Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T02:54:15.586Z Has data issue: false hasContentIssue false

AN ASSESSMENT OF STONE WEAPON TIP STANDARDIZATION DURING THE CLOVIS–FOLSOM TRANSITION IN THE WESTERN UNITED STATES

Published online by Cambridge University Press:  16 October 2018

Briggs Buchanan*
Affiliation:
Department of Anthropology, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
Brian Andrews
Affiliation:
Department of Psychology and Sociology, Rogers State University, 1701 Will Rogers Blvd., Claremore, OK 74107, USA
Michael J. O'Brien
Affiliation:
Department of Humanities and Social Sciences, Texas A&M University–San Antonio, One University Way, San Antonio, TX 78253, USA; Department of Anthropology, University of Missouri, Columbia, MO 65211, USA
Metin I. Eren
Affiliation:
Department of Anthropology, Kent State University, 750 Hilltop Drive, Kent, OH, USA; Department of Archaeology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH 44106, USA
*
(briggs-buchanan@utulsa.edu, corresponding author)

Abstract

It has long been assumed that Folsom points are more standardized than Clovis points, although an adequate test of this proposition has yet to be undertaken. Here, we address that deficiency by using data from a sample of Folsom and Clovis points recovered from sites across the western United States. We used geometric morphometric techniques to capture point shape and then conducted statistical analyses of variability associated with Clovis and Folsom point bases and blades. Our results demonstrate that Folsom bases and blades are less variable than those on earlier Clovis points, indicating an increase in point standardization during the Early Paleoindian period. In addition, despite published claims to the contrary, Clovis and Folsom point bases are no more variable than blades. Based on these results, we conducted additional analyses to examine the modularity and size of Clovis and Folsom points. The results suggest Clovis points have more integrated base and blade segments than Folsom points. We suggest that several classes of Clovis points—intended for different functions—might have been in use during the Clovis period and that the later Folsom points might have served only as weapon tips, the shape of which were constrained by the fluting process.

Durante mucho tiempo, se ha supuesto que las puntas de proyectil Folsom son más estandarizadas que las puntas Clovis; sin embargo, hasta la fecha no se había llevado a cabo una prueba adecuada de esta propuesta. Aquí se aborda este asunto usando datos de una muestra de puntas Folsom y Clovis recuperadas en sitios del oeste de Estados Unidos. Se utilizaron técnicas de morfometría geométrica para analizar la forma de las puntas y se llevaron a cabo análisis estadísticos de la variabilidad asociada con las bases y los bordes de las puntas Clovis y Folsom. Nuestros resultados demuestran que las bases y los bordes de las puntas de proyectil Folsom son menos variables que los de las puntas Clovis. También demostramos que tanto para las puntas Clovis como para las puntas Folsom, las bases no son más variables que los bordes. Los primeros resultados indican un aumento en la estandarización de las puntas de proyectil durante el período Paleoindio temprano. Los resultados sugieren que la hipótesis de que el retoque aumenta la variación de forma asociada con los bordes en relación con las bases carece de fundamento. Con base en estos resultados llevamos a cabo análisis adicionales para examinar la modularidad y el tamaño de las puntas de proyectil Clovis y Folsom. Los resultados sugieren que las puntas Clovis, que son más variables en forma y longitud que las puntas Folsom, poseen segmentos de base y de borde más integrados que las puntas Folsom. Sugerimos que varias clases de puntas Clovis —destinadas para diferentes funciones— pudieron haber estado en uso durante el período Clovis y que las puntas Folsom pudieron haber servido solo como puntas de armas. Parece que la estandarización y el uso especializado de las puntas Folsom evolucionaron conjuntamente en un circuito de retroalimentación resultante tanto de las limitaciones del acanalamiento Folsom como de los beneficios para la función de la punta que pueden haber resultado del mismo acanalamiento.

Type
Reports
Copyright
Copyright © 2018 by the Society for American Archaeology 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ahler, Stanley A., and Geib, Phil 2000 Why Flute? Folsom Point Design and Adaptation. Journal of Archaeological Science 24:799820.Google Scholar
Amick, Daniel S. 1994 Folsom Diet Breadth and Land Use in the American Southwest. PhD dissertation, Department of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Amick, Daniel S. 1996 Regional Patterns of Folsom Mobility and Land Use in the American Southwest. World Archaeology 27:411426.Google Scholar
Andrews, Brian N., LaBelle, Jason M., and Seebach, John D. 2008 Spatial Variability in the Folsom Archaeological Record: A Multi-Scalar Approach. American Antiquity 73:464490.Google Scholar
Bement, Leland C. 1999 Bison Hunting at Cooper Site: Where Lightning Bolts Drew Thundering Herds. University of Oklahoma Press, Norman.Google Scholar
Bement, Leland C. 2016 Assessing Flint Knapping Skill: An Analysis of the Beaver River Complex Folsom Point Assemblages, Northwest Oklahoma, USA. PaleoAmerica 2:159168.Google Scholar
Boldurian, Anthony T. 1990 Lithic Technology at the Mitchell Locality of Blackwater Draw: A Stratified Folsom Site in Eastern New Mexico. Plains Anthropologist Memoir 24:35130.Google Scholar
Boldurian, Anthony T., Fitzgibbons, Philip T., and Shelley, Phillip H. 1985 Fluting Devices in the Folsom Tradition: Patterning in Debitage Formation and Projectile Point Basal Configuration. Plains Anthropologist 30:293303.Google Scholar
Buchanan, Briggs, Andrews, Brian, Kilby, J. David, and Eren, Metin I. 2018 Settling into the Country: Comparison of Clovis and Folsom Lithic Networks in Western North America Shows Increasing Redundancy of Toolstone Use. Ms. on file, Department of Anthropology, University of Tulsa, Oklahoma.Google Scholar
Buchanan, Briggs, and Collard, Mark 2010 An Assessment of the Impact of Resharpening on Paleoindian Projectile Point Blade Shape Using Geometric Morphometric Techniques. In New Perspectives on Old Stones: Analytical Approaches to Paleolithic Technologies, edited by Lycett, Stephen J. and Chauhan, Parth, pp. 255273. Springer, New York.Google Scholar
Buchanan, Briggs, Collard, Mark, Hamilton, Marcus J., and O'Brien, Michael J. 2011 Points and Prey: An Evaluation of the Hypothesis That Prey Size Predicts Early Paleoindian Projectile Point Form. Journal of Archaeological Science 38:852864.Google Scholar
Buchanan, Briggs, Collard, Mark, and O'Brien, Michael J. 2014 Continent-Wide or Region-Specific? A Geometric Morphometrics-Based Assessment of Variation in Clovis Point Shape. Archaeological and Anthropological Sciences 6:145162.Google Scholar
Buchanan, Briggs, Eren, Metin I., Boulanger, Matthew T., and O'Brien, Michael J. 2015 Size, Shape, Scars, and Spatial Patterning: A Quantitative Assessment of Late Pleistocene (Clovis) Point Resharpening. Journal of Archaeological Science: Reports 3:1121.Google Scholar
Buchanan, Briggs, O'Brien, Michael J., Kilby, J. David, Huckell, Bruce B., and Collard, Mark 2012 An Assessment of the Impact of Hafting on Paleoindian Projectile Point Variability. PLoS ONE 7(5):e36364.Google Scholar
Cannon, Michael D., and Meltzer, David J. 2008 Explaining Variability in Early Paleoindian Foraging. Quaternary International 191:517.Google Scholar
Cheshier, Joseph, and Kelly, Robert L. 2006 Projectile Point Shape and Durability: The Effect of Thickness:Length. American Antiquity 71:353363.Google Scholar
Collard, Mark, Buchanan, Briggs, Hamilton, Marcus J., and O'Brien, Michael J. 2010 Spatiotemporal Dynamics of the Clovis–Folsom Transition. Journal of Archaeological Science 37:25132519.Google Scholar
Crabtree, Donald E. 1966 A Stoneworker's Approach to Analyzing and Replicating the Lindenmeier Folsom. Tebiwa 9:339.Google Scholar
DeAngelis, Joseph A., and Lyman, R. Lee 2016 Evaluation of the Early Paleo-Indian Zooarchaeological Record as Evidence of Diet Breadth. Archaeological and Anthropological Sciences 10:555570. DOI:10.1007/s12520-016-0377-1, accessed August 1, 2017.Google Scholar
Dryden, Ian L., and Mardia, Kanti V. 1998 Statistical Shape Analysis. Wiley, London.Google Scholar
Emery-Wetherell, Meaghan M., McHorse, Brianna K., and Davis, Edward B. 2017 Spatially Explicit Analysis Sheds New Light on the Pleistocene Megafaunal Extinction in North America. Paleobiology 43:114.Google Scholar
Eren, Metin I., and Lycett, Stephen J. 2012 Why Levallois? A Morphometric Comparison of Experimental “Preferential” Levallois Flakes versus Debitage Flakes. PLoS ONE 7(1):e29273. DOI: 10.1371/journal.pone.0029273, accessed August 1, 2017.Google Scholar
Fligner, Michael A., and Killeen, Timothy J. 1976 Distribution-Free Two-Sample Tests for Scale. Journal of the American Statistical Association 71:210213.Google Scholar
Frison, George C., and Bradley, Bruce 1980 Folsom Tools and Technology of the Hanson Site, Wyoming. University of New Mexico Press, Albuquerque.Google Scholar
González-José, Rolando, and Charlin, Judith 2012 Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations. PLoS ONE 7(10):e48009. DOI: 10.1371/journal.pone.0048009, accessed August 1, 2017.Google Scholar
Grayson, Donald K., and Meltzer, David J. 2015 Revisiting Paleoindian Exploitation of Extinct North American Mammals. Journal of Archaeological Science 56:177193.Google Scholar
Hammer, Øyvind, Harper, David A. T., and Ryan, Paul D. 2001 PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1):19.Google Scholar
Hofman, Jack L. 1991 Folsom Land Use: Projectile Point Variability as a Key to Mobility. In Raw Material Economies among Prehistoric Hunter-Gatherers, edited by Montet-White, Anta and Holen, Steven, pp. 336355. Publications in Anthropology No. 19. University of Kansas, Lawrence.Google Scholar
Hofman, Jack L. 1992 Recognition and Interpretation of Folsom Technological Variability on the Southern Plains. In Ice Age Hunters of the Rockies, edited by Stanford, Dennis J. and Day, Jane Stevenson, pp. 193224. Denver Museum of Natural History, Denver, Colorado.Google Scholar
Hofman, Jack L. 1999 Unbounded Hunters: Folsom Bison Hunting on the Southern Plains circa 10,500 BP: The Lithic Evidence. In Le Bison: Gibier et Moyen de Subsistance des Hommes du Paléolithique aux Paléoindiens des Grandes Plains, edited by Burgal, Jean-Philip, David, Francine, Enloe, James G., and Jaubert, Jacques, pp. 383415. Éditions APCDA, Antibes, France.Google Scholar
Hofman, Jack L. 2002 High Points in Folsom Archaeology. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 399412. Lithic Technology Special Publication No. 4. Department of Anthropology, University of Tulsa, Tulsa, Oklahoma.Google Scholar
Hofman, Jack L. 2003 Tethered to Stone or Freedom to Move: Folsom Biface Technology in Regional Perspective. In Multiple Approaches to the Study of Bifacial Technologies, edited by Soressi, Marie and Dibble, Harold L., pp. 229249. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Hunzicker, David A. 2008 Folsom Projectile Technology: An Experiment in Design, Effectiveness and Efficiency. Plains Anthropologist 53:291311.Google Scholar
Hutchings, W. Karl 2015 Finding the Paleoindian Spearthrower: Quantitative Evidence for Mechanically-Assisted Propulsion of Lithic Armatures during the North American Paleoindian Period. Journal of Archaeological Science 55:3441.Google Scholar
Jennings, Thomas A. 2012 Clovis, Folsom, and Midland Components at the Debra L. Friedkin Site, Texas: Context, Chronology, and Assemblages. Journal of Archaeological Science 39:32393247.Google Scholar
Jennings, Thomas A. 2016 The Impact of Stone Supply Stress on the Innovation of a Cultural Variant: The Relationship of Folsom and Midland. PaleoAmerica 2:116123.Google Scholar
Jennings, Thomas A., Pevny, Charlotte D., and Dickens, William A. 2010 A Biface and Blade Core Efficiency Experiment: Implications for Early Paleoindian Technological Organization. Journal of Archaeological Science 37:21552164.Google Scholar
Jodry, Margaret A. B. 1999 Folsom Technological and Socioeconomic Strategies: Views from Stewart's Cattle Guard and the Upper Rio Grande Basin, Colorado. PhD dissertation, Department of Anthropology, American University, Washington, DC.Google Scholar
Judge, W. James 1973 PaleoIndian Occupation of the Central Rio Grande Valley in New Mexico. University of New Mexico Press, Albuquerque.Google Scholar
Kay, Marvin 1996 Microwear Analysis of Some Clovis and Experimental Chipped Stone Tools. In Stone Tools: Theoretical Insights into Human Prehistory, edited by Odell, George H., pp. 315344. Springer, New York.Google Scholar
Kelly, Robert L., and Todd, Lawrence C. 1988 Coming into the Country: Early Paleoindian Hunting and Mobility. American Antiquity 53:231244.Google Scholar
Klingenberg, Christian Peter 2009 Morphometric Integration and Modularity in Configurations of Landmarks: Tools for Evaluating A Priori Hypotheses. Evolution and Development 11:405421.Google Scholar
Klingenberg, Christian Peter 2011 MorphoJ: An Integrated Software Package for Geometric Morphometrics. Molecular Ecology Resources 11:353357.Google Scholar
Kornfeld, Marcel, and Larson, Mary L. 2008 Bonebeds and Other Myths: Paleoindian to Archaic Transition on North American Great Plains and Rocky Mountains. Quaternary International 191:1833.Google Scholar
Lycett, Stephen J., and von Cramon-Taubadel, Noreen 2013 A 3D Morphometric Analysis of Surface Geometry in Levallois Cores: Patterns of Stability and Variability across Regions and Their Implications. Journal of Archaeological Science 40:15081517.Google Scholar
Lycett, Stephen J., von Cramon-Taubadel, Noreen, and Gowlett, John A. J. 2010 A Comparative 3D Geometric Morphometric Analysis of Victoria West Cores: Implications for the Origins of Levallois Technology. Journal of Archaeological Science 37:11101117.Google Scholar
Meltzer, David J. 2009 First Peoples in a New World: Colonizing Ice Age America. University of California Press, Berkeley.Google Scholar
Meltzer, David J. 2015 Pleistocene Overkill and North American Mammalian Extinctions. Annual Review of Anthropology 44:3353.Google Scholar
Meltzer, David J., and Eren, Metin I. 2018 The Mountaineer Folsom Projectile Point Assemblage. Manuscript on file, Department of Anthropology, Southern Methodist University. Dallas, Texas.Google Scholar
Meltzer, David J., and Holliday, Vance T. 2010 Would North American Paleoindians Have Noticed Younger Dryas Age Climate Changes? Journal of World Prehistory 23:141.Google Scholar
Miller, G. Logan 2013 Illuminating Activities at Paleo Crossing (33ME274) through Microwear Analysis. Lithic Technology 38:97108.Google Scholar
O'Higgins, Paul 2000 Quantitative Approaches to the Study of Craniofacial Growth and Evolution: Advances in Morphometric Techniques. In Development, Growth and Evolution: Implications for the Study of the Hominid Skeleton, edited by O'Higgins, Paul and Cohn, Martin J., pp. 163185. Academic Press, London.Google Scholar
Patten, Robert J. 2002 Solving the Folsom Fluting Problem. In Folsom Technology and Lifeways, edited by Clark, John E. and Collins, Michael B., pp. 299308. Lithic Technology Special Publication No. 4. Department of Anthropology, University of Tulsa, Tulsa, Oklahoma.Google Scholar
Patten, Robert J. 2005 Peoples of the Flute: A Study in Anthropolithic Forensics. Stone Dagger, Denver, Colorado.Google Scholar
Razali, Nornadiah M., and Wah, Yap B. 2011 Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics 2:2133.Google Scholar
Rohlf, F. James 1993 Relative Warp Analysis and an Example of Its Application to Mosquito Wings. In Contributions to Morphometrics, edited by Marcus, Leslie F., Bello, Elisa, and García-Valdecasas, Antonio, pp. 131159. Museo Nacional de Ciencias Naturales, Madrid.Google Scholar
Rohlf, F. James 2015a tpsSuper version 2.02 Shareware Program. Electronic document, http://life.bio.sunysb.edu/morph, accessed August 1, 2017.Google Scholar
Rohlf, F. James 2015b tpsSmall version 1.33 Shareware Program. Electronic document, http://life.bio.sunysb.edu/morph, accessed August 1, 2017.Google Scholar
Rohlf, F. James 2016 tpsRelw version 1.62 Shareware Program. Electronic document, http://life.bio.sunysb.edu/morph, accessed August 1, 2017.Google Scholar
Rohlf, F. James, Loy, Anna, and Corti, Marco 1996 Morphometric Analysis of Old World Talpidae (Mammalia, Insectivora) Using Partial-Warp Scores. Systematic Biology 45:344362.Google Scholar
Root, Matthew J., William, Jerry D., Kay, Marvin, and Shifrin, Lisa K. 1999 Folsom Ultrathin Biface and Radial Break Tools in the Knife River Flint Quarry Area. In Folsom Lithic Technology: Explorations in Structure and Variation, edited by Amick, Daniel S., pp. 144168. International Monographs in Prehistory, Ann Arbor, Michigan.Google Scholar
Sellet, Frédéric 2018 My Flute Is Bigger Than Yours: Nature and Causes of Technological Changes on the American Great Plains at the End of the Pleistocene. In Lithic Technological Organization and Paleoenvironmental Change, edited by Robinson, Erick and Sellet, Frédéric, pp. 263279. Springer, New York.Google Scholar
Slice, Dennis E. 2007 Geometric Morphometrics. Annual Review of Anthropology 36:261281.Google Scholar
Slice, Dennis E. (editor) 2005 Modern Morphometrics in Physical Anthropology. Kluwer, New York.Google Scholar
Smallwood, Ashley M. 2006 Use-Wear Analysis of the Clovis Biface Collection from the Gault Site in Central Texas. Master's thesis, Department of Anthropology, Texas A&M University, College Station.Google Scholar
Straus, Lawrence, and Goebel, Ted 2011 Humans and Younger Dryas: Dead End, Short Detour, or Open Road to the Holocene? Quaternary International 242:259261.Google Scholar
Surovell, Todd A. 2009 Toward a Behavioral Ecology of Lithic Technology: Cases from Paleoindian Archaeology. University of Arizona Press, Tucson.Google Scholar
Surovell, Todd A., Boyd, Joshua R., Haynes, C. Vance Jr., and Hodgins, Gregory W. L. 2016 On the Dating of the Folsom Complex and Its Correlation with the Younger Dryas, the End of Clovis, and Megafaunal Extinction. PaleoAmerica 2:8189.Google Scholar
Surovell, Todd A., Pelton, Spencer R., Anderson-Sprecher, Richard, and Myers, Adam D. 2016 Test of Martin's Overkill Hypothesis Using Radiocarbon Dates on Extinct Megafauna. Proceedings of the National Academy of Sciences 113:886891.Google Scholar
Thomas, Kaitlyn A., Story, Brett A., Eren, Metin I., Buchanan, Briggs, Andrews, Brian N., O'Brien, Michael J., and Meltzer, David J. 2017 Explaining the Origin of Fluting in North American Pleistocene Weaponry. Journal of Archaeological Science 81:2330.Google Scholar
Thulman, David K. 2012 Discriminating Paleoindian Point Types from Florida Using Landmark Geometric Morphometrics. Journal of Archaeological Science 39:15991607.Google Scholar
Tunnell, Curtis 1977 Fluted Projectile Point Production as Revealed by Lithic Specimens from the Adair-Steadman Site in Northwest Texas. In Paleoindian Lifeways, edited by Johnson, Eileen, pp. 141168. West Texas Museum Association, Lubbock.Google Scholar
Tunnell, Curtis D., and Johnson, LeRoy 2000 Comparing Dimensions for Folsom Points and Their By-Products from the Adair-Steadman and Lindenmeier Sites and Other Localities. Archaeological Reports Series No. 1. Texas Historical Commission, Austin.Google Scholar
Turq, Alain 1992 Raw Material and Technological Studies of the Quina Mousterian in Perigord. In The Middle Paleolithic: Adaptation, Behavior, and Variability, edited by Dibble, Harold L. and Mellars, Paul, pp. 7585. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia.Google Scholar
Waters, Michael R., and Stafford, Thomas W. 2007 Redefining the Age of Clovis: Implications for the Peopling of the Americas. Science 315:11221126.Google Scholar
Waters, Michael R., and Stafford, Thomas W. 2014 The First Americans: A Review of the Evidence for the Late-Pleistocene Peopling of the Americas. In Paleoamerican Odyssey, edited by Graf, Kelly, Ketron, Caroline V., and Waters, Michael R., pp. 541560. Texas A&M University Press, College Station.Google Scholar
Wilmsen, Edwin N., and Roberts, Frank H. H. 1978 Lindenmeier, 1934–1974: Concluding Report on Investigations. Smithsonian Institution Press, Washington, DC.Google Scholar
Wormington, H. Marie 1957 Ancient Man in North America. Denver Museum of Natural History, Denver, Colorado.Google Scholar
Supplementary material: File

Buchanan et al. supplementary material

Tables S1-S3

Download Buchanan et al. supplementary material(File)
File 95.7 KB