Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-18T03:35:10.405Z Has data issue: false hasContentIssue false

Stable systems with power law conditions for Poisson hail

Published online by Cambridge University Press:  22 August 2023

Thomas Mountford*
Affiliation:
École Polytechnique Fédérale de Lausanne
Zhe Wang*
Affiliation:
École Polytechnique Fédérale de Lausanne
*
*Postal address: MA B1 517 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland.
*Postal address: MA B1 517 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland.

Abstract

We consider Poisson hail models and characterize up to boundaries the collection of critical moments which guarantee stability. In particular, we treat the case of infinite speed of propagation.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccelli, F., Chang-Lara, H. and Foss, S. (2016). Shape theorems for Poisson hail on a bivariate ground. Adv. Appl. Prob. 48, 525543.CrossRefGoogle Scholar
Baccelli, F. and Foss, S. (2011). Poisson hail on a hot ground. J. Appl. Prob. 48A, 343366.CrossRefGoogle Scholar
Cox, J. T., Gandolfi, A., Griffin, P. and Kesten, H. (1993). Greedy lattice animals I: upper bound. Ann. Prob. 13, 11511169.Google Scholar
Foss, S., Konstantopoulos, T. and Mountford, T. (2018). Power law condition for stability of Poisson hail. J. Appl. Prob. 31, 681704.Google Scholar
Martin, J. (2002). Linear growth for greedy lattice animals. Stoch. Process. Appl. 98, 4366.CrossRefGoogle Scholar
Wang, Z. (2022). Stable systems with power law conditions for Poisson hail II. In preparation.Google Scholar