Hansen, TI, Evensmoen, HR, Håberg, AK (2015) Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study. Frontiers in Neuroscience 9, 238.CrossRefGoogle Scholar
Richards, R, Kinney, DK, Lunde, I, Benet, M, Merzel, APC (1988) Creativity in manic-depressives, cyclothymes, their normal relatives, and control subjects. Journal of Abnormal Psychology 97(3), 281288.CrossRefGoogle ScholarPubMed
Rosas, HD, Liu, AK, Hersch, S, Glessner, M, Ferrante, RJ, Salat, DH, van der Kouwe, A, Jenkins, BG, Dale, AM, Fischl, B (2002) Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 58(5), 695701.CrossRefGoogle ScholarPubMed
Santosa, CM, Strong, CM, Nowakowska, C, Wang, PW, Rennicke, CM, Ketter, TA (2007) Enhanced creativity in bipolar disorder patients: a controlled study. Journal of Affective Disorders 100(1-3), 3139.CrossRefGoogle ScholarPubMed
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R and Dunbar, GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59, 2233.Google ScholarPubMed
Shofty, B, Gonen, T, Bergmann, E, Mayseless, N, Korn, A, Shamay-Tsoory, S, Grossman, R, Jalon, I, Kahn, I, Ram, Z (2022) The default network is causally linked to creative thinking. Molecular Psychiatry 27(3), 18481854.CrossRefGoogle ScholarPubMed
Sun, J, Chen, Q, Zhang, Q, Li, Y, Li, H, Wei, D, Yang, W, Qiu, J (2016) Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training. Human Brain Mapping 37(10), 33753387.CrossRefGoogle ScholarPubMed
Takeuchi, H, Kimura, R, Tomita, H, Taki, Y, Kikuchi, Y, Ono, C, Yu, Z, Matsudaira, I, Nouchi, R, Yokoyama, R, Kotozaki, Y, Nakagawa, S, Hanawa, S, Iizuka, K, Sekiguchi, A, Araki, T, Miyauchi, CM, Ikeda, S, Sakaki, K, dos S. Kawata, KH, Nozawa, T, Yokota, S, Magistro, D, Imanishi, T, Kawashima, R (2021) Polygenic risk score for bipolar disorder associates with divergent thinking and brain structures in the prefrontal cortex. Human Brain Mapping 42(18), 60286037.CrossRefGoogle ScholarPubMed
Takeuchi, H, Taki, Y, Sassa, Y, Hashizume, H, Sekiguchi, A, Fukushima, A, Kawashima, R (2010) Regional gray matter volume of dopaminergic system associate with creativity: evidence from voxel-based morphometry. Neuroimage 51(2), 578585.CrossRefGoogle ScholarPubMed
Thakral, PP, Madore, KP, Kalinowski, SE, Schacter, DL (2020) Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. Proceedings of the National Academy of Sciences 117(23), 1272912740.CrossRefGoogle ScholarPubMed
Tian, F, Chen, Q, Zhu, W, Wang, Y, Yang, W, Zhu, X, Tian, X, Zhang, Q, Cao, G, Qiu, J (2018) The association between visual creativity and cortical thickness in healthy adults. Neuroscience Letters 683, 104110.CrossRefGoogle ScholarPubMed
Tu, P-C, Kuan, Y-H, Li, C-T, Su, T-P (2017) Structural correlates of creative thinking in patients with bipolar disorder and healthy controls-a voxel-based morphometry study. Journal of Affective Disorders 215, 218224.CrossRefGoogle ScholarPubMed
van Eijk, L, Zhu, D, Couvy-Duchesne, B, Strike, LT, Lee, AJ, Hansell, NK, Thompson, PM, de Zubicaray, GI, McMahon, KL, Wright, MJ, Zietsch, BP (2021) Are sex differences in human brain structure associated with sex differences in behavior? Psychological Science 32(8), 11831197.CrossRefGoogle ScholarPubMed
Woo, Y, Kang, W, Kang, Y, Kim, A, Han, K-M, Tae, W-S, Ham, B-J (2021) Cortical thickness and surface area abnormalities in bipolar I and II disorders. Psychiatry Investigation 18(9), 850863.CrossRefGoogle ScholarPubMed
Wu, X, Yang, W, Tong, D, Sun, J, Chen, Q, Wei, D, Zhang, Q, Zhang, M, Qiu, J (2015) A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping 36(7), 27032718.CrossRefGoogle ScholarPubMed
Yalin, N, Saricicek, A, Hidiroglu, C, Zugman, A, Direk, N, Ada, E, Cavusoglu, B, Er, Aşe, Isik, G, Ceylan, D, Tunca, Z, Kempton, MJ, Ozerdem, A (2019) Cortical thickness and surface area as an endophenotype in bipolar disorder type I patients and their first-degree relatives. NeuroImage: Clinical 22, 101695.CrossRefGoogle ScholarPubMed
Young, RC, Biggs, JT, Ziegler, VE, Meyer, DA (1978) A rating scale for mania: reliability, validity and sensitivity. British Journal of Psychiatry 133(5), 429435.CrossRefGoogle ScholarPubMed
Zhu, F, Zhang, Q and Qiu, J (2013) Relating inter-individual differences in verbal creative thinking to cerebral structures: an optimal voxel-based morphometry study. PLoS One 8(11), e79272.CrossRefGoogle ScholarPubMed
Supplementary material: File

Tu et al. supplementary material

Tu et al. supplementary material
Download Tu et al. supplementary material(File)
File 363.8 KB