Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-31T10:24:49.826Z Has data issue: false hasContentIssue false

$\beta$-wave-based exploration of sensitive EEG features and classification of situation awareness

Published online by Cambridge University Press:  09 May 2024

C. Feng
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China Tianmushan Laboratory, Hangzhou, China
S. Liu
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China
X. Wanyan*
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China
Y. Dang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China
Z. Wang
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China
C. Qian
Affiliation:
School of Aeronautic Science and Engineering, Beihang University, Beijing, China
*
Corresponding author: X. Wanyan; Email: wanyanxiaoru@buaa.edu.cn

Abstract

The purpose of this study was to explore the electroencephalogram (EEG) features sensitive to situation awareness (SA) and then classify SA levels. Forty-eight participants were recruited to complete an SA standard test based on the multi-attribute task battery (MATB) II, and the corresponding EEG data and situation awareness global assessment technology (SAGAT) scores were recorded. The population with the top 25% of SAGAT scores was selected as the high-SA level (HSL) group, and the bottom 25% was the low-SA level (LSL) group. The results showed that (1) for the relative power of $\beta$1 (16–20Hz), $\beta$2 (20–24Hz) and $\beta$3 (24–30Hz), repeated measures analysis of variance (ANOVA) in three brain regions (Central Central-Parietal, and Parietal) × three brain lateralities (left, midline, and right) × two SA groups (HSL and LSL) showed a significant main effect for SA groups; post hoc comparisons revealed that compared with LSL, the above features of HSL were higher. (2) for most ratio features associated with $\beta$1$\beta$3, ANOVA also revealed a main effect for SA groups. (3) EEG features sensitive to SA were selected to classify SA levels with small-sample data based on the general supervised machine learning classifiers. Five-fold cross-validation results showed that among the models with easy interpretability, logistic regression (LR) and decision tree (DT) presented the highest accuracy (both 92%), while among the models with hard interpretability, the accuracy of random forest (RF) was 88.8%, followed by an artificial neural network (ANN) of 84%. The above results suggested that (1) the relative power of $\beta$1$\beta$3 and their associated ratios were sensitive to changes in SA levels; (2) the general supervised machine learning models all exhibited good accuracy (greater than 75%); and (3) furthermore, LR and DT are recommended by combining the interpretability and accuracy of the models.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Endsley, M.R. Situation awareness global assessment technique (SAGAT), Proceedings of the IEEE 1988 National Aerospace and Electronics Conference, 1988, pp 789795. https://doi.org/10.1109/NAECON.1988.195097 CrossRefGoogle Scholar
Sant’Anna, D.A.L.M.D. and Hilal, A.V.G.D. The impact of human factors on pilots’ safety behavior in offshore aviation companies: A brazilian case, Safety Sci., 2021, 140, p 105272. https://doi.org/10.1016/j.ssci.2021.105272 CrossRefGoogle Scholar
Wiegmann, D.A. and Shappell, S.A. A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System, Ashgate, 2003. Google Scholar
Endsley, M.R. A taxonomy of situation awareness errors, in Fuller, R., Johnston, N. and McDonald, N. (Eds), Human Factors in Aviation Operations, Avebury Aviation, Ashgate Publishing Ltd, 1995a, pp. 287292.Google Scholar
Schwarz, J. and Fuchs, S. Validating a “real-time assessment of multidimensional user state” (RASMUS) for adaptive human-computer interaction, 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp 704709. https://doi.org/10.1109/SMC.2018.00128 CrossRefGoogle Scholar
Schwerd, S. and Schulte, A. Operator state estimation to enable adaptive assistance in manned-unmanned-teaming, Cognit. Syst. Res., 2021, 67, pp 7383. https://doi.org/10.1016/j.cogsys.2021.01.002 CrossRefGoogle Scholar
Feng, C., Liu, S., Wanyan, X., Chen, H., Min, Y. and Ma, Y. EEG feature analysis related to situation awareness assessment and discrimination, Aerospace, 2022, 9, (10), p 546. https://doi.org/10.3390/aerospace9100546 CrossRefGoogle Scholar
Kästle, J.L., Anvari, B., Krol, J. and Wurdemann, H.A. Correlation between situational awareness and EEG signals, Neurocomputing, 2021, 432, pp 7079. https://doi.org/10.1016/j.neucom.2020.12.026 CrossRefGoogle Scholar
Gawron, V.J. Human Performance, Workload, and Situational Awareness Measures Handbook, 2nd ed, 2019.Google Scholar
Smith, K., Endsley, T. and Clark, T. Physiological correlates of objective situation awareness measurements, 2023 IEEE Aerospace Conference, 2023, pp 16. https://doi.org/10.1109/AERO55745.2023.10115788 CrossRefGoogle Scholar
Bracken, B., Tobyne, S., Winder, A., Shamsi, N. and Endsley, M.R. Can situation awareness be measured physiologically?, in Ayaz, H., Asgher, U. and Paletta, L. (Eds), Advances in Neuroergonomics and Cognitive Engineering, vol. 259, Springer International Publishing, 2021, pp 3138. https://doi.org/10.1007/978-3-030-80285-1_4 CrossRefGoogle Scholar
Zhang, T., Yang, J., Liang, N., Pitts, B.J., Prakah-Asante, K.O., Curry, R., Duerstock, B.S., Wachs, J.P. and Yu, D. Physiological measurements of situation awareness: A systematic review, Hum. Factors, 2020, pp 122. https://doi.org/10.1177/0018720820969071 Google ScholarPubMed
Mehta, R.K., Peres, S.C., Shortz, A.E., Hoyle, W., Lee, M., Saini, G., Chan, H.-C. and Pryor, M.W. Operator situation awareness and physiological states during offshore well control scenarios, J. Loss Prev. Process Ind., 2018, 55, pp 332337. https://doi.org/10.1016/j.jlp.2018.07.010 CrossRefGoogle Scholar
Saus, E.-R., Johnsen, B.H., Eid, J., Riisem, P.K., Andersen, R. and Thayer, J.F. The effect of brief situational awareness training in a police shooting simulator: An experimental study, Mil. Psychol., 2006, 18, (sup1), pp S3S21. https://doi.org/10.1207/s15327876mp1803s_2 CrossRefGoogle Scholar
Sætrevik, B. A controlled field study of situation awareness measures and heart rate variability in emergency handling teams, Proc. Hum. Factors Ergon. Soc. Ann. Meet., 2012, 56, (1), pp 20062010. https://doi.org/10.1177/1071181312561419 CrossRefGoogle Scholar
de Winter, J.C.F., Eisma, Y.B., Cabrall, C.D.D., Hancock, P.A. and Stanton, N.A. Situation awareness based on eye movements in relation to the task environment, Cognit. Technol. Work, 2019, 21, (1), pp 99111. https://doi.org/10.1007/s10111-018-0527-6 CrossRefGoogle Scholar
van de Merwe, K., van Dijk, H. and Zon, R. Eye movements as an indicator of situation awareness in a flight simulator experiment, Int. J. Aviat. Psychol., 2012, 22, (1), pp 7895. https://doi.org/10.1080/10508414.2012.635129 CrossRefGoogle Scholar
Moore, K. and Gugerty, L. Development of a novel measure of situation awareness: The case for eye movement analysis, The Annual Meeting, 2010. CrossRefGoogle Scholar
Li, R., Wang, L. and Sourina, O. Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness, Methods, 2021, S1046202321001018. https://doi.org/10.1016/j.ymeth.2021.04.009 Google ScholarPubMed
Corace, K., Baysarowich, R., Willows, M., Baddeley, A., Schubert, N. and Knott, V. Resting state EEG activity related to impulsivity in people with prescription opioid use disorder, Psychiatry Res. Neuroimaging, 2022, 321, p 111447. https://doi.org/10.1016/j.pscychresns.2022.111447 CrossRefGoogle ScholarPubMed
Shokouh Alaei, H., Ghoshuni, M. and Vosough, I. Directed brain network analysis in anxious and non-anxious depression based on EEG source reconstruction and graph theory, Biomed. Signal Process. Control, 2023, 83, p 104666. https://doi.org/10.1016/j.bspc.2023.104666 CrossRefGoogle Scholar
Li, R., Lan, Z., Cui, J., Sourina, O. and Wang, L. EEG-based recognition of driver state related to situation awareness using graph convolutional networks, Proceedings of the 2020 International Conference on Cyberworlds (CW). 2020 International Conference on Cyberworlds (CW), Caen, France, 2020. https://doi.org/10.1109/CW49994.2020.00037 CrossRefGoogle Scholar
Li, Q., Ng, K.K.H., Yu, S.C.M., Yiu, C.Y. and Lyu, M. Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks, Knowl.-Based Syst., 2023, 260, p 110179. https://doi.org/10.1016/j.knosys.2022.110179 CrossRefGoogle Scholar
Osisanwo, F., Akinsola, J., Awodele, O., Hinmikaiye, J., Olakanmi, O. and Akinjobi, J. Supervised machine learning algorithms: Classification and comparison, Int. J. Comput. Trends Technol. (IJCTT), 2017, 48, (3), pp 128138.Google Scholar
Santiago-Espada, Y., Myer, R.R., Latorella, K.A. and Comstock, J.R. The Multi-Attribute Task Battery II (MATB-II) software for human performance and workload research: A user’s guide (NASA/TM–2011-217164), National Aeronautics and Space Administration,Langley Research Center, 2011. Google Scholar
Endsley, M.R. Measurement of situation awareness in dynamic systems, Hum. Factors, 1995b, 37, (1), pp 6584. https://doi.org/10.1518/001872095779049499 CrossRefGoogle Scholar
Billeci, L., Callara, A.L., Guiducci, L., Prosperi, M., Morales, M.A., Calderoni, S., Muratori, F. and Santocchi, E. A randomized controlled trial into the effects of probiotics on electroencephalography in preschoolers with autism, Autism, 2023, 27, (1), pp 117132. https://doi.org/10.1177/13623613221082710 CrossRefGoogle ScholarPubMed
Nakuci, J., Covey, T.J., Shucard, J.L., Shucard, D.W. and Muldoon, S.F. Single trial variability in neural activity during a working memory task reveals multiple distinct information processing sequences, NeuroImage, 2023, 269, p 119895. https://doi.org/10.1016/j.neuroimage.2023.119895 CrossRefGoogle ScholarPubMed
Mognon, A., Jovicich, J., Bruzzone, L. and Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features, Psychophysiology, 2011, 48, (2), pp 229240.CrossRefGoogle ScholarPubMed
Nayak, C.S. and Anilkumar, A.C. EEG Normal Waveforms, 2023.Google Scholar
Park, Y.-M., Che, H.-J., Im, C.-H., Jung, H.-T., Bae, S.-M. and Lee, S.-H. Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease, Neurosci. Res., 2008, 62, (2), pp 112117. https://doi.org/10.1016/j.neures.2008.06.009 CrossRefGoogle ScholarPubMed
Frohlich, J., Toker, D. and Monti, M.M. Consciousness among delta waves: A paradox?, Brain, 2021, 144, (8), pp 22572277. https://doi.org/10.1093/brain/awab095 CrossRefGoogle ScholarPubMed
Trapsilawati, F., Herliansyah, M.K., Nugraheni, A.S.A.N.S., Fatikasari, M.P. and Tissamodie, G. EEG-based analysis of air traffic conflict: Investigating controllers’ situation awareness, stress level and brain activity during conflict resolution, J. Navig., 2020, 73, (3), pp 678696. https://doi.org/10.1017/S0373463319000882 CrossRefGoogle Scholar
Wanyan, X., Zhuang, D., Lin, Y., Xiao, X. and Song, J.-W. Influence of mental workload on detecting information varieties revealed by mismatch negativity during flight simulation, Int. J. Ind. Ergon., 2018, 64, pp 17. https://doi.org/10.1016/j.ergon.2017.08.004 CrossRefGoogle Scholar
Armstrong, R.A. Recommendations for analysis of repeated-measures designs: Testing and correcting for sphericity and use of MANOVA and mixed model analysis, Ophthalmic Physiol. Opt., 2017, 37, (5), pp 585593. https://doi.org/10.1111/opo.12399 CrossRefGoogle ScholarPubMed
Mishra, P., Singh, U., Pandey, C., Mishra, P. and Pandey, G. Application of student’s t-test, analysis of variance, and covariance, Ann. Card. Anaesth., 2019, 22, (4), p 407. https://doi.org/10.4103/aca.ACA_94_19 CrossRefGoogle ScholarPubMed
Uddin, S., Khan, A., Hossain, M.E. and Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction, BMC Med. Inf. Decis. Making, 2019, 19, (1), p 281. https://doi.org/10.1186/s12911-019-1004-8 CrossRefGoogle ScholarPubMed
Ren, M., Xu, J., Zhao, J., Zhang, S., Wang, W., Xu, S., Zhou, Z., Chen, X., Chen, S., Li, Y. and Shan, C. The modulation of working-memory performance using gamma-electroacupuncture and Theta-electroacupuncture in healthy adults, Evidence-Based Complementary Altern. Med., 2021, 2021, pp 111. https://doi.org/10.1155/2021/2062718 Google ScholarPubMed
Hou, L., Chen, L. and Zhou, R. Premenstrual syndrome is associated with an altered spontaneous electroencephalographic delta/beta power ratio across the menstrual cycle, Int. J. Psychophysiol., 2022, 181, pp 6472. https://doi.org/10.1016/j.ijpsycho.2022.08.007 CrossRefGoogle ScholarPubMed
Yi Wen, T. and Mohd Aris, S.A. Electroencephalogram (EEG) stress analysis on alpha/beta ratio and theta/beta ratio, Indones. J. Electr. Eng. Comput. Sci., 2020, 17, (1), p 175. https://doi.org/10.11591/ijeecs.v17.i1.pp175-182 Google Scholar
Zhao, C., Zhao, M., Liu, J. and Zheng, C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator, Accid. Anal. Prev., 2012, 45, pp 8390. https://doi.org/10.1016/j.aap.2011.11.019 CrossRefGoogle Scholar
Endsley, M.R. A systematic review and meta-analysis of direct objective measures of situation awareness: A comparison of SAGAT and SPAM, Hum. Factors, 2021, 63, (1), pp 124150. https://doi.org/10.1177/0018720819875376 CrossRefGoogle ScholarPubMed
Hopko, S.K., Khurana, R., Mehta, R.K. and Pagilla, P.R. Effect of cognitive fatigue, operator sex, and robot assistance on task performance metrics, workload, and situation awareness in human-robot collaboration, IEEE Rob. Autom. Lett., 2021, 6, (2), pp 30493056. https://doi.org/10.1109/LRA.2021.3062787 CrossRefGoogle Scholar
Sneddon, A., Mearns, K. and Flin, R. Stress, fatigue, situation awareness and safety in offshore drilling crews, Safety Sci., 2013, 56, pp 8088. https://doi.org/10.1016/j.ssci.2012.05.027 CrossRefGoogle Scholar
Schmidt, P., Biessmann, F. and Teubner, T. Transparency and trust in artificial intelligence systems, J. Decis. Syst., 2020, 29, (4), pp 260278. https://doi.org/10.1080/12460125.2020.1819094 CrossRefGoogle Scholar
Win, A.F.T., Jacobs, N., Muttram, R.I., Olszewska, J.I., Rajabiyazdi, F., Theodorou, A., Underwood, M.A., Wortham, R.H. and Watson, E. IEEE P7001: A proposed standard on transparency, Front. Rob. AI, 2021, 8, p 11.Google Scholar
Supplementary material: File

Feng et al. supplementary material

Feng et al. supplementary material
Download Feng et al. supplementary material(File)
File 52.6 KB