Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-31T16:40:18.169Z Has data issue: false hasContentIssue false

Effects of backpressure on unstart and restart characteristics of a supersonic inlet

Published online by Cambridge University Press:  20 April 2023

K. Wang*
Affiliation:
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China
J.Y. Wang
Affiliation:
School of Aeronautics and Astronautics, Sun Yat-sen University, Guangzhou, China
H.X. Huang
Affiliation:
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China
L.R. Xie
Affiliation:
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Y. Liu
Affiliation:
Chinese Fight Test Establishment, Xian, China
H.J. Tan
Affiliation:
College of Energy and Power Engineering, Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing University of Aeronautics and Astronautics, Nanjing, China
*
Corresponding author: K. Wang; Email: kunwang@nuaa.edu.cn

Abstract

The unstart phenomenon of supersonic inlets caused by backpressure is dangerous for aircraft during flights because it severely reduces the air mass flow rate through the engine. We used unsteady numerical simulations to evaluate the unstart and restart characteristics of a two-dimensional supersonic inlet during rapid backpressure changes. The effects of the depressurisation time and depressurisation value on the inlet flow characteristics and restart features are discussed. The results show that the depressurisation time affects the restart procedure when the back pressure drops from the inlet unstart value to the normal working state value. When the depressurisation time decreases, it becomes easier for the inlet to restart. However, the inlet cannot restart if the depressurisation time is too long. When the depressurisation time and value were large enough, a short buzz period occurred before the inlet restarted. Both the time and value of depressurisation affected the restart characteristics.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Takasake, S., Brett, J.C., Fujimoto, A., et al. Inlet unstart influence on aerodynamic characteristics of next generation supersonic transport (SST), AIAA Paper, 1998, pp 98–5546.CrossRefGoogle Scholar
Emami, S., Trexler, C.A., Auslender, H., et al. Experimental investigation of inlet combustor isolators for a dual mode scramjet at a Mach number of 4, NASA TP 3502, 1995.Google Scholar
Van Wie, D.M., Kwok, F.T. and Walsh, R.F. Starting in characteristics of supersonic inlet, AIAA Paper, 1996, pp 1996–2914.CrossRefGoogle Scholar
Rodi, P.E., Emami, S. and Trexler, C.A. Unsteady pressure behavior in a ramjet/scramjet inlet, J. Propul. Power, 1996, 12, (3), pp 486493.CrossRefGoogle Scholar
Wagner, J.L., Valdivia, A., Yuceil, K.B., et al. An experimental investigation of supersonic inlet unstart, 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, June 2007.CrossRefGoogle Scholar
Mayer, D.W. and Paynter, G.C. Prediction of supersonic inlet unstart caused by freestream disturbances, AIAA J, 1995, 33, (2), pp 266275.CrossRefGoogle Scholar
Mayer, D.W. and Paynter, G.C. Boundary conditions for unsteady supersonic inlet analyses, AIAA J., 1994, 32, (6), pp 12001206.CrossRefGoogle Scholar
Trapier, S., Duveau, P. and Deck, S. Experimental study of supersonic inlet buzz, AIAA J, 2006, 44, (10), pp 23542365.CrossRefGoogle Scholar
Trapier, S., Duveau, P. and Guillen, P. Delayed detached-eddy simulation of supersonic inlet buzz, 37th AIAA Fluid Dynamics Conference and Exhibit, Miami, FL, June 2007.CrossRefGoogle Scholar
Trapier, S., Deck, S. and Duveau, P. Time-frequency analysis and detection of supersonic inlet buzz, AIAA J, 2007, 45, (9), pp 22732284.CrossRefGoogle Scholar
Li, L., Tan, H.J., Sun, S., et al. Signal characteristics and prediction of unstarting process for two-dimensional hypersonic inlet, Acta Aerronautia et Astronautica Sinca, 2010, 31, (12), pp 23242331.Google Scholar
Lee, H.J., Lee, B.J., Kim, S.D., et al. Flow characteristics of small-sized supersonic inlets, Journal of Propulsion and Power, 2011, 27, (2), pp 306318.CrossRefGoogle Scholar
Wooram, H. and Chongam, K. Computational study on hysteretic inlet buzz characteristics under varying mass flow condition, AIAA J, 2014, 52, (7), pp 13571373.Google Scholar
Xie, L.R. and Guo, R.W. Investigation of restart performance of a mixed-compression two-dimensional supersonic inlet with fixed-geometry, J Aerosp Power, 2008, 23, (2), pp 389395.Google Scholar
Chen, Y. The start characteristic of supersonic inlet, Xian, Institute of Aerospace Power Technology, 2016.Google Scholar
Tan, H.J., Sun, S. and Yin, Z. Oscillatory flows of rectangular hypersonic inlet unstart caused by downstream massflow choking, J. Propul. Power, 2009, 25, (1), pp 138147.CrossRefGoogle Scholar
Meng, Y., Zhu, S., Yan, X. Shock wave oscillation for outlet-closed ramjet inlet, Journal of Propulsion Technology, 2011, 32, (5), pp 606610.Google Scholar
Nagashima, T., Obokata, T. and Asanuma, T. Experimental of Supersonic Air Intake Buzz, Institute of Space and Aeronautical Science of Tokyo, 1972.Google Scholar
Neophyton, A., Mastorakos, E. and Cant, R.S. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layer, Combustion & Flame, 2010, 157, (6), pp 10711086.CrossRefGoogle Scholar
Dailey, C.L. Supersonic diffuser instability Ph.D. Thesis, California Inst. Of Technology, Pasadena, CA, 1954.Google Scholar
Newsome, R.W. Numerical simulation of near-critical and unsteady, Subcritical Inlet Flow, AIAA J, 1984, 22, (10), pp 13751379.CrossRefGoogle Scholar
Hawkins, W.R. and Marquart, E.J. Two-dimensional generic inlet unstart detection at Mach 2.5-5.0, AIAA Paper, 1995, pp 1995–6019.CrossRefGoogle Scholar